On ergodicity of foliations on $\mathbb Z^d$-covers of half-translation surfaces and some applications to periodic systems of Eaton lenses

dc.contributor.authorFrączek, Krzysztof
dc.contributor.authorSchmoll, Martin
dc.date.accessioned2017-12-27T10:00:39Z
dc.date.available2017-12-27T10:00:39Z
dc.date.issued2017-12-27
dc.description.abstractWe consider the geodesic flow defined by periodic Eaton lens patterns in the plane and discover ergodic ones among those. The ergodicity result on Eaton lenses is derived from a result for quadratic differentials on the plane that are pull backs of quadratic differentials on tori. Ergodicity itself is concluded for $\mathbbZ^d$-covers of quadratic differentials on compact surfaces with vanishing Lyapunov exponents.pl
dc.description.sponsorshipNarodowe Centrum Nauki grant 2014/13/B/ST1/03153 Simons Collaboration Grant 318898pl
dc.identifier.otherarXiv.org;arXiv:1708.05550
dc.identifier.urihttp://repozytorium.umk.pl/handle/item/4768
dc.language.isoengpl
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectperiodic Eaton lens patternspl
dc.subjectergodicitypl
dc.subjectquadratic differentialspl
dc.subjectLyapunov exponentspl
dc.titleOn ergodicity of foliations on $\mathbb Z^d$-covers of half-translation surfaces and some applications to periodic systems of Eaton lensespl
dc.typeinfo:eu-repo/semantics/preprintpl

Files

Original bundle

Loading...
Thumbnail Image
Name:
arXiv_170805550.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format

License bundle

Loading...
Thumbnail Image
Name:
license.txt
Size:
1.34 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections