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Piotr Maćczak 1,2, Halina Kaczmarek 1,* and Marta Ziegler-Borowska 1

1 Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
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Abstract: Polymer flocculants are used to promote solid–liquid separation processes in potable
water and wastewater treatment. Recently, bio-based flocculants have received a lot of attention
due to their superior advantages over conventional synthetic polymers or inorganic agents.
Among natural polymers, polysaccharides show many benefits such as biodegradability, non-toxicity,
ability to undergo different chemical modifications, and wide accessibility from renewable sources.
The following article provides an overview of bio-based flocculants and their potential application
in water treatment, which may be an indication to look for safer alternatives compared to synthetic
polymers. Based on the recent literature, a new approach in searching for biopolymer flocculants
sources, flocculation mechanisms, test methods, and factors affecting this process are presented.
Particular attention is paid to flocculants based on starch, cellulose, chitosan, and their derivatives
because they are low-cost and ecological materials, accepted in industrial practice. New trends in water
treatment technology, including biosynthetic polymers, nanobioflocculants, and stimulant-responsive
flocculants are also considered.
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1. Introduction

Human activity and global industrialization are increasingly affecting the natural environment,
which results in the growing pollution of natural water sources. Both groundwater and surface water
can be contaminated with suspended solid particles, colloidal particles, and dissolved substances.
Their removal can take place as a result of the force of gravity (this applies to larger particles), and in
the case of charged particles—in the process of coagulation or flocculation (which may be independent
of the surface charge). However, the most considerable difficulty is the treatment of water polluted
with finely divided particles, which can be untreated sewage, heavy metal ions, and non-biodegradable
pesticides or naturally occurred organic and mineral compounds [1]. Various techniques have been
implemented to overcome these problems: from classical and simple methods such as sedimentation
and filtration to more complex methods including ultrafiltration, ozonation and reverse osmosis, which,
however, generate higher costs of the process. The techniques used in water treatment need to be
specific, economical, and efficient [1–3].

Therefore, preferred and commonly used method is flocculation, which most frequently requires
the use of particular substances—flocculants (also called flocking or clarifying agent). By using them,
colloidal particles invisible to the naked eye can be removed from the water, which are not subject to
gravity and cannot be effectively filtered. As a result of their very small size (the diameter of typical
colloidal particles ranges from 1 nm to 1 µm) and large surface to mass ratio, in colloidal solutions,
most important are surface properties and electrokinetic effects. The ionization of functional groups,
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ion adsorption at the particles surface, and surface charge usually depend on composition of solution
and pH [4].

Flocculants—substances accelerating the agglomeration of colloidal particles and falling of floc
sediments in the water system as well as increasing the removal efficiency of pollutions—are commonly
used in processes of water and wastewater purification [5]. A good flocking agent is characterized by
effective removal of impurities at its lowest possible concentration and in the shortest time. Previously,
mainly inorganic compounds (such as aluminum sulfate and iron chloride) were used for water and
wastewater treatment, owing to their high availability and low price, but currently polymers (both
synthetic and natural) are increasingly popular flocculants. They are especially beneficial in increasing
the rate of slow-settling aggregates at low temperatures, because of enlarging the surface area (i.e.,
sorption capacity) of the flocs formed [1,6,7]. However, inorganic flocculants are sensitive to pH
changes and lead to large amounts of sludge in the environment. Metal ions from such sludge entering
groundwater are a serious problem.

Therefore, in modern water purification technologies, polymer flocculants are increasingly used.
Polymer flocculants cause the formation of large, coherent aggregates (so-called flocs) that settle in
the solution. Synthetic polymers are highly effective flocculants at low dosages but have poor shear
stability. In the case of water-soluble polymers, their flocculating effect depends on the size of the
random coils (i.e., the radius of gyration), which are the privileged conformation in solution. However,
the main disadvantages of flocculants based on synthetic polymers are the lack of biodegradability
and hence environmental burden as well as the difficulty of recycling post-process sludge. Among the
synthetic polymer flocculants, the most important is water-soluble polyacrylamide (PAM)—a non-ionic,
amorphous polymer which can be modified to ionic form in the copolymerization process [8–10].
The acrylamide monomer can be used for grafting or crosslinking of other type of polymers.

Most synthetic flocculants are remarkably toxic to humans, animals, and aquatic organisms [11–13].
For example, acrylamide monomer, which can contaminate the polymer in trace amounts, has a
dangerous carcinogenic effect [14]. It is possible that small amounts of polymers after water treatment
will get into the environment in finely divided form or as diluted solution, which creates an additional
problem [13]. This is the reason new biodegradable, safe, and economical substitutes of the conventional
agents are sought. Therefore, the use of bio-based flocculants, which are relatively harmless to the
environment, has become a common trend nowadays.

Recently, biopolymers, particularly polysaccharides, have attracted the great attention of the
scientific community mainly due to their availability, biodegradability, and high capacity to adsorb
pollutants from water [3,15]. Biopolymers differ from synthetic polymers by the presence of higher-order
structures and sometimes the lack of an identified repeating unit (as in the case of lignin), while they
are generally characterized by a lower polydispersity or even monodispersity. On the other hand,
polysaccharides are macromolecular compounds in which the repeating units are monosaccharides
(glucose and fructose) linked in chains mainly by 1,4-glycosidic bonds (i.e., –C-O–C– ether bonds).
Polysaccharides are biopolymers that are synthesized in nature in plants (e.g., cellulose, starch,
and pectin) or in animal organisms, e.g., chitin and chitosan, the source of which are the shells
of crustaceans (lobsters, crabs, and shrimp), insects, and fungi. Their properties depend on the
chemical structure, rich in functional moieties, mainly hydroxyl groups but also amine, carbonyl, etc.
The presence of these functional groups contributes to the effective adsorption of various pollutants in
the flocculation process.

Usually, flocculants based on natural polymers are effective in high doses and are shear stable.
Moreover, they can be easily modified to enhance their flocculation efficacy. According to the literature
reports, the combination of properties of natural and water-soluble synthetic polymers allows the
creation of new highly effective flocculants. Examples are works on the use of starch, chitosan,
or cellulose and their derivatives with acrylamide in water and wastewater treatment [16–18].

The main goal of this article is to present the recent reports on natural bioflocculants application
in water treatment, mainly based on polysaccharides and their derivatives or copolymers. In addition,
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the mechanisms of flocculation processes, methods for testing new agents of this type, and the factors
influencing the purification process are briefly summarized. Particular attention is paid to new
biosynthetic flocculating agents, nano(bio)flocculants, and smart (intelligent) materials. Due to the
large amount of literature on flocculation in water treatment and the narrow aspects of individual
published works, our intention is to summarize in one article the latest achievements on the acquisition
of new biomaterials for flocculants manufacturing, research methodologies including determination of
process efficacy, and future trends in this field. At the same time, the basics of flocculation mechanisms
are briefly described to cover the topic fully and comprehensively.

2. Flocculation Mechanism

Flocculation and coagulation are the most economic methods for solid particles removal from
water. However, there are some terminology mistakes between the above-mentioned processes.
Flocculation is often mistakenly thought to be the same process as coagulation, but they are two
different phenomena that can occur independently [19,20].

Coagulation is the process in which particles aggregate and start to form flocs that can be settled
out from the water. In the first stage of coagulation, as a result of the reduction of the electrokinetic
potential, the colloidal particles are destabilized. This is due to both Brownian motion leading to
the collision of the particles (perikinetic aggregation) and fluid motion, in which micelles combine
into larger aggregates (orthokinetic aggregation) [4,21]. During the collisions and aggregation of
particles, larger and larger flocs are formed which settle out of the suspension under the action of
gravity. The result is clean, colloid-free water [1,19,20,22]. Flocculation improves the conditions of the
sedimentation process by joining destabilized particles together, increasing their weight, which allows
them to be removed by filtration. This is an important stage of water purification, especially surface
water, which removes organic impurities, including viruses and bacteria [23]. Destabilization of
colloids can be achieved by the addition of electrolyte, which most often is aluminum or iron salts,
in general called coagulants. Hydrolysis of these electrolytes leads to formation of colloidal hydroxides
that adsorb on the surface of contamination particles present in water. According to the DLVO theory
developed by Derjaguin and Landau and independently by Verwey and Overbeek [24,25], the addition
of electrolyte decreases the double electrical layer until the dominant influence of attraction, van der
Waals forces, occurs. This is the reason of flocs formation. Precipitation of agglomerates occurs after
exceeding the critical coagulation concentration, which depends on experimental conditions (mixing,
time of measurement, etc.). Usually, the settling rate is low, and, to enhance it, a small amount of organic
polymeric flocculant should be added [1,26]. In industrial practice, the combination of coagulation
and flocculation (described by the symbol C/F) is used by applying inorganic coagulants (electrolytes)
and flocculants (ionic and non-ionic polymers). This approach contributes to the formation of larger
and denser flock, and thus to faster and more effective water purification from inorganic and organic
impurities [27]. The more economical version uses the non-coagulation purging process, i.e., direct
flocculation. In this simplified method, cationic or anionic polymers play a dual role: neutralizing
particles’ charge and aggregating them by bridging. This process is effective over a wide pH range (as
opposed to coagulation) and is mainly used to remove relatively high levels of organic contaminants.

The scheme of coagulation and flocculation is shown in Figure 1. Typically, coagulation is a very
fast step (<10 s), while the flocculation is much longer (lasting 20–45 min) [21]. Moreover, aggregates
growing in both processes differ significantly. When coagulating in the presence of salt, the aggregate
sizes are relatively small—in this case, after a short increase in their size, a plateau is quickly reached.
Flocculation with macromolecular compounds generally leads to larger aggregates, and, after reaching
their maximal size, a certain decrease is observed. The restructuring of particles or irreversible breakage
is responsible for this [28,29].
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Figure 1. Illustration of coagulation and flocculation process.

According to the literature reports from recent years, the flocculation mechanism in the presence
of polysaccharide flocculants is considered to be due to the two main mechanisms described below:
(a) charge neutralization; and (b) polymer bridging [5,6,30]. These two ways depend on the adsorption
of polymer on particle surfaces as a result of electrostatic interactions, hydrogen bonding, hydrophobic
interactions, complexation, or ion bridging by macromolecules [5,6,15,30]. A thorough explanation of
these mechanisms should be based on detailed research at the molecular level because flocculation
is a rather complicated, multi-stage process comprising several competing physical phenomena and
chemical reactions [31]. Understanding these phenomena allows finding a correlation between the
properties of used flocculants and the effectiveness of the flocculation process, which is important from
a practical point of view.

The verification of the flocculation mechanism was presented by Lemanowicz et al. [32].
The influence of the optimal concentration of flocculant, at which flocs capable of settling are
formed (this is called the flocculation window) was explained. Exceeding this concentration limit leads
to the re-stabilization of the suspended particles. The influence of temperature has also been considered
here, especially important when polymer properties are altered under the heat. Such polymers change
the above-described mechanisms, which in this case depend of heating conditions and flocculant dose.
Termo-sensitive polymers undergo not only re-conformation at a certain temperature but also their
hydrophilic nature changes to hydrophobic. This alters the molecular interactions, the result of which
is partially or fully reversible aggregation taking place.

A detailed description of flocculation mechanisms, supported by theoretical considerations,
has recently been published in several articles [28,33–36]. Modeling of the process allowed determining
the time of adsorption (τads) and aggregation (τagg), which is different in Brownian diffusion and
shear-induced flocculation. For example, in suspension of charged silica particles flocculated by
polyacrylamide, τagg is 16 and 180 s in shear and diffusion processes, respectively [28].

The review work by Oyegbile and Ay [36] is devoted to both mechanistic and kinetic considerations.
The role of physicochemical process in particle aggregation, flocs stability, molecules interactions,
mechanisms of aggregate disruption, and transport processes including particles collisions in laminar
and turbulent shear are also discussed here.

2.1. Charge Neutralization

Charge neutralization (CN) can take place if the polymer has an opposite charge to that on the
surface of the colloidal particles, as shown in Figure 2a. In this case, the particle surface charge density
is reduced by adsorption of the macromolecules which results in the destabilization of this particle
(repulsive electrostatic interactions are replaced by attractive forces). This mechanism is particularly
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effective for low molecular weight polymers (<105 Da) able to adsorb and neutralize the particles
suspended in water [5,37,38].
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Figure 2. Scheme of flocculation mechanisms (the curved lines represent polymer chains adsorbing to
the spherical colloidal particles): (a) charge neutralization; and (b) polymer bridging.

The effect of neutralizing the charge is reduction of the electrokinetic i.e., zeta (ζ) potential,
which is the potential difference between dispersed particles and the medium in which they are
scattered. In other words, it is the electric potential at slipping plane (shear plane), i.e., at the boundary
between the compact layer and diffuse layer of particles in colloidal solution [39]. Decrease of zeta
potential contributes to the creation of van der Waals’ attractive forces, facilitating aggregation and
sedimentation of formed flocks [27].

A certain variation of this method is the so-called electrostatic patch model, which involves partial
neutralization of the charge, which occurs in the presence of polyelectrolyte of not very high molecular
weight. This process involves incomplete neutralization, thus formation of positively and negatively
charged fragments on the surface of the same molecule. Such patches or “islands” with different
charges cause attraction and precipitation of neighboring particles [6] (Figure 3). Flocs created in this
way are more strongly bonded than in the case of ordinary charge neutralization [15,27,40].

Another mechanism described in the literature is sweep flocculation (SF) but it is also actually a
different kind of charge neutralization combined with the transfer of colloidal particles to the sludge
(which resembles sweeping) [4]. Initially, the negative charge of colloid particles is neutralized and
then positively charged large aggregates (sweep flocks) are formed. The mutual attraction between
aggregates and still present colloidal particles leads to their attachment and settling. This nonselective
process occurs mainly in the presence of inorganic coagulants Al/Fe salts) and at neutral pH. In this
case, sweep flocks are aggregates of Al(OH)3 or (Fe(OH)3. Other water-soluble impurities can also
combine with sweep flocks or be entrapped in them. The fast SF occurs at high content of coagulants
(at oversaturation). Other factors influencing this process are the presence of various anions in water
and colloid concentration [4]. This type of mechanism can also take place in the presence of bio-based
polymeric flocculants.
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2.2. Polymer Bridging

In the case of bridging mechanism (Figure 4), some polymer segments are adsorbed on the
surface of colloidal particles, resulting in loops and tails suspended in the solution [6], which can
attach to adjacent particles to form larger aggregates—flocks (shown in Figure 2b). The polymer
can be adsorbed as a result of van der Waals forces, hydrogen bond formation, or chemical reaction
between the functional groups of the macromolecules and the colloidal particles. This mechanism is
particularly effective for high molecular weight polymers (>106 Da) having the same charge as colloidal
particles [5,30]. It also applies to dispersed uncharged particles, even if they are relatively far apart
(at a distance greater than the action of electrostatic attractive forces, which may occur at very low
concentrations). Polymers are extremely advantageous flocculants. This is due to the entanglement of
the macrochains in the form of random coils, which contribute to the entrapment of particles in their
physical network, and the possibility of changing the conformation in the solution because of their
high flexibility. This promotes matching the shape of the polymer chains to the surrounding or joined
colloidal particles. The adsorbed macromolecules can undergo relaxation process—if they become too
flat on the contamination particle surface, they are unable to combine with other particles. Similarly,
too low polymer particles are inactive in bridging process [28,41]. To prevent unwanted inactivation of
the polymeric flocculant, polymer mixtures are used. In this case, one polymer provides adsorption
sites for the other or contributes to a more elongated conformation of adsorbed macromolecules [41].

To induce flocculation via bridging mechanism, the size of macromolecules should be larger than
double the layer thickness of the colloidal particle. The estimated minimal molecular weight for linear
nonionic polymer (polyacrylamide) is about 30,000 Da [28]. The aggregates formed in the presence of
polymeric flocculants are stronger and greater (with size up to approximately 50 µm) than in classic
coagulation by inorganic compounds.

The undoubted advantage of applying the polymer for this purpose is the simplicity of its
modification by introducing the specific functional groups able to effectively bind of impurity molecules.
For example, in addition to existing hydroxyl groups in cellulose and starch, reactive carboxyl or
aldehyde groups can be easily inserted to structure of macromolecules. Another polysaccharide,
chitosan, containing amine and N-acetyl moieties, can also be used as reactive flocculant.
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Flocculation efficiency occurring according to bridging mechanism depends not only on the
chemical structure and molecular weight but also on the degree of macromolecules branching. However,
there are divergences in the literature on this subject. It has been published that the linear molecules
promote the process effectiveness [15]. A different result was obtained in other studies on the effect
of polymer architecture. Xu et al. [42] found that hyperbranched cationic polyacrylamide exhibited
enhanced flocculation comparing to its linear counterpart, which has been explained by increasing
interactions of branches with suspended particles. A shorter settlement time, high transmittance of
purified water, and large size of precipitated flocs were observed in the presence of this novel branched
polymer [42].

It should be added that, under certain, specific conditions (e.g., in very diluted solution),
the polymer chain will wrap individual colloidal particles, which will restore the stable suspension.
Similar effect can cause intensive mixing, during which the bridges between colloidal particles may
break, especially if they arose as a result of weak dispersion forces [4]. However, in some cases,
the reversibility of flocculation can be a positive aspect. It has been proved that breaking and re-growth
of flocs results in a dense, compact sediment and more effective separation, even with a reduced
flocculant dose [43]. It concerns all considered above mechanisms. It was found that when SF is main
mechanism, the breakage and re-growth of aggregates finally leads to formation of greater flocs which
begin to repulse because of the accumulated charge. In CN, smaller aggregates can fully re-grow that
increase the flocculation efficiency [4,43].

This mechanism usually depends on the flocculant type: the agent with high electric charge
density acts via charge neutralization while high molecular weight compounds of low content of
charges flocculates mainly by bridging. If conventional C/F technology is insufficient and does not
ensure high water quality standards, the enhanced coagulation (or optimized coagulation) can be
applied. This process is carried out to increase the sedimentation rate and fully remove the disinfection
byproduct. It can be achieved by using excess of coagulant, combination of coagulants or other
additional agents (e.g., oxidant and activated carbon), adjusting pH, and controlling of hydraulic
condition [44–46]. In addition, the sludge production is reduced and simultaneously the water
treatment cost is lowered in enhanced coagulation.

3. Determination of Flocculation Efficiency and Mechanisms

The basic feature indicating the presence of impurities in drinking water is turbidity; hence, the most
important measuring techniques are based on determining this physical parameter. The principle of
water turbidity measurement is based on the assumption that light penetrates a layer of pure water
(completely transparent) in an undisturbed manner, while the presence of suspended particles causes
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its scattering or absorption. The degree of these disturbances (Tyndall effect) varies dependently on
the size, shape, concentration, chemical composition, and refractive index of the particles.

The measurement of the intensity of the scattered or transmitted light (transmittance) is the basis of
the methods used in both water treatment plants and in laboratory tests. Currently, the standard method
is to measure scattered light at an angle of 90◦. The instruments using this method are nephelometers
(also called turbidimeters) and the measurement result is usually expressed in nephelometric turbidity
units (NTU) as well as formazin turbidity units (FTU) or formazin attenuation units (FAU)—depending
on the technology or method used. Apparatuses based on the measurement of transmitted light are
more useful for measuring the turbidity resulting from the presence of larger particles in water (of
diameter >1 µm) [47].

The new turbidimeters, instead of measuring of a single reflection at 90◦, record a series of
reflected beams in the full angle range (360◦) around the cuvette with the sample of water tested.
Recording light reflected in a full circle around the sample significantly increases the signal-to-noise
ratio, which provides greater accuracy in turbidity measurement [48].

The turbidity is sometime applied for determination of color removal, e.g., in wastewater treatment
from the textile industry:

Rd =
To − Tf

Tf
100% (1)

where Rd is dye removal (%) and To and Tf are the turbidity of the initial wastewater and after treatment
at a given time, respectively [49].

The Rd value is also expressed by means of determined changes in dye concentration

Rd =
Co −C

C
100% (2)

where Co and C are the dye concentrations before and after water treatment, respectively [50].
A frequently used method for determining flocculation efficiency is the UV–Vis absorption

spectroscopy. It allows determining the concentration of a given type of impurities (e.g., metal cations)
absorbing in the UV–Vis range. By measuring the absorbance (or transmittance) of the initial water
sample and after the purification process at a given time, the effectiveness of various flocculants, as well
as the validity of the proposed methodology can be compared. For example, such parameter (η) was
calculated by Vandamme [51] and Blockx et al. [52] for determination of effect of organic matter (algae)
on flocculation using different flocking agents:

η =
ODi −ODf

ODi
(3)

where ODi is optical density of the initial solution without flocculant and ODf is the optical density of
the same solution after flocculation process. This parameter can also be expressed as a percentage.

In the case of water turbidity, e.g., due to the presence of metal ions such as Fe2+ and Fe3+,
in addition to turbidimetry, the common absorbance measurement in the range of 600–800 nm is used.
After settling of particles due to sedimentation, the transmittance increases, thus the absorbance goes
to zero.

Two approaches are used to evaluate the effectiveness of flocculation by measuring turbidity or
absorbance: evaluation of the appropriate solution parameters depending on the concentration of
the added flocculant or the minimum settling time leading to the desired purification effect. Strictly
speaking, the flocculation efficiency is higher if the settling time is shorter and the flocculant dose
is lower. This last term is also called optimum dose (in the case of polymeric agent, it is optimum
polymer dose, OPD), at which the lowest contamination level can be achieved. Another parameter is
the removal efficiency (RE%), which can be obtained by assessing adsorption capacity at equilibrium
state [53].
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To evaluate the removal of fluoride, nitrate, and phosphate anions from aqueous solutions,
Mohammadi et al. [54] measured the concentration of pollutants using ion chromatography techniques.
The solutions were centrifuged, filtered, and injected into the chromatograph, equipped with an
anionic column. The amount of the aforementioned ions adsorbed at the surface of flocculant (qe) was
calculated as:

qe =
(C0 −Ce)

W
(4)

where C0 and Ce are the initial and equilibrium concentration of the anions after adsorption (mg/L),
respectively, and W is the adsorbent mass per the solvent volume (g/L).

In other works, flocculation index (FI) is proposed for process estimation [55,56]. FI is defined in
different ways. For example, based on continuous monitoring flocculation by Photometric Dispersion
Analyzer (PDA) [55], which allows measuring the average transmitted light intensity (dc value) and
the root mean square (rms) value of the fluctuating component, FI is obtained by dividing rms by dc.
In this method, FI is calculated in every second of studied process. The FI parameter reflects the size of
suspended particles (the greater the degree of aggregation, the greater the FI).

Cruz et al. [56] described Continuous Flocculation Monitoring Equipment based on suspension
flow meter using light of 900 nm wavelength. Two values were determined: stable component (DC)
of electrical output from photodetector, corresponding to the average intensity of transmitted light,
and variable component (AC) caused by a random change of the size and number of particles. FI was
calculated as the ratio of the average square root value of AC and DC.

Absorption spectroscopy is also used for estimation of water shade. For example, determination
of absorbance at 465 nm allows precise determination of bluish color, which cannot be assessed with
the naked eye [56].

Another criterion may be the content of colloidal microparticles of specific sizes in the water
suspension determined before and after treatment, which in the opinion of some authors is better than
turbidity evaluation. For this purpose, microscopic techniques or even visual observation can be used.
The size and shapes of flocks and their changes after addition of flocculation agent supply important
information on the process course. Determining the size of the precipitated particles makes it possible
to predict whether they can finally be removed in a classic filtration process.

Sharma and co-workers [15] separated the agglomerates from supernatant by filtration, and,
after drying and weighing this filtered residue, they calculated percentage content of dispersed and
settled particles. Simultaneously, they measured the transmittance at 700 nm of blank and studied
solutions to correlate these parameters.

The size, amount and size distribution of colloidal particles dispersed in the solution can be
determined using instruments based on light scattering measurements (LS) [30]. Such measurements
allow not only evaluation of flocculation efficiency, but also contribute to determining the mechanism
depending on the system and conditions used.

An example is work by Zhou and Framks [31], where three cationic polymers (homopolymer of
diallyldimehylammonium chloride and its two copolymers with acrylamide) of different molecular
weights (1.1–3.0 × 105 g/mol) and charge density (CD) (10%, 40%, and 100%) were used as flocculants
for silica aggregates. They conducted experiments in apparatus constructed for aggregation
(mini-thickener) and then studied the sediment particles by static LS as well as measured zeta
potential of agitated suspension at 22 ◦C and pH 5.5. They found that mainly charge density determines
the flocculation mechanism: bridging dominates at low CD (10%); electrostatic patch flocculation
takes place at high CD (100%); and moderate CD (40%) causes flocculation by a complex mechanism,
namely charge neutralization and bridging.

In other work, authors have studied flocs formation by an improved image analysis technique
using charge couple device (CCD) camera and relevant software [55]. This method allows observing
the growth of agglomerates and their destruction in the cyclic flocculation process at different shear
forces. The size of flocks and their morphology can be appointed.
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Since during flocculation by neutralization of electric charge (CF), the zeta potential decreases,
this parameter is also a measure of the process efficiency. Based on the changes in zeta potential,
not only the degree of neutralization can be determined, but also the appropriate dose of flocculant [57].
Lopez-Molando et al. [58] described zeta potential measurements in studies of semiconductor
wastewater (containing cations of Sn, Pb, and Fe) treatment with the help of cationic and anionic
polyelectrolytes. Based on research at different conditions, they concluded that this parameter plays
key role for assessing the good coagulation–flocculation efficiency. The dependence of ζ on pH and
flocculant dose was determined, and these parameters were correlated with turbidity and particle size.
This research allowed designating a flocculation window for optimal dose and pH, which can be used
in semiconductor industry.

The most common method in practice is the Jar Test. It is an important research tool that reflects
the full scale coagulation/flocculation that can be implemented in a water treatment process. There is
no simple definition of this procedure or even standard equipment. It is an experimental method
whose purpose is to estimate the minimum flocculant dosage and process conditions required to
achieve specific water quality. It is usually carried out in a stirring machine with 3–6 paddles and the
same number of jars (beakers) simultaneously [59].

There are articles describing the modification of this method allowing for more precise and
repeatable research. For example, a commercial Jar Test apparatus was modified by the addition of six
turbidity meters coupled with a computerized data-acquisition system. It allowed for quantitative
determination of sedimentation as a function of time [60].

Fujisaki [61] proposed a novel apparatus in which a conventional jar tester was combined with a
photocouplers and a switching timer, which proved to be very useful in multiple studies [61]. In this
solution photocouplers composed of 680-nm-wavelength red light-emitting diode (LED) lasers and
fiber optical sensors were attached to both sides of the beaker. The measurements of turbidity by light
transmission were performed at intervals in solution mixing in standardized conditions. With the help
of this device, it is possible to study the kinetics, and indirectly also the mechanism of flocculation.

Another modification of the standard Jar Test, introduced by Xiao et al. [62], consisted of additional
equipment with a particle image velocimetry (PIV) system. PIV is employed to monitor the particle
size distribution (PSD) during flocculation process. Optical setup is equipped with laser source,
high-speed CCD video camera coupling with image analysis software. Pulsed laser beam is expanded
to a thin light sheet through lenses system which enable to visualize planar region of water containing
suspended particles. This method is non-invasive and gives the ability to track the changes in PSD of
the flocs in real time. It can be useful to characterize the flocculation dynamics, flocs strength, and their
morphology [62].

Further development of this technique was presented by Smith and Friedrichs [63], who joined
two methods of image analysis: the particle image velocimetry (PIV) and particle tracking velocimetry
(PTV). The PTV involves tracking of individual large particles (d > 30 µm) of spherical shape, while PIV
monitors the smaller particles for fluid velocity estimation. Simultaneous registration of settling velocity
and two-dimensional size of particles enables very precise and automatic analysis of flocculation.

It should also be added that, to verify the effectiveness of the process and study the flocculation
kinetics, adsorption measurements are performed.

4. Factors Affecting Flocculation

The flocculation process and its effectiveness are influenced by many factors, such as the chemical
structure and properties (including charge) of both the removed substance and flocculant (in the case
of polymers important is also average molecular weight and its distribution), their concentration,
environment pH, ionic strength, temperature, rate of mixing, and mechanism of the process [5,57,64].
The most important factors discussed in recent studies are presented below.
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4.1. Effect of pH

One of the most important parameters affecting flocculation efficiency is the pH of the raw
water [5]. It should be remembered that pollutants, e.g., hydrolysable salts, affect the pH of water.
It was found that, in an alkaline environment, increasing the flocculant dose does not contribute to
improving process yield. In this case, acidification of the environment is recommended. Generally
speaking, effective flocculation requires optimal pH for a given type of flocculant [65–67].

It has been shown that, by changing the pH from 8.5 to 12.0, 94% flocculation efficiency of
Chlorococcum sp. microalgae can be obtained with chitosan, which is much higher than in the case of
classic flocculation with aluminum sulfate and iron chloride. Residues after flocculation is suitable for
further algae cultivation because it is not contaminated with metal compounds [68].

Mohammadi et al. [54] studied influence of pH on the charge of the chitosan-based adsorbent
surface by determining its value in zero charge point (pHpzc). Zeta potential measurement helped to
determine pHpzc as 6.15. This means that only at this pH, the charge of the adsorbent is zero, and,
at both lower and higher pH value, polymer surface becomes positively or negatively charged. In this
way, it is possible to determine the optimum pH value at which the greatest efficiency of this flocculant
is observed. It was pH = 3 at which the adsorbent was positively charged and could react with the
anions present in the solution.

The effect of the initial pH and dose of another chitosan grafted copolymer for treating acid blue
83 (AB 83) contaminated water was investigated. [69]. Copolymer has been obtained by ultrasonic
initiated grafting of CS by acrylamide and 3-acrylamide propyltrimethylammonium chloride. This new
type of flocculant has been used in combination with kaolin to enhance the flocculation efficiency.
The AB 83 dye removal rate get to maximum (91.9%) when the flocculant amount is 25 mg/L at optimum
pH 5.0, which indicates possible charge neutralization mechanism. The improved flocculating effect in
the presence of kaolin is also caused by bridging the dye and flocculant molecules.

Similar studies were carried out for tannin flocculants [70], lignin-grafted copolymers [71],
and other plant-based agents [21,72]. Those works show the importance of pH, which influences zeta
potential and allows to modify the mechanism’s pathway.

4.2. Effect of Salt

As mentioned above, the electrolyte can play a role of coagulant which destabilize colloids and
initiates the aggregation process. Particles suspended in the solution are surrounded by a double electric
layer which determines their mutual repulsion and the stability of the solution. Adding electrolyte
(inorganic salt) causes a reduction of the double electric layer and formation and settlement of
flocs [24,25]. The introduced electrolyte contributes to a change in the ionic strength of the solution.
The rate of settlement generally increases with the salt concentration. However, excess of salt can cause
opposite effect.

Impact of inorganic salts on the flocculation process depends on the ion charge. It has been found
that, in the case of monovalent or divalent cations, this influence is small, but, in the presence of
phosphate ions, a negative effect is revealed [73–75].

Several works have reported effect of salts on the viscosity and ion charge of the flocculated
suspensions [73–75]. Investigations of seawater containing colloidal silica (0.05 wt.%) allowed
explaining, along with the influences of viscosity, pH, and shear rate that of the type of electrolyte
on the flocculation process [73]. The water solutions of pH 7 or 9 contained alkali and alkaline–earth
metal chlorides in the concentration of 0.5 M. Cationic and anionic acrylamide copolymers were used
as flocculants (dose range 0–700 g/ton of dry mass of solid). Expanded macromolecules containing
anionic units change into a tangled (ball-shaped) conformation in the presence of cations. The ion
adsorption capacity of the silica and the polymer flocculant exhibit inverse order. Electrolytes prevent
interactions with silica in the presence of cationic polymer, whereas anionic flocculant exhibits strong
interactions leading to formation of agglomerates and three-dimensional network, responsible for
higher viscosity. The effect of ions on local water structure in studied systems has also been thoroughly
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discussed. Mg2+ ions strongly shielded the silica particles, increasing hydration sphere and weakening
of the repulsion between silica and anionic flocculant particles, contrary to K+ and Na+. These studies
provide information on the processes involved in desalination of seawater.

Rapid aggregation and deposition of flocs in the presence of electrolyte is also used in the treatment
of flotation waste.

4.3. Effect of Shear Rate

The stability of flocs, necessary for their settlement, depends on the strength and number of
interfacial interactions between agglomerated particles. If there are only weak and sparse of contact
points, the flocs can easily break into smaller and separated parts. One factor for the disintegration of
the flocs is intensive mixing with high shear forces [76–78].

It has been found that increase in shear rate causes an efficient fragmentation and erosion of
flocs [62]. However, the consequence of this process can be reconnection (re-growth), in which smaller
flocs join together when the shear forces are reduced again. Thus, the re-flocculation takes place.
The flocs disintegrate and grow simultaneously until a steady state is reached [36].

Breakage of flocs can be fully or partially reversible process dependently on the type of the flocking
agent used. In addition, the three-dimensional networks of silica particles and acrylamide flocculant
formed in the presence of electrolytes worsen its stability with increasing shear rate [73].

Because the strength of precipitated agglomerates, dependent on shear rate, is responsible for
flocculation efficacy, it is important to properly design and construct flocculation reactors for water
purification technology [36].

4.4. Effect of Other Factors

An important factor having a significant impact on the flocculation process is the concentration,
or strictly speaking optimal dose of flocculant, which is outlined in Section 3. Both an insufficient and
too high concentration make the process ineffective. Another factor is the appropriate flocculation
time, which depends on the type and amount of impurities in the solution and the kind of flocculant.

Since the size, shape, density, and speed of sediment settlement change over time, the changing
hydrodynamics of sediments also affects the course of flocculation [76,77].

Moreover, the degree of turbidity, which depends on the type and size of suspended particles in
water, can affect the effectiveness of water purification. Sometimes higher turbidity is easier to remove
even with a small dose of flocculant, due to the high probability of particles collision, while smaller
particles or more diluted solutions exhibiting less turbidity may be more difficult to remediate.

Finally, the effect of temperature should be mentioned. Generally, chemical reactions and physical
processes occurring at lower temperatures are slower but significant difference in flocculation can
be observed only with large temperature differences [1]. Increasing the temperature accelerates
the movement of molecules in the solution, increasing the probability of their collisions and
aggregation. Obviously, a significant temperature effect is observed when using thermo-responsive
flocculants [28,32].

5. Bio-Based Polysaccharide Flocculants for Water Treatment

The typical substances that support the flocculation process are polyelectrolytes, which are high
molecular weight organic polymers. Among the wide range of natural polymers, polysaccharides have
received unflagging popularity as bio-based flocculants. Those kinds of compounds are particularly
attractive in water and wastewater treatment through their many advantages, such as biodegradability,
accessibility, and structural features facilitating their chemical modification. These features
make polysaccharides relevant agents for removal of turbidity, COD (chemical oxygen demand),
microorganisms, and many other pollutants present in water [5,38,79–81]. The polysaccharides
flocculants based on starch, chitosan, cellulose, and their derivatives are listed in Table 1.
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Table 1. Polysaccharide flocculants used in water and wastewater treatment.

Bio-Based Flocculants Applications Reference

Starch:

• Cationic starch Turbidity removal from suspension of
kaolin, bentonite, and natural clay [82,83]

• CMS-CTA ((2-hydroxypropyl) trimethylammonium
chloride etherified carboxymethyl starch

Clarification of kaolin and hematite
suspension [84]

• DCS (dispersible cationic starch) Kaolin suspensions clarification [85]
• St-g-PAM (polyacrylamide grafted starch) Kaolin suspension clarification [16]
• HES-g-Poly-(DMA-co-AM) (hydroxyethyl starch grafted

poly-(N,N-dimethylacrylamide-co-acrylamide) Removal of metal ions [86]

• HES-g-Poly-(DMA-co-AA) (hydroxyethyl starch grafted
poly-(N,N-dimethylacrylamide-co-acrylic acid) Removal of dye from its aqueous solution [87]

Chitosan:
• Chitosan solution Surface water treatment [88]
• Chitosan solution Turbidity and TDS removal [89]
• CMC-g-PAM

(carboxymethyl chitosan-graft-polyacrylamide) Dyes removal from aqueous solutions [17]

• CAMFA (chitosan-acrylamide-fulvic acid) Color removal [37]
• CMC-g-PAM (carboxymethyl chitosan-g-polyacrylamide) Dyes removal [90]
• CMC-g-PDMC (carboxymethyl

chitosan-g-poly(2-methacryloyloxyethyl) trimethyl
ammonium chloride)

Dyes removal [91]

• CMC-CTA (amphoteric carboxymethyl chitosan) Turbidity removal [92]
• CTS-g-PAA (chitosan grafted copolymer of acrylamide and

3-acrylamide propyltrimethylammonium chloride) Dye removal [69]

• Carboxylated chitosan/Fe3O4
Removal of fluoride, nitrate and
phosphate from aqueous solution [54]

• Chitosan

• CAC (carboxylated chitosan-graft-polyacrylamide-
co-sodium xanthate); Turbidity removal [93]

• CPCTS-g-P(AM-AMPS) (carboxylated
chitosan-graft-poly[acrylamide-2-acrylamido-2-methylpropane
sulfonic acid])

Heavy metal removal [94]

• CS-g-PAD (chitosan-g-poly(acrylamide- acryloyloxyethyl)
trimethylammonium chloride) Water purification from zinc phosphate [95]

Cellulose:
• Cationic cellulose Water decolorization [79]
• HPMC-g-PAM (hydroxypropyl methyl cellulose grafted

with polyacrylamide)
Clarification of kaolin and iron-ore
suspension [96]

• CMCNa (sodium carboxymethyl cellulose) Turbidity removal from drinking water [97]

• DCC (dicarboxylic acid nanocellulse) Municipal wastewater treatment;
Turbidity removal [98,99]

• Carboxymethyl cellulose-g-polyacrylamide Kaolin suspension clarification [18]
• CCNF (cationic cellulose nano-fibers) Flocculation in pulp slurries [100]
• PAETMAC-g-CNC (polyacryloyloxyethyltrimethyl

ammonium chloride-g-cellulose nanocrystal) Decolorization of colored effluents [101]

• ADAC (three anionic sulfonated nanocellulose) Turbidity and COD removal [102]
• QC (water-soluble quaternized cellulose) Anionic dyes solution remediation [103]
• Anionic and cationic cellulose Textile industry effluent treatment [49]
• MCC(pAA-co-pDMC) (grafted microcrystalline cellulose) Decolorization and turbidity removal [104]

• Cellulose fibers, membranes, aerogels and chemically
modified cellulose materials

Treatment of water contaminated by oil
spills (removal of organic and inorganic
matter, adsorption of heavy metals)

[105]
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Table 1. Cont.

Bio-Based Flocculants Applications Reference

Alginate

• DDA-conjug-alginate Removal heavy metal ions and organic
pollutants from wastewater [106]

• SAG-g-NVP (sodium alginate-g-N-vinyl-2- pyrrolidone) Coal fine suspension clarification [107]

• SA-CTA (sodium alginate ampfoteric derivative) Heavy metal ions and humic acids
removal [108]

• SAD (sodium alginate-dimethyl diallylammonium chloride) Water decolorization [109]

• Pullulan

• P-g-pNIPAAm (pullulan-g-p(N-isopropyl-acrylamide) Turbidity removal [110]
• Cationic Pullulan Removal of pesticides [111,112]

Xanthan gum

• XG-g-PAM/SiO2 (polyacrylamide grafted xanthan
gum/silica hybrid nanocomposite)

Mine wastewater treatment for color
removal, treatment of synthetic effluents
and removal of Pb(II) ions from aqueous
solution

[113,114]

• Xanthan-g-PDMA (xanthan grafted
N,N-dimethylacrylamide) Wastewater treatment [115]

Dextran
• Ionized dextrans Dex-AM-AS

(dextran-g-poly(acrylamide-co-sodium acrylate) Removal of turbidity and pesticides [116]

• DAB
(dextran-g-bezyl(methacrylooyloxyethyl)dimethylammonium
chloride)

Removal dyes from wastewater [117]

Pectin

• Etherified pectin and polyalluminium chloride Removal of oil and Cr(VI) from
wastewater [118]

• Nopal pectin Heavy metal ions removal [119]
• Citrus pectin Kaolin suspension treatment [120]
• Apples pectin Kaolin suspension treatment [121]
• Orange peel pectin Turbidity removal [122]
• Okra extracts Suspended solids removal [123]

Guar gum
• HPTAC-guar (hydroxyl-propyl triammonium chloride

guar gum)
Removal of COD, turbidity and biological
contaminants from municipal wastewater [124]

• CGG (cationized guar gum) Bentonite aggregation [125]

Lignin and tannin
• OSKL (sulfomethylated softwood kraft lignin) Removing of cationic dye [50]
• KLD (kraft lignin copolymer) Turbidity removal [126]
• Tannin Turbidity removal [127]
• Tanfloc (vegetal water-extracted tannin) Heavy metal removal [128]
• A-TN, Q-TN (chemically modified larch tannin and its

quaternized derivative) Algal water treatment [129]

Table 1 presents examples of bioflocculants described in recent literature and their possible
applications with appropriate references. As can be seen, the cited substances (compounds and
macromolecules) are mainly used to remove turbidity, metal cations, inorganic anions, dyes, pesticides,
minerals, and biological contaminations. More detailed characterization of main bio-based flocculants
is presented in proceeding subsections.

5.1. Starch and Its Derivatives

Starch is a well-known biopolymer that is made of glucose units [130]. It is the most important
plant reserve material and one of the most common polysaccharides extracted mainly from potatoes,
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corn, wheat, or rice. It is composed of water-insoluble amylopectine (poly-α-1,4-D-glucopyranoside
and α-1,6-D-glucopyranoside)–an amorphous polymer, and amylose (poly-α-1,4-D-glucopyranoside),
a semi-crystalline polymer, which can form colloidal solutions in water. The amylose is organized into
straight chains of glucose residues linked by 1,4-glycosidic bonds, while amylopectin creates multiple
branched chains [130,131]. The starch components are shown in Figure 5.
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Different forms of starch can be used in the flocculation process [82,83,132]. Most often, the studies
concern starch derivatives modified for increasing their flocculating activity [15,82]. It can be achieved
by copolymerization and introduction of ionic groups. Industrial cationic starches have shown good
flocculation ability, which predisposes them to remove aluminosilicate suspensions, especially natural
clays from water [82,83].

Starch for flocculation was modified in graft co-polymerization [16,84–87]. Li et al. [84] prepared
two kinds of starch-based flocculants, (2-hydroxypropyl)trimethylammonium chloride (CTA) and
etherified carboxymethyl starch (CMS), with a different ratio of the substituent to initial polymer.
The studies revealed that the macromolecule with a higher amount of CTA had a positive surface
charge (CMS-CTA-P), while the other one with less substitution degree (CMS-CTA-N) was negatively
charged. In the experiment, the authors used kaolin and hematite suspensions as synthetic wastewater
and studied flocculation performance of both oppositely charged starch derivatives in various pH.
It was found that the best efficiency is observed when the starch flocculant has opposite charge to those
of the contaminations.

These results prove that the mechanism of the observed process in this case is complex and
consists in neutralization of the charge (which dominates) and a partial share of bridging.

In other reports, starch derivatives were prepared by microwave-assisted modification. In this
technique, the microwave heating (conducted in a simple microwave oven) induces changes in
properties of starch, mainly in solubility and viscosity [133–135]. Mishra et al. [16] proposed graft
copolymerization of starch (St) and polyacrylamide (PAM) in the presence of ceric ammonium nitrate
as an initiator (generating free radicals under microwave radiations). The obtained grafted starch
(St-g-PAM) exhibited a higher intrinsic viscosity of the polymer, which increased flocculation efficacy.
Moreover, applied synthesis method was fast, reliable, reproducible, and led to higher quality of
copolymer comparing to obtained in the absence of microwaves.

Another approach was to evaluate flocculation efficiency of cationic starch modified with
2,3-epoxypropyltrimethylammonium chloride [83]. Investigations were conducted on model
suspensions of aluminum silicates, bentonite, and natural clay. The turbidity reduction of the
prepared solutions over time was analyzed. The obtained results show that the studied material
effectively accelerated sedimentation of impurities. Despite the reports that the dosage has to be
2–4 times higher (2–4 mg/dm3) than in the case of conventional polyacrylamide flocculants to achieve
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similar or better results, it can be concluded that starch-based compounds can be considered as a
potentially good alternative for synthetic polymers.

It should be noted that starch designed for flocculants can be obtained from various plant sources,
sometimes locally available, e.g., sago, which is extracted from the tropical palm stems [136].

5.2. Chitosan and Its Derivatives

Chitosan (CS) is another important polysaccharide used in flocculation. It is a deacetylated
derivative of chitin, which is a component of crustacean shells (crabs, lobsters, shrimps, etc.) and
cell walls of fungi. This polysaccharide consists of a linear copolymer of d-glucosamine and
N-acetyl-d-glucosamine (Figure 6) [137]. It is highly regarded for use in water or wastewater
treatment due to its reactive amino and hydroxyl functional groups, which can react with impurity
particles [3,17,138–140]. It was stated that the main mechanism emerging during flocculation with
chitosan participation is bridging [128]. Flocculation performance, similar to other properties of
chitosan, depends on its deacetylation degree as well as pH of medium (pKa of CS is ~6.5). Chitosan is
soluble in acidic solution in which the amino groups are protonated but insoluble in neutral and
alkaline environments.
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As a result of its chemical structure and complexing ability, chitosan has a high affinity for many
dye classes, and it can be a universal sorbent of metals and surfactants as well as microalgae [140,141].
However, similarly to starch, it is insoluble in water, and it must be modified to increase its applicability
and flocculating activity. There are only a few reports [5,88,89] with the use of this polymer in its
unmodified form. Al-Manhel et al. [89] studied application of chitosan dissolved in acetic acid in
purification of water from the local river. The obtained results show a high flocculation efficiency
of chitosan, confirmed by the reduction of water parameters such as turbidity or total dissolved
solids (TDS). Similar studies were carried out by Pontius [86], who made a series of Jar Tests on
surface water samples, comparing coagulation/flocculation ability of chitosan with commonly used
inorganic coagulants (aluminum sulfate and iron chloride). Studies have confirmed that, as the
polysaccharide concentration increased, the turbidity of water decreased, which was the basic indicator
of the effectiveness of this biopolymer used. However, the capability of water purification by chitosan
was lower than for commercial coagulants. The polysaccharide removed about 68.9% turbidity while
aluminum sulfate and iron chloride allowed a reduction of more than 95%. In addition, in both the
above-mentioned works, the dose of chitosan was quite high, which did not allow obtaining the values
of the determined parameters in accordance with the high standards for drinking water.

For this reason, attempts were made to combine the properties of chitosan with synthetic polymers
to create a biodegradable and more effective flocculants. For example, Tao et al. received a water-soluble
chitosan-acrylamide-fulvic acid (CAMFA) terpolymer [37]. Flocculation tests were conducted on
model dyes solutions of Reactive black 5 (Rb-5), Acid blue 113 (Ab-113) and methyl orange (MO).
The measure of flocculation efficiency was the water discoloration. The obtained results indicate the
high efficiency of CAMFA terpolymer in removing Rb-5 and Ab-113 dyes reaching over 90%, although
in a very high dose of up to nearly 300 mg/L. The effectiveness was observed over a wide pH range.

Applications of copolymers of grafted chitosan are increasingly proposed in the wastewater
treatment process [5,27,38]. Based on the assumption that flocculation properties can be improved by
introduction of functional groups into macromolecule structure, Wang et al. [90] synthesized a series
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of graft chitosan flocculants. They demonstrated that high content of methacrylate ethyl trimethyl
ammonium chloride (DMC) groups results in better flocculation ability than acrylamide grafted
polymer. The combination of properties of chitosan and DMC monomer increased number of positive
charges that can neutralize the opposite charges presents on the surface of the particles suspended
in water.

The next type of modified chitosan flocculant was synthesized by reaction of carboxymethyl
chitosan (Chito-CTA) with quaternary ammonium reagent. The amphoteric chitosan-based polymer
was prepared by adding 3-chloro-2-hydroxypropyl trimethyl ammonium chloride to the Chito-CTA
solution, which improves polymer solubility and increases its applicability as flocculant in water
treatment [92].

Examples of novel, environmentally friendly flocculants were described by Sun and
coworkers [95]. They obtained grafted copolymers of chitosan and acrylamide or [2-(acryloyloxy)ethyl]
trimethylammonium chloride by UV-initiated copolymerization. The obtained materials were
characterized by a porous structure, which resulted in better flocculation efficiency during water
purification from zinc phosphate (removal of approximately 99%).

Another proposition by Sun et al. [94] was chitosan-based copolymers with xanthate and sulfonic
acid group. This agent, also obtained in photochemical reaction of carboxylated chitosan, proved to be
very effective in purifying water from heavy metal ions such Cr and Ni (total removal efficiency in both
cases exceeds 99%). In this work, molecular interactions at the interface (at microscale) were studied.
Moreover, the relationship between flocculant chemical structure and flocculation performance was
established using FTIR, NMR, XRD and SEM analysis.

In other work, copolymerization of the chitosan with acrylamide (AM) and 3-acrylamide
propyltrimethylammonium chloride was initiated by ultrasonic waves. Flocculant (CTS-g-PAA)
obtained by this way was used to remediate water from acid blue 83 (AB 83) [69]. During ultrasonic
initiation, the cavitation phenomenon occurs. It is based on the formation and rapid disappearance
of gas bubbles in the liquid, which is accompanied by sudden pressure changes allowing the release
of a high amount of energy. It can increase the production of free radicals from initiator and thus
initiate the copolymerization reaction. According to this research, the copolymer flocculant was able to
remove the AB 83 dye in nearly 80% yield at optimum dose of 25 mg/L. Addition of kaolin particles to
the solution improved flocculation efficiency to 91.9% by enlarging the surface area of flocs adsorbed
by the CTS-g-PAA.

Recently, it was stated that combination of properties of chitosan and starch leads to promising
results in the wastewater treatment. The synthesis and properties of novel flocculant based on
cationic starch/chitosan crosslinking-copolymer (CATCS) was reported by You and coworkers [142].
Based on studies in kaolin suspension (at 5 g/L concentration), they proved that CATCS exhibits
better flocculation properties in both acidic and alkaline environment than cationic starch and chitosan
applied separately.

Chitosan is proposed to coagulate pollutants in wastewater generated in the production of chitin.
Tran’s idea [93] was a two-step process: initial sedimentation at pH range 4–11 (during which turbidity
was already reduced by 80%), followed by coagulation with chitosan (total removing turbidity 99.4%
at pH 10.6 and dose of 86.4 mg/L). It is worth emphasizing that the residue recovered by coagulation is
rich in protein (55 mg/g) and can be used as supplement in animal feed or plant fertilizer.

Wei et al. developed a water-soluble chitosan derivative which found application in
removing of dye (reactive brilliant red) from the wastewater of the textile industry [143].
The modification of chitosan was based on the etherification reaction with cationic agent
(2,4-bis(dimethylamino)-6-chloro-[1,3,5]-triazin). The authors pointed out that, unfortunately,
the wastewater treatment process produces a large amount of sludge harmful to the environment.
On the other hand, textile dyeing effluents often contain azo dyes, which can be a valuable raw material.
Recovery of these compounds has proved to be very profitable. After release from flocs, they can be
used for production of nitrogen-doped carbon materials through carbonization. The proposed method
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decreases the amount of toxic substances in the solid post-process residues. Simultaneously, obtained
material can find practical application as super-capacitor due to high electrochemical capacitance and
good, long stability.

Continuing their research, this team used chitosan-containing textile sludge as precursor of
graphene-like carbon nano-sheets designed as electrode material for supercapacitors [144]. This work
focuses on controlling desorption of azo-dye by adjusting pH. Thereafter, the product was subjected
pyrolysis in the presence of Fe (III) salt as graphitization catalyst.

Although the disadvantage of a chitosan is insolubility at pH ≥ 7, its role as a flocculant is steadily
growing. There is scant information in the literature on other raw materials of animal origin—an
example may be isinglass from the shredded fish bladders [21].

It should be mentioned that unmodified chitin was also used as a flocculant. It turned out that
chitin is not inferior to the quality of aluminum sulfate as a coagulant. Moreover, it is stable at all pH
ranges [136]. The possibility of using chitin is advantageous from an ecological point of view because it
includes the management of seafood waste, and also does not require the use of chemical treatment, i.e.,
reagents (inorganic acids and bases) that burden the environment, as in the case of chitosan obtaining.

5.3. Cellulose and Its Derivatives

Another example of valuable bio-based flocculant is cellulose which is linear polymer consisting
of D-glucose molecules linked by β-1,4-glicosydic bonds (Figure 7). Native cellulose has a regular
hydrogen bonds network that determines its mechanical strength and other physicochemical properties.
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This polysaccharide mainly forms type I (in which two modifications can occur—Iα and Iβ with
triclinic and monoclinic unit cells, respectively). Other types are also distinguished: cellulose II (most
stable), III, and IV, differing in the organization of macromolecules [145,146].

Most often, cellulose in a chemically modified form is proposed as a flocculant (e.g., as a
copolymer). Okieimen et al. [18] determined the flocculation characteristic of carboxymethyl
cellulose-g-polyacrylamide copolymer with kaolin suspension. The studies showed that graft
copolymers of cellulose can be an effective flocculant satisfactorily reducing water turbidity.
According to numerous reports, this polysaccharide can be considered as a good material to
produce environmentally friendly flocculants because of its physical characteristics, chemical reactivity,
and flocculation efficacy [5,92,147,148].

An important reason for the necessity to modify cellulose is its insolubility. The transformation of
cellulose into a more useful soluble form is possible by chemical reactions leading to ionic character.
There are numerous studies on cellulose derivatives of anionic [49,98,99,102], cationic [49,103,149] and
amphoteric [104] nature, as high-performance polymer flocculants.

The flocculation efficiency of anionic cellulose (dicarboxylic acid cellulose, DCC) was examined
in the coagulation–flocculation treatment of municipal wastewater. DCC in the form of nanofibrills
was obtained by cellulose oxidation with periodate and chlorite. It has been demonstrated a good
flocculation performance, similar to that of the commercial synthetic flocculant, resulting from the high
charge density and high nanofibril content [98]. This flocculant lowers significantly residual turbidity
and COD. Moreover, it has proved to be very stable in aqueous solutions during long-term storage.

In the same group, three other anionic sulfonated nanocellulose flocculants (ADAC) with variable
charge density were synthesized [102]. Particular attention was paid to the morphology and strength
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of the flocs as observed by an optical monitoring device (MOFI). It was found that ADAC can be
successfully used in lower doses (compared to the inorganic agent iron sulfite). The flocs formed
are smaller, rounder, and more shear stable than those formed in the presence of conventional
polymer flocculant.

In another study, it was found that oxidized cellulose, or more specifically dicarboxylic acid
nanocellulose, removes 99.5% of turbidity from an aqueous kaolin suspension [99].

An example of useful water-soluble cellulose is its quaternized derivative [103]. This cationic
flocculant, obtained from native cellulose by reaction with 2,3-epoxypropyltrimethylammonium
chloride (EPTMAC) as an etherification reagent, was very effective in removing model anionic dyes.
The advantages of quaternized cellulose derivatives are their biodegradability, a simple way of
regeneration with NaOH and acetone, and the possibility of reuse. The effectiveness of this flocculant
was dependent mainly on substitution degree of cellulose but not influenced by temperature and pH.

Grenda and co-workers [49] described the chemical modification of cellulose leading to cationic
and anionic polyelectrolytes with different charges. The raw materials for obtaining flocculants were
Eucalyptus bleached pulp and a cellulosic pulp with high lignin content (∼4.5 wt%). Anionic cellulose
was prepared by oxidation with sodium periodate (NaIO4) or sodium metabisulfite (Na2S2O5),
while cationic polysaccharide was obtained in reaction with Girard’s reagent (betaine hydrazide
hydrochloride, C5H14ClN3O). Modified cellulosic materials were used for purification of colored
wastewater from textile industry. Additionally, complexation agent–bentonite was added to the
solution to promote dye adsorption (it is removed from the water together with the adsorbed dye
during flocculation). Several experimental techniques were used to characterize these cellulose-based
polyelectrolyes and monitor the flocculation process (among others laser diffraction spectroscopy
(LDS), dynamic light scattering (DLS) and electrophoretic light scattering (ELS)). The comparison of the
flocculation results of the compounds tested with the commercial polyacrylamide flocculants shows
their great suitability for water treatment.

An amphoteric flocculant was obtained by grafting of methacryloxyethyltrimethyl ammonium
chloride (DMC) and acrylic acid (AA) copolymer onto microcrystalline cellulose [104]. Synthesis
has been conducted in solution of NaOH with urea in optimized conditions. It has been established
that the best properties showed cellulose with 0.52 and 1.01 degree of substitution for AA and DMC,
respectively. The maximal turbidity removal (99.82%) for kaolin suspension was found for dose of
5.0 g/L at neutral pH. Moreover, a synergistic effect was also found when using this grafted cellulose and
polyaluminum chloride. Combining flocculation and ozonation was successful in both decolorization
and turbidity removal in wastewater from the paper industry.

Application of cellulose and its derivatives in wastewater treatment of petroleum industry was
recently reviewed by Peng et al. [105]. In this case, water can be polluted at every stage of the oil
processing by organic and inorganic substance as well as suspended solid particles. Cellulose-based
materials play a dual role—superadsorbent (important in removing spilled oil) and flocculant—involved
mainly in the removal of colloidal particles. Among the advantages of these cellulosic flocculants are the
availability of raw material, cheap production, low energy consumption and environmental protection.

5.4. Other Examples of Natural Polymers Flocculants

In addition to those mentioned above, some other natural polysaccharides such as sodium alginate
and xanthan have recently been considered as potential bioflocculants. To increase their flocculation
efficiency, various synthetic monomers were grafted onto these biopolymers.

Alginic acid (Figure 8) salt—sodium alginate (SA)—is gaining popularity due to its biodegradability
and relatively high content of carboxylic groups, which are responsible for the ability to adsorb
heavy metal ions from water [108]. To enhance its flocculating action, Tian and co-workers [108]
prepared an amphoteric alginate flocculant (SA-CTA) by combination of the polysaccharide with
3-chloro-2-hydroxypropyltrimethyl ammonium chloride (CTA). As a consequence of the presence of
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both cationic –N+(CH3)3 and anionic –COO– groups, the macromolecules of SA-CTA have an ability
to flocculate heavy metal ions (Pb2+), as well as negatively charged humic acids contaminating water.
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Zhao and coworkers [109] proposed another modification of polysaccharide using microwave
assisted copolymerization, in which the flocculant sodium alginate-dimethyl diallyl ammonium
chloride was received. The reaction was carried out in microwave conditions with the optimal
exposure time of 18 min, during which free radicals were efficiently formed and the acceleration of
copolymerization was observed. It was found that the obtained copolymer effectively decolorizes water.

Xanthan and other natural gums have also been proposed as a safer alternative to the commercial
flocculants in water and wastewater treatment. This group of hydrocolloids, obtained by fermentation
of carbohydrates by Xanthomonas campestris, is made of glucose, mannose, and glucuronic acid as well
as partially esterified acetic and pyruvic acids (Figure 9).Materials 2020, 13, x FOR PEER REVIEW 22 of 42 
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Polyacrylamide grafted xanthan gum/silica (XG-g-PAM/SiO2) were investigated in kaolin and
iron ore suspensions. Grafting was free radical process in inert atmosphere. Silica nanoparticles were
incorporated to graft copolymer by hydrolysis and condensation of tetraethylorthosilicate (TEOS).
Study of flocculation properties of these new hybrid nanocomposites showed the relationship between
dosage and the turbidity of effluent. The increasing of flocculant dose with optimum polymer
concentration of 2.0–2.5 ppm results in reduction of tested wastewater turbidity because more particles
were able to bridge together and form well-defined flocs. The results indicate that that modified
xanthan gum could be an efficient flocculant operating by bridging mechanism [113]. Previous work
devoted to this nanocomposite revealed the excellent efficiency in removing of Pb2+ ions due to high
hydrodynamic radius and volume of macromolecules in nanocomposite. Moreover, this adsorbent
showed good recyclability [114].

Another example of those kind compounds used in water treatment is the guar gum and
their derivatives [124]. Guar gum is an organic compound belonging to the galactomannan group,
i.e., polysaccharides whose chains are built from mannose units with monogalactose side branches
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(Figure 10). The natural polymer was cationized by the connection with glycidyltrimethylammonium
chloride. Flocculant formed in this way was able to create high-density bentonite aggregates,
which enabled their rapid sedimentation [125].
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Other bioflocculants based on dextran [116,117], pullulan [110–112], or pectin [118] have also
been reported. Most of these polymers and their grafted derivatives have promising flocculating
ability in reducing color, turbidity, COD, or heavy metal ions in various types of wastewater. However,
these reports are only from laboratory flocculation tests and mostly carried out on model compounds,
so they are not commercially applicable so far.

Recently, the reports describing the possibility of using lignin as a flocculant were
published [50,126,150].

Lignin is a biopolymer that is part of wood with a complicated, crosslinked structure, containing
aromatic rings, ether, and hydroxyl groups, mainly phenolic (Figure 11). To obtain adequate efficiency,
it undergoes modification, e.g., oxidation or sulfomethylation [50]. In this way, a negatively charged
lignin is obtained, making it suitable for removing cationic dyes from water. It has been proved that
modified kraft lignin (which is the main byproduct of the Kraft pulping–sulfate conversion of wood
into pulp) formed complexes with dye, which undergo fast precipitation.
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Modification of lignin by polymerization with 2-[(methacryloyloxy)ethyl] trimethylammonium
chloride (DMC) was described by Hasan et al. [126]. Five cationic water-soluble polymers with
different molecular weights and charge densities were obtained and then applied as flocculant for
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kaolin suspension. It was found that the best flocculation properties showed polymer with highest
charge density and molecular weight.

The effect of charge density and molecular weight of flocculants derived from paper industry
sludge on the water treatment efficiency was studied by Guo and co-workers [151]. The structure
and properties of chemically modified flocculants have been studied by infrared spectroscopy,
gel permeation chromatography, X-ray photoelectron spectroscopy, and particle charge density
determination. These compounds were applied in decontamination of water solutions containing
reactive blue dye. It has been proved that the efficiency of discoloration was mainly dependent on
charge density, however, the effect of molecular weight was ambiguous.

Tannin (Figure 12)—a natural polyelectrolyte of polyphenol type (containing also esters and
ether moieties)—was used as flocking agent, showing significant improvement of water purification
compared with action of Al2(SO4)3 alone and synthetic anionic polyelectrolyte.
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Another work describes the application of tannin-based flocculants in effective removal of metal
ions such as Zn(II), Ni(II), and Cu(II) with 75% yield at low agent dose (100–150 ppm) [128].

Larch tannin modified by Mannich reaction and then by quaternization was proposed as flocculant
for removing of the Microcystis aeruginosa cyanobacterium from water [129]. It appeared that 100%
of aromatic proteins and about 80% of protein-like substances in the extracellular organic materials
is removed. However, the lower effectiveness in flocculation of humic/fulvic-like compounds has
been observed.

Interesting are works regarding the use of vegetable raw materials, e.g., plum stones [72] and
peanut shells [152] for heavy metals ions removal from aqueous solutions or animal ones, e.g., eggshells
employed in dyes removal from wastewater [153]. These works are in accordance with the ecological
trend due to food waste management.

Potential application in water treatment of common vegetables and legumes was reviewed by
Choy [21]. Particular attention in this work was paid to Fabaceae family, e.g., peanut, soybean, guar bean,
green pea, etc. The efficiency of these materials in coagulation/flocculation strongly depends on optimal
agent dose and pH range.

Numerous biopolymers of plant (from, e.g., banana peel and pith, cassava peel, cactus leaves,
circus peels, garden cress, lentil extract, or kenaf crude) and animal (chitin and chitosan) origin, as well
as those produced by microorganisms (bacteria and fungi), proposed for separation of microalgae
from water, were reviewed by Ang [141]. The surface charge and morphology, molecular weight,
chemical structure, and thermal properties of those agents were determined. It appeared that such green
clarifying agents often exhibit better performance than classic inorganic compounds (for instance, alum).



Materials 2020, 13, 3951 23 of 41

Other authors [154–156] have recommended using environment friendly materials from exotic
plant sources such as nirmali (Strychnos potatorum) seeds [157], tannin extracted from wood of trees
such as Acacia and Castanea [158] or cactus species [159,160] as flocculants designed for water and
wastewater treatment. Very interesting research indicates the possibility of using natural plant
extracts from macerated Moringa Oleifera, Syzygium cumini, and Artcarpus heterophyllus seeds [161] that
were mostly consisted of protein and carbohydrates mixtures—not completely identified chemically.
Coagulation/flocculation studies were carried out on water samples taken from local drinking water
sources. The results show that the plant extracts effectively remove water turbidity and are disinfecting,
therefore may be a potential useful flocculants in near future.

Moreover, publications from recent years indicate the possibility of using pectins as valuable
plant-derived flocculants [118–122]. Pectins are polysaccharides naturally occurring in the cell walls of
fruits and vegetables, with strong gelation ability. Their structure is complex but in simplified terms it can
be assumed that it consists mainly of methylated esters of polygalacturonic acid (Figure 13) [162–164].
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They are linear macromolecules, but some branches with (1,2)-L-rhamnose units appear.
Various functional groups, e.g., hydroxyl, carboxylic, ester, and amide, present in these polysaccharide
chains can participate in hydrogen bonding and complexation leading to network formation. It must
be remembered that the chemical composition of pectin may vary significantly depending on the
plant source.

Flocculation activity of nopal pectins (extracted from Opuntia ficusindica) in removing of numerous
metallic ions such as Ca2+, Cu2+, Zn2+, Cr3+, Ni2+, Pb2+, and Cd2+ was described by Ibarra-Rodríguez
and co-workers [119]. Viscosity measurements, FTIR, Atomic Emission Spectroscopy (AES) and
Scanning Electron Microscopy combined with Energy Dispersive Spectroscopy (SEM-EDS) techniques
were used for characterization of the solid residue and the supernatant. The optimal dose of 0.019 mg/mL
allowed for removing 99% of all metal ions.

Ho [120] found that optimum treatment of kaolin water suspension is achieved at pH 3 and pectin
concentration of 3 mg/L. This dose was much lower than needed when using polyacrylamide flocculant
for the same solution.

In other work [121], it was established that pectin is very effective in kaolin flocculation in the
addition of small amount of Al(III) and Fe(III) ions (0.1–0.2 mM). However, in this casem the pectin
dose was higher (30 mg/L).

In Buenaño’s work [122], three natural polymer sources: green plantain peel starch, orange peel
pectin, and tamarind seed extracts were the subject of research. It turned out that they obtained
flocculating activity only when combined with aluminum sulfate. The high removal of turbidity (87%)
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and color (92%) of contaminated water was possible at relatively high ratio of aluminum sulfate to
natural polymer.

Modified pectin from citrus appeared to be useful in separation of oil and toxic Cr(VI) ions at
high concentration from wastewater [118]. The modification consisted of etherification of pectin and
impregnation by polyaluminum chloride. Selection of appropriate conditions of process allowed
obtaining maximum efficiency of oil and chromium ion removal at level 95.0% and 98.4%, respectively.

Three types of extract from Okra (Abelmoschus esculentus) of various composition were considered
as a potential bioflocculants [123]. The first extract consisted mainly of pectin and hemicellulose as well
as mixture of other compounds such as sugars and proteins. The second one contained mainly pectins,
while the third was likely hemicellulose. It was found that extract with the highest amount of pectin
was able to remove ca. 70% of suspended solids from water which indicates the best bioflocculation
ability of this polysaccharide among studied samples.

Owing to flocculating and suspending properties, pectin extracted from pomelo peel has been
also proposed for pharmaceutical applications [165].

Ghimici and co-workers analyzed the possibility of using pullulan (Figure 14) derivatives in the
flocculation of pesticides [111,112] in wastewater. The modified pullulan contained either pendant
tertiary amine or quaternary ammonium salts. Based on the research of UV–Vis spectroscopy, it was
found that the strong interaction of pesticide particles with polycations resulted in a high degree of
pollution removal (in the range of 80–98%). On the other hand, the measurements of the zeta potential
allowed for the verification of the flocculation mechanism—it was mainly charge neutralization but
chelation and hydrogen bonding also took place.
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The spectrum of potential sources of new bioflocculants is growing every year. It can be expected
that the sourcing of new polysaccharide flocculants and the development of techniques of their
modification techniques will soon contribute to the displacement of conventional clarifiers based on
synthetic polymers.

6. A New Approach in Obtaining Flocculants

6.1. Bioflocculants Produced by Microorganisms

Polymers synthesized by microorganisms constitute a new trend in the production of bioflocculants.
These compounds are produced by selected strains of bacteria, fungi or algae naturally occurring in
the sewage of various origins or in soil [166–168].

The most common bioflocculants of this type are extra-cellular polysaccharides and proteins.
Increasingly, attention is paid to polymers resulting from the bacterial or fungal fermentation of
carbohydrates [130].

The above-mentioned pullulan, obtained in the process of starch fermentation by Aureobasidium
pullulans fungi, or xanthan resulting from the fermentation of carbohydrates by the bacteria Xanthomonas
campestris, can be listed here [169,170]. There are many reports on the sources and methods of incubation
of microorganisms used in the production of polymers showing flocculation activity [171] (Table 2).
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Great attention is focused on Extracellular Polymeric Substances (EPS), mostly exopolysaccharides,
which are produced during the growth of microorganisms. They are usually complex long-chain,
high-molecular-weight mixtures of macromolecules containing branched repeating units of sugars
such as fructose, glucose, galactose, and mannose or their derivatives as well as non-carbohydrate
organic substituents [172]. Some common examples are described below.

EPS bioflocculant polysaccharide produced by Bacillus cereus bacteria was tested for the removal
of heavy metals from water. The ability to remediate was evaluated by measuring the reduction
of bioluminescence in Vibrio harveyi (Gram-negative bacteria) [173]. The results show significant
flocculating efficiency of obtained compound.

As is known, the effectiveness of bioflocculants action depends on the effluent properties and
process conditions such as pH, temperature, and the presence of various ions. Tang et al. [174]
proposed new bioflocculant that is cation independent, pH tolerant and thermally stable. They isolated
Entherobacter sp. ETH-2 from activated sludge and then the obtained EPS was tested for kaolin clay
flocculation. This bioflocculant was characterized as a polysaccharide with hydroxyl (OH) and carboxyl
(–COO–) as well as amide (–CO–NH–) functional groups. Other examples of bacterial bioflocculants
are exopolysaccharides produced by halophilic bacteria growing at high salt concentration [175].
The research showed higher reduction of turbidity of treated water compared to action of conventional
synthetic polymers.

Another bio-based flocculant was produced by Bacillus sp. bacteria [176]. It has been found to be
a mixture of protein and sugar derivatives, rich in carboxyl groups, showing flocculation activity for
some metal ions present in water.

Liu et al. [177] investigated Penicillium strains (fungi) producing compounds containing amino,
hydroxyl and carboxyl groups. Owing to these groups, and also due to their relatively high molecular
weight (3 × 105 Da), they show good flocculation ability.

In other research, substances produced by Pseudomonas aeruginosa bacteria were tested in kaolin
suspension [178]. These compounds identified as a mixture of proteins, carbohydrates, and their
derivatives, including uronic acids, demonstrated very good flocculating properties with over 80%
reduction of turbidity at a low dose (approximately 1%).

Wang et al. [179] obtained polysaccharides from Klebsiella mobilis bacteria strain isolated from
dairy wastewater. It was proved that such compounds have a high flocculation ability to remove some
dyes from water with over 90% efficiency.

Table 2. Examples of microorganism for bioflocculant production and their potential applications in
water and wastewater treatment.

Microorganism Applications Reference

Bacillus cereus Wastewater treatment for heavy metal removal [173]
Enterobacter sp. Kaolin clay flocculation [174]

Klebsiella sp. Water treatment; removal of amoeba cyst from
water; sludge dewatering [172,180,181]

Mucor rouxii Wastewater treatment [182]
Achromobacter sp. Wastewater treatment [183]

Bacillus and Streptomyces sp. Swine wastewater treatment [184]
Bacillus and Rhizobium

radiobacter Water treatment [185]

Basillus sp.
Treatment of wastewater [186]

Treatment of low temperature drinking water [187]
Industrial wastewater treatment (COD removal

and dye decolorization) [188]

Penicillium sp. Management of industrial wastewater [188]
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Table 2. Cont.

Microorganism Applications Reference

Herbaspirillium spp. and
Pseudomonas sp.

Industrial effluents and wastewater treatment
(suspension particle and heavy metals removal) [189]

Rhodococcus sp. Treatment of swine wastewater [190]
Serratia sp. Treatment of wastewater [191]

Staphylococcus and
Pseudomonas sp.

Treatment of industrial wastewater (COD,
indigotin and dyeing wastewater) [192]

Proteus mirabilis Wastewater treatment (waste sludge dewatering) [193]
Aspergillus flavus Suspended solids removal [194]

Klebsiella variicola Removal of turbidity and SS in drinking water [195]

Bacillus firmus Water treatment (removal of metal ions such as Pb,
Cu, Zn) [196]

Trichoderma sp. Heavy metals ions removal [197]
Streptomyces platensis Kaolin clay flocculation [198]

Oceanobacillus polygoni Tannery wastewater treatment [199]

Most important microorganisms producing EPS and their potential applications in water and
wastewater treatment are listed in Table 2.

6.2. Nanoflocculants

Due to the development of nanotechnology in recent decades, also in the field of water purification
materials of nanometric sizes are increasingly used. It is also assumed that such organic-based
nanoflocculants will be characterized by longer shelf life [200].

The materials, whose particles have at least one dimension below 100 nm, exhibit different
properties from their counterparts with micrometer sizes. Nanoparticles are characterized by a very
developed surface, thus a very high surface area to volume ratio. This results in a large number of
active points and functional groups on the surface, which positively affects the adsorption processes
occurring during water treatment.

The review by Jumadi et al. [201] is devoted to recent achievements in the field of nanoflocculants.
Particular attention is paid on their performance in removing of heavy metals, organic dyes,
and microorganisms from water. Some considerations apply to inorganic compounds or nanocomposite
flocculants (based on metal and metal oxides), which are not the subject of this work. However,
among the innovative nano-sized biological materials, cellulose, chitosan, and other biomaterials
discussed above can be mentioned.

Very interesting chitosan modification was shown by Mohammadi et al. [54]. Carboxylated
chitosan with magnetic nanoparticles (Fe3O4) was used for nitrate, fluoride and phosphate ions
removal. Studies were conducted on model aqueous solutions containing various concentrations of the
above-mentioned anions. Magnetic nanoparticles, obtained by mixing of FeCl2 and FeCl3, were added
to the previously prepared acidic solution of this modified polysaccharide. The results reveal that the
adsorbent dose was one of the most important parameter determining the efficiency of flocculation.
Increasing the amount of the polysaccharide derivative from 2 to 20 g/L allowed for gradual reduction
of all ions until the equilibrium adsorption capacity was reached. Thanks to the use of magnetic
nanoparticles, it was possible to completely remove agglomerates formed after the process from the
aqueous solution.

Application of chitosan composite containing magnetic particles (Fe3O4) for water purification
was also presented in article by Zhang et al. [202]. They grafted chitosan with methyl methacrylate,
acrylic acid or 2-methylacryloyloxyethyl thrimethyl anmmonium chloride and then coated the surface
of the magnetic particles. Obtained core–brush copolymers with magnetic core were applied as
adsorbents to removal of pharmaceuticals such as diclofenac sodium tetracycline hydrochloride from
water solution. High removal efficiencies were found owing to particular topology and enhanced
surface area of copolymers. Studies of mechanism revealed that ion attraction between the positively
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charged polymer brushes and the anionic medicines (active substances) was the main driving force.
After adsorption, the coating copolymer changes the conformation—the extended branches collapsed.
The advantage of this solution is the ability to remove adsorbed impurities by applying a regular magnet.

Another magnetic flocculant was described by Leshuk et al. [203]. Nanoparticles of Fe3O4@SiO2

coated with few various polymers such as poly(diallyldimethylammonium chloride), poly(sodium
4-styrenesulfonate), poly(vinylpyrrolidone), poly(acrylic acid), and chitosan were applied as magnetic
agents in removing of Au, Ag, Pd, Pt, and TiO2 from aqueous suspensions. Formed magnetic
flocks are easily separated. Furthermore, the flocculant can be recovered and reused, which is its
additional advantage.

A three-component magnetic flocculant was proposed by Wang and others [204]. Nanoparticles
of iron (II,III) oxide, prepared in co-precipitation in the presence of chitosan, were implemented
to cellulose or biological carbon (biochar). The source of cellulose was the local plant—calamus.
Biochar has been obtained in the pyrolysis of these plants. The flocculants, designed for coal slime
water treatment, were characterized using the FTIR, XRD and SEM methods. It has been shown
that water turbidity was reduced by ~97% and ~94%, while COD removal was ~78 and ~74% in the
presence of Fe3O4-chitosan-cellulose and Fe3O4-chitosan-biochar, respectively.

Lignin, despite its renewable nature, was previously underrated as a flocking agent, but is now
proving to be a promising nanomaterial for removing of microbial impurities. An innovative approach
to obtaining lignin nanoparticles from switchgrass was described by Yin et al. [205]. For this purpose,
lignin was treated with ultrasound in an alkaline medium and then complexed with gelatin. This novel
agent was applied for removing of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia
coli) bacteria from wastewater. The gelatin complex with lignin nanoparticles proved to be a very
effective in an acidic environment in a short time of action (90–95% yield during 30–60 min, at pH 4.5
and 5.0, respectively) for both bacteria strains.

As mentioned above, cellulose can exist in the form of nanofibrils (CNF) or nanocrystals (CNC),
which is a valuable material for obtaining flocculants [98–102]. Numerous works have been devoted to
this topic [206–211].

Nanocellulose can be prepared in process of mechanical disintegration, biological and chemical
treatment [206]. Nano-sized cellulosic materials found application in environmental remediation as
flocculants, adsorbents, membranes, and constituents of composites. They are particularly effective in
removing inorganic ions (heavy metal cations and sulfates or phosphates anions), organic dyes (e.g.,
Methylene Blue, Congo Red, Crystal Violet, and Malachite Green), and antibiotics from water.

To improve flocculation performance cellulose nanocrystals surface can be modified to cationic
structure [211]. In purification of water from silica with flocculant obtained by CNC grafting with
3-chloro-2-hydroxypropyltrimethylammonium chloride, the turbidity was reduced by 99.7% at very
low concentration of this cationic CNC (only 2 ppm).

Vandammme and coworkers [212] studied cationically modified CNC for flocculation of microalgae
(Chlorella vulgaris). Two types of positively charged CNCs were obtained in esterification and
nucleophilic substitution reactions. It turned out that maximal flocculation efficiency achieved even
100% at 0.1 g dose of these flocculants.

Furthermore, the effect of size of cellulosic nanomaterial on microalgae flocculation was
demonstrated [213]. It was found that these microorganisms were trapped in the CNF network
bound by hydrogen bonds. Moreover, they were able to grow in this network, which can be used in
biodiesel synthesis.

An attempt to obtain a magnetic flocculant based on cellulose, similarly as in the case of chitosan,
was described by Hizam et al. [214]. Cellulose coated magnetic nanoparticles were obtained by polymer
shell cross linking with glutaraldehyde. The obtained flocculants of various composition and structure
were used to purify the wastewater from the palm oil processing. It has been shown that optimal
composition was a ratio of cellulose to magnetite powder of 1:1 (g/g) with glutaraldehyde volume of
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1.5 mL. The reduction in turbidity, color, total suspended solid (TSS), and chemical oxygen demand
(COD) was about 74.60%, 63.90%, 77.20%, and 55.80%, respectively.

To another issue was devoted work by Raj et al. [215]. In this work, fibrous nanocellulose was
flocculated with two polyelectrolytes: linear cationic polyacrylamide and branched polyethylenimine,
that differed in morphology, charge density, molecular weight, and polydispersity. The flocculation
mechanism has been explained at the nano- and microscale by means of zeta potential, gel point,
polyelectrolyte adsorption, and focused beam reflectance measurement.

The novel amphiphilic nanoflocculants based on oxidized sodium alginate has been synthesized
through a conjugation of dodecylamine [106]. Material characterization by FTIR, 1HNMR, TGA, and
Elemental Analysis (EA) allowed determining the structure of nanomicelles formed in self-assembly
process in water. They took rod-like shape of size about 100 nm. Flocculating capacities were tested on
the example of selected impurities: Pb2+ ions and bisphenol A (BPA) at different conditions. Moreover,
mechanism and kinetics of process has been studied in detail using additionally XPS and adsorption
isotherm. Lead ions were mainly complexed by OH and COOH groups of alginate, whereas BPA
combined with dodecyl chains via hydrophobic interactions. It was found that the lead ions were
adsorbed according to the Langmuir single-layer model, while the Freundlich multi-layer adsorption
model applies for organic compound. The removal degree was 97.20% and 88.66% for Pb2+ and
bisphenol A, respectively.

The possibility of improving the efficiency of wastewater treatment using combinations of
nanoflocculation and photochemical catalysis has recently been signaled [216]. In this case, the titanium
dioxide was used as photocatalysts.

It is also necessary to mention nano-sized carbon, mainly carbon nanotubes (CNTs), which can
be used as flocking agent. The adsorptive properties of activated carbon are well known [217,218],
but recently many reports have highlighted the benefits of using CNT in water purification [219–221].

Activated carbon is usually obtained from plant sources (e.g., coconut shells, bamboo, peat, wood)
in a simple carbonization process. However, obtaining CNTs is a more complicated and requires the use
of appropriate technology, such as chemical vapor deposition, arc discharge, or laser ablation [222,223].

Simate carried out research to check whether carbon nanotubes (CNTs) can be used as
heterogeneous coagulants and/or flocculants in the pretreatment of brewery wastewater [224]. A series
of experiments were conducted in which the efficiencies of pristine and functionalized CNTs were
compared with that of traditional ferric chloride. Turbidity, chemical oxygen demand (COD), and zeta
potential measurements were used to monitor the progress of the coagulation/flocculation process.
Although both types of CNTs demonstrated the ability to efficiently coagulate colloidal particles in the
brewery effluent, iron chloride proved to be a better agent.

Development of new flocculants based on carbon and non-carbon nanomaterials (e.g., dendrimers,
zeolites, hyperbranched polymers, or graphite oxide) have also been discussed in works on desalination
of sea water and treatment of surface and groundwater [225–227].

Advanced nanomaterials are proposed for electrochemical flocculation (electrocoagulation) which
is applied not only for water purification but also for water splitting for hydrogen production [228,229].
This electrochemical purification process consists in the destabilizing suspended, emulsified,
or dissolved contaminants in an aqueous medium by an electric current. An example of such
material designed for electrode is iron encapsulated in nitrogen-doped carbon nanotubes, described in
detail by Yu and coworkers [228].

Although carbon nanotubes have promising flocculating properties, they have not yet found
practical application in water purification and are still under intensive research.

Another class of nanomaterials proposed as flocculants are nanocomposites, which consist of
a polymer matrix containing dispersed modifier particles of nanometric dimensions. Most of the
literature presents, however, nanocomposite flocculants based on synthetic polymers [230,231].

An example of nanocomposite with using both synthetic and natural polymer is mentioned earlier
graft copolymer of polyacrylamide/xanthan gum with silica nanoparticles [113,114]
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Another nanocomposite of polyacrylamide grafted on guar gum was developed by Pal et al. [232].
During synthesis induced by microwave irradiation, silica nanoparticles have been implemented on
copolymer surface which led to exceptional flocculation properties of the material due to the synergetic
effect of nanosilica filler and modified guar gum.

Novel nanocomposites of polyacrylamide-grafted starch copolymers with carbon nanotubes were
recently obtained in-situ method and characterized by various instrumental techniques (FTIR, TGA,
DSC) [233]. On the basis of the turbidity tests and sludge volume, good flocculation efficiency in
removing kaolin from the aqueous suspension has been demonstrated.

It has been proved that removal of heavy metal ions (Pb2+, Cr6+, and Ni2+) from mine effluents is
possible using hydrogel flocculant obtained from gum karaya-grafted poly(acrylamide-co-acrylic acid)
additionally containing magnetic nanoparticles of iron oxide [234].

Despite the undoubted advantages of using nanoflocculants, there are also some environmental
hazards that are not yet fully identified. As in the case of using nanomaterials and nanocomposites in
other areas, there are also concerns whether nanoparticles entering the environment will not cause
toxic effects in nature.

6.3. Smart Flocculants—Stimuli Responsive Biopolymers

Smart polymers (also called stimuli responsive, stimuli sensitive, intelligent, or functional) are
materials which change their properties under the influence of external stimuli, mainly change of
temperature or pH, action of mechanical force, light as well as electrical and magnetic fields [235].
Under the influence of an external impulse, the polymer may alter its phase, shape, motion, functionality,
and microstructure. Changes in molecular interactions in the polymer solution can lead to a phase
transition, e.g., reversible gelling accompanied by contraction and expansion (swelling/de-swelling).
The pH sensitivity of polymers is due to the presence of acidic or basic functional groups in the polymer
chain. Therefore, future use of such materials may encompass many branches of technology and
industry including water treatment [236].

Smart materials, already in use in biomedicine, are potential candidates for applications in
flocculation processes, according to the current literature [28,237,238].

Although thus far synthetic polymers (e.g., derivatives of polyacrylamides, polyesters,
and polyacrylates) dominate in this group of materials [28], the current trend is also the search
and study of biopolymers with intelligent features [239].

The well-known pH stimuli biopolymer is chitosan due to the presence of amino groups, which are
reversibly protonated and deprotonated dependently on the environment [137]. Other natural pH
sensitive polymers are hyaluronic acid, alginic acid, and guar gum [240].

The neutral polysaccharides can be chemically modified for this purpose, e.g., grafting with acrylic
acid or methacrylic acid what sensitizes them to pH changes [238,240,241]. Such polycarboxylic
derivatives have different topologies: dendrimers, brushes, combs, vesicles, micelles, gels,
and nanospheres. Among the materials of a polybasic nature, one can mention the (meth)acrylates,
(meth)acrylamides, and vinylic polymers containing tertiary amine, morpholino, pyrrolidine, imidazole,
piperazine, and pyridine groups, which can also be used for chemical modification of biopolymers.

Thermo-responsive cellulose ether, synthesized by grafting of butyl glycidyl ether onto
hydroxyethyl cellulose, turned out to be effective in removing of organic dye (Nile Red) from
wastewater [242]. An additional advantage is that this flocculant can be easily recycled and reused.

Another smart flocculant containing biomaterial has been synthesized and characterized in
Kiran’s group [243]. In the first stage, N-isopropylacrylamide/di-methylacrylamide di-block copolymer
was obtained in reversible addition–fragmentation chain transfer-mediated polymerization (RAFT).
In the second stage, this thermo-responsive copolymer has been grafted onto β-cyclodextrin to make
biodegradable material. This intelligent and ecofriendly flocculant shows good separation of kaolin
from aqueous suspension.
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Kocak and coworkers collected information about pH responsive polymers [240]. Besides synthetic
functionalized polymers, they also cited appropriately modified biopolymers, namely cellulose.
Moreover, the possibility of producing pH sensitive materials from polypeptides such as poly(l-glutamic
acid), poly(histidine), and poly(aspartic acid) is also mentioned.

Lemanowicz et al. considered the effect of stimuli-responsive polymers in stabilization/destabilization
of solid particles dispersed in aqueous solutions [32]. Mechanistic consideration of such flocculation
process concerns mainly synthetic polymeric agents.

Although relatively much attention in the literature is devoted to adsorbents based on stimuli
sensitive biopolymers, which can be used for water and wastewater treatment [238,244–246], flocculants
of this type are rarely presented, although their importance is emphasized. In our opinion, these are
prospective materials that require further extensive research.

7. Conclusions

Flocculants found applications in various types of technological processes that require purification
of water from different types of suspended particles (inorganic, organic, and microbial). They are
used, among others, in the dairy industry, petroleum industry, mining, metallurgy, papermaking,
and in the treatment of drinking water and municipal sewage [5,30,247,248]. Currently, many scientific
works are devoted to obtaining bioflocculants of plant or, less frequently, animal origin. Recent studies
focus on the use of readily available, safe, and cheap biopolymers (e.g., polysaccharides), which are
biodegradable. To improve their flocculation efficiency, polysaccharides are subjected to chemical
modification (e.g., graft copolymerization with synthetic monomers) or by physical mixing with
inorganic agents Biomaterials obtained by biosynthesis in the presence of microorganisms also
show promising properties. Other modern types of flocculants are nanomaterials (e.g., polymer
nanocomposites) or stimuli-responsive, i.e., intelligent, flocculants, which seem to be materials of
the future.

The mechanism of flocculation with biopolymers is relatively well known but not fully understood.
The various factors (e.g., pH, ionic strength or shear rate, impurities concentration, and flocculant dose)
have a significant impact on the course of the process. As this literature review shows, biopolymers
have a great potential to become effective flocculating agents for water purification, but so far they are
not used on a large scale in industrial practice. The main direction of future research is the acquisition
of new biomaterials and their modification in order to optimize the flocculation process.
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