Home

Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D Parabolic Potential Barrier

Repository of Nicolaus Copernicus University

Show simple item record

dc.contributor.author Chruściński, Dariusz
dc.date.accessioned 2012-11-29T17:35:58Z
dc.date.available 2012-11-29T17:35:58Z
dc.date.issued 2005-06-11
dc.identifier
dc.identifier.citation Ann. Phys. 321 (2006) 840-853
dc.identifier.other doi:10.1016/j.aop.2005.11.005
dc.identifier.uri http://repozytorium.umk.pl/handle/item/155
dc.description.abstract We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.
dc.language.iso eng
dc.rights info:eu-repo/semantics/openAccess
dc.subject Quantum Physics
dc.title Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D Parabolic Potential Barrier
dc.type info:eu-repo/semantics/article


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search repository



Advanced Search

Browse

My Account

Statistics

Informations