Ergodic properties of the ideal gas model for infinite billiards

dc.contributor.authorFrączek, Krzysztof
dc.date.accessioned2017-12-27T09:58:03Z
dc.date.available2017-12-27T09:58:03Z
dc.date.issued2017-12-27
dc.description.abstractIn this paper we study ergodic properties of the Poisson suspension (the ideal gas model) of the billiard flow $(b_t)_{t\in\mathbb R}$ on the plane with a $\Lambda$-periodic pattern ($\Lambda\subset\mathbb R^2$ is a lattice) of polygonal scatterers. We prove that if the billiard table is additionally rational then for a.e. direction $\theta\in S^1$ the Poisson suspension of the directional billiard flow $(b^\theta_t)_{t\in\mathbb R}$ is weakly mixing. This gives the weak mixing of the Poisson suspension of $(b_t)_{t\in\mathbb R}$. We also show that for a certain class of such rational billiards (including the periodic version of the classical wind-tree model) the Poisson suspension of $(b^\theta_t)_{t\in\mathbb R}$ is not mixing for a.e. $\theta\in S^1$.pl
dc.description.sponsorshipNarodowe Centrum Nauki grant 2014/13/B/ST1/03153pl
dc.identifier.urihttp://repozytorium.umk.pl/handle/item/4767
dc.language.isoengpl
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectideal gaspl
dc.subjectPoisson suspensionpl
dc.subjectrational billiardspl
dc.subjectperiodic translation surfacespl
dc.subjectweak mixingpl
dc.subjectmixingpl
dc.titleErgodic properties of the ideal gas model for infinite billiardspl
dc.typeinfo:eu-repo/semantics/preprintpl

Files

Original bundle

Loading...
Thumbnail Image
Name:
PoissonErgod15-09-2017.pdf
Size:
411.45 KB
Format:
Adobe Portable Document Format

License bundle

Loading...
Thumbnail Image
Name:
license.txt
Size:
1.34 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections