Abstract:
We provide a new class of indecomposable entanglement witnesses. In 4 x 4 case it reproduces the well know Breuer-Hall witness. We prove that these new witnesses are optimal and atomic, i.e. they are able to detect the "weakest" quantum entanglement encoded into states with positive partial transposition (PPT). Equivalently, we provide a new construction of indecomposable atomic maps in the algebra of 2k x 2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz et. al.