Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D Parabolic Potential Barrier

dc.contributor.authorChruściński, Dariuszpl
dc.date.accessioned2012-11-29T17:35:58Z
dc.date.available2012-11-29T17:35:58Z
dc.date.issued2005-06-11pl
dc.description.abstractWe show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.pl
dc.identifierpl
dc.identifier.citationAnn. Phys. 321 (2006) 840-853pl
dc.identifier.otherdoi:10.1016/j.aop.2005.11.005
dc.identifier.urihttp://repozytorium.umk.pl/handle/item/155
dc.language.isoeng
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectQuantum Physicspl
dc.titleQuantum damped oscillator II: Bateman's Hamiltonian vs. 2D Parabolic Potential Barrierpl
dc.typeinfo:eu-repo/semantics/articlepl

Files

Original bundle

Loading...
Thumbnail Image
Name:
quant-ph-0506091.pdf
Size:
166.56 KB
Format:
Adobe Portable Document Format