Neural Network Contour Error Predictor in CNC Control Systems

dc.contributor.authorErwiński, Krystian
dc.contributor.authorPaprocki, Marcin
dc.contributor.authorWawrzak, Andrzej
dc.contributor.authorGrzesiak, Lech M.
dc.date.accessioned2016-11-12T15:29:53Z
dc.date.available2016-11-12T15:29:53Z
dc.date.issued2016-11-12
dc.descriptionPaper presented as poster presentation at MMAR 2016 conference (Międzyzdroje,Poland, 29 Aug.-1 Sept. 2016)pl
dc.description.abstractThis article presents a method for predicting contour error using artificial neural networks. Contour error is defined as the minimum distance between actual position and reference toolpath and is commonly used to measure machining precision of Computerized Numerically Controlled (CNC) machine tools. Offline trained Nonlinear Autoregressive networks with exogenous inputs (NARX) are used to predict following error in each axis. These values and information about toolpath geometry obtained from the interpolator are then used to compute the contour error. The method used for effective off-line training of the dynamic recurrent NARX neural networks is presented. Tests are performed that verify the contour error prediction accuracy using a biaxial CNC machine in a real-time CNC control system. The presented neural network based contour error predictor was used in a predictive feedrate optimization algorithm with constrained contour error.pl
dc.identifier.isbn978-1-5090-1866-6
dc.identifier.other10.1109/MMAR.2016.7575193
dc.identifier.urihttp://repozytorium.umk.pl/handle/item/3911
dc.language.isoengpl
dc.relation.ispartofseries2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR);6096
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectartificial neural networkpl
dc.subjectpredictionpl
dc.subjectcontour errorpl
dc.subjectCNCpl
dc.titleNeural Network Contour Error Predictor in CNC Control Systemspl
dc.typeinfo:eu-repo/semantics/conferenceObjectpl

Files

Original bundle

Loading...
Thumbnail Image
Name:
MMAR2016_NN.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format

License bundle

Loading...
Thumbnail Image
Name:
license.txt
Size:
1.34 KB
Format:
Item-specific license agreed upon to submission
Description: