On the enumeration of finite L-algebras

dc.contributor.authorMenchon, Maria Paula
dc.contributor.authorDietzel, Carsten
dc.contributor.authorVendramin, Leandro
dc.date.accessioned2023-03-02T07:48:55Z
dc.date.available2023-03-02T07:48:55Z
dc.date.issued2023-01-23
dc.description.abstractWe use Constraint Satisfaction Methods to construct and enumerate finite L-algebras up to isomorphism. These objects were recently introduced by Rump and appear in Garside theory, algebraic logic, and the study of the combinatorial Yang–Baxter equation. There are 377,322,225 isomorphism classes of L-algebras of size eight. The database constructed suggests the existence of bijections between certain classes of L-algebras and well-known combinatorial objects. We prove that Bell numbers enumerate isomorphism classes of finite linear L-algebras. We also prove that finite regular L-algebras are in bijective correspondence with infinite-dimensional Young diagrams.pl
dc.description.sponsorshipNational Science Center (Poland), grant number 2020/39/B/HS1/00216pl
dc.identifier.citationMathematics of Computation vol. 92, 2023, pp. 1363-1381.pl
dc.identifier.otherhttps://doi.org/10.1090/mcom/3814
dc.identifier.urihttp://repozytorium.umk.pl/handle/item/6832
dc.language.isoengpl
dc.publisherAmerican Mathematical Societypl
dc.rightsAttribution 4.0 Poland*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.pl*
dc.subjectL-algebraspl
dc.subjectComputationpl
dc.subjectUniversal algebrapl
dc.subjectLogicpl
dc.titleOn the enumeration of finite L-algebraspl
dc.typeinfo:eu-repo/semantics/articlepl

Files

Original bundle

Loading...
Thumbnail Image
Name:
l-algebras-arXiv.pdf
Size:
407.32 KB
Format:
Adobe Portable Document Format

License bundle

Loading...
Thumbnail Image
Name:
license.txt
Size:
1.34 KB
Format:
Item-specific license agreed upon to submission
Description: