Simplified Kripke style semantics for some very weak modal logics
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In the present paper we examine very weak modal logics C1, D1, E1, S0.5◦, S0.5◦+(D), S0.5 and some of their versions which are closed under replacement of tautological equivalents (rte-versions). We give semantics for these logics, formulated by means of Kripke style models of the form <w,A,V>, where w is a «distinguished» world, A is a set of worlds which are alternatives to w, and V is a valuation which for formulae and worlds assigns the truth-vales such that: (i) for all formulae and all worlds, V preserves classical conditions for truth-value operators; (ii) for the world w and any formula ϕ, V(⬜ϕ,w) = 1 iff ∀x∈A V(ϕ,x) = 1; (iii) for other worlds formula ⬜ϕ has an arbitrary value. Moreover, for rte-versions of considered logics we must add the following condition: (iv) V(⬜χ,w) = V(⬜χ[ϕ/ψ],w), if ϕ and ψ are tautological equivalent. Finally, for C1, D1and E1 we must add queer models of the form <w,V> in which: (i) holds and (ii') V(⬜ϕ,w) = 0, for any formula ϕ. We prove that considered logics are determined by some classes of above models.
Description
Keywords
simplified Kripke style semantics, very weak modal logics
Citation
Logic and Logical Philosophy, No. 3-4, Vol. 18, 2010, pp. 271-296
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NoDerivs 3.0 Poland