Order-specific removal of nonlinearity from Optical Coherence Tomography signals

dc.contributor.authorMaliszewski, Krzysztof A.
dc.contributor.authorVetrova, Varvara
dc.contributor.authorKolenderska, Sylwia M.
dc.date.accessioned2025-07-08T11:14:35Z
dc.date.issued2024-06-20
dc.description.abstractWe present two neural networks: one capable of processing a raw spectrum into an A-scan with the second-order nonlinearity removed and another for processing a raw spectrum into an A-scan with the third-order nonlinearity removed. An algorithm is also proposed to enable to use these networks in a sequence for removal of both nonlinearities. The presented approaches allow for either independent switching off of each order or the simultaneous removal of all orders, offering a tool for analysing the effects of each nonlinearity order individually or simply for performing all-depth, blind OCT data linearisation.pl
dc.description.sponsorshipHorizon Europe, the European Union’s Framework Programme for Research and Innovation, SEQUOIA project, under Grant Agreement No. 101070062
dc.identifier.citationProc. of SPIE Vol. 13006pl
dc.identifier.otherhttps://doi.org/10.1117/12.3016578
dc.identifier.urihttps://repozytorium.umk.pl/handle/item/7217
dc.language.isoengpl
dc.publisherSPIEpl
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectOptical coherence tomographypl
dc.subjectNeural networkspl
dc.subjectDispersionpl
dc.subjectImage qualitypl
dc.subjectImaging spectroscopypl
dc.subjectImage resolutionpl
dc.titleOrder-specific removal of nonlinearity from Optical Coherence Tomography signalspl
dc.typeinfo:eu-repo/semantics/conferenceObjectpl

Files

Original bundle

Loading...
Thumbnail Image
Name:
2024 SPIEprocc Order-specific removal DRAFT.pdf
Size:
5.56 MB
Format:
Adobe Portable Document Format

License bundle

Loading...
Thumbnail Image
Name:
license.txt
Size:
1.34 KB
Format:
Item-specific license agreed upon to submission
Description: