Abstract:
We report results of 6.7 GHz methanol maser monitoring of 139 star-forming sites with theTorun 32 m radio telescope from June 2009 to February 2013. The targets were observedat least once a month, with higher cadences of 2-4 measurements per week for circumpolarobjects. Nearly 80 per cent of the sources display variability greater than 10 per cent on atime-scale between a week and a few years but about three quarters of the sample have only1-3 spectral features which vary significantly. Irregular intensity fluctuation is the dominanttype of variability and only nine objects show evidence for cyclic variations with periodsof 120 to 416 d. Synchronised and anti-correlated variations of maser features are detectedin four sources with a disc-like morphology. Rapid and high amplitude bursts of individualfeatures are seen on 3-5 occasions in five sources. Long (>50 d to 20 months) lasting burstsare observed mostly for individual or groups of features in 19 sources and only one sourceexperienced a remarkable global flare. A few flaring features display a strong anti-correlationbetween intensity and line-width that is expected for unsaturated amplification. There is aweak anti-correlation between the maser feature luminosity and variability measure, i.e. maserfeatures with low luminosity tend to be more variable than those with high luminosity. Theanalysis of the spectral energy distribution and continuum radio emission reveals that thevariability of the maser features increases when the bolometric luminosity and Lyman fluxof the exciting object decreases. Our results support the concept of a major role for infraredpumping photons in triggering outburst activity of maser emission.