Tuning the lability of a series of Ru(II) polypyridyl complexes: a comparison of experimental-kinetic and DFT-predicted reaction mechanisms
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor and Francis
Abstract
This report deals with a comparison of experimentally obtained kinetic and activation parameter data, and theoretical DFT computations, in terms of mechanistic information on the water exchange and water displacement reactions by thiourea for a series of complexes of the type [RuII(terpy)(N^N)(H2O)]2+, where terpy = 2,2′:6′,2″-terpyridine and N^N represents ethylenediamine (en), 2-(aminomethyl)pyridine (ampy), 2,2′-bipyridine (bipy), 1,10-phenantroline (phen), and N,N,N′,N′-tetramethylethylenediamine (tmen). The complexes were all isolated in the form of [Ru(terpy)(N^N)Cl]X (X = Cl– or ClO4–) compounds and fully characterized in both the solid state and in solution. The DFT calculations revealed further mechanistic insight into the water exchange reactions as well as the water displacement reactions by thiourea. Both the experimental activation parameters and the DFT calculations suggest the operation of an associative interchange (Ia) mechanism for both reaction types studied.
Description
Keywords
DFT calculations, Kinetic data, ligand substitution, mechanistic insight, Ru(II) polypyridyl complexes, water exchange reactions
Citation
Journal of Coordination Chemistry; vol. 74, 2021, pp. 433-443.
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Poland