
Logic and Logical Philosophy
Volume 18 (2009), 145–188

DOI: 10.12775/LLP.2009.009

Rafał Gruszczyński

Andrzej Pietruszczak

SPACE, POINTS AND MEREOLOGY

On foundations of point-free

Euclidean geometry

Abstract. This article is devoted to the problem of ontological foundations
of three-dimensional Euclidean geometry. Starting from Bertrand Russell’s
intuitions concerning the sensual world we try to show that it is possible to
build a foundation for pure geometry by means of the so called regions of

space.
It is not our intention to present mathematically developed theory, but

rather demonstrate basic assumptions, tools and techniques that are used
in construction of systems of point-free geometry and topology by means of
mereology (resp. Boolean algebras) and Whitehead-like connection struc-
tures. We list and briefly analyze axioms for mereological structures, as well
as those for connection structures. We argue that mereology is a good tool to
model so called spatial relations. We also try to justify our choice of axioms
for connection relation.

Finally, we briefly discuss two theories: Grzegorczyk’s point-free topol-
ogy and Tarski’s geometry of solids.

Keywords: Space, points, mereology, pointless geometry, point-free geometry,
geometry of solids, foundations of geometry, point-free topology.

1. Introduction

A point is that which has position but not dimensions—with this definition
Euclid starts constructing his mathematical system which is used to be called
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a classical three-dimensional geometry or simply Euclidean geometry (see [6,
p. 2]). We venture to say that just after the parallels axiom this is second
most famous statement from The Elements of the great Greek geometrist.
The case of the axiom mentioned above plays a crucial role in the devel-
opment of science. More than a two thousand years of battles to settle its
status and relation to the remaining Euclidean axioms gave rise not only to
new mathematical theories (that is non-Euclidean geometries) but also to
new philosophical ideas, discovery of previously unknown techniques in logic
and last, but not least, had a huge influence on XXth century revolution in
physics. «Scientific career» of the definition which opens this article is not
that rich, although its beginnings can be traced back somewhere to antiquity.
The main objection against points was that they are treated as an ultimate
constituent of reality, while we do not experience any objects that bear any
resemblance to them. Despite those objections no satisfactory alternative
to Euclid’s points had been proposed and it was the beginning of the XXth
century which witnessed the initiation of some logically and mathematically
advanced research whose aim was to explain points in an intuitively and
ontologically satisfactory way. It cannot be denied that since then research
in so called point-free geometry and topology has had quite a big influence
on contemporary logic, ontology and some parts of mathematics. Research
within this branch of formal science has been oriented to justify points as
constructions that are somehow rooted in empirical experience.

What we propose in this article is to examine (from rather heuristic per-
spective) the ontological and mathematical foundations for geometry which
does not assume points as its first-order objects but rather takes them to
be some higher-order objects abstracted from entities that can be naturally
interpreted in the surrounding world.

2. Space

Both Euclidean geometry and physics (or at least some of its fragments) as-
pire to describe the most general properties of something that, after Bertrand
Russell, can be called the perspective space (see [21, p. 97]). He writes about
so called private spaces, assuming that to each one of our senses corresponds
one space. Thus we have the space of sight, the space of touch and so on
(see [21], e.g. pages 86, 88, 118). Every human perspective is contained in
each own private space depending on which out of our senses is currently
used. But, as Russell claims, there is only one all-embracing space which
includes all those perspectives. However, existence of such space cannot be
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either proven or tested empirically but only deduced from our sensations
and experiences. Thus the perspective space is not something that is given,
but an intellectual construction. To quote Russell

All that experience makes certain is the several spaces of the several
senses correlated by empirically discovered laws. The one space may
turn out to be valid as a logical construction, compounded of the sev-
eral spaces, but there is no good reason to assume its independent
metaphysical reality. [21, p. 119]

For our purposes we will not be asking questions about the ontological status
of the perspective space, but we will simply assume its existence. For the
sake of the goals of this paper it will be enough to understand the perspective
space (or simply the space) as the sensually accessible world that surrounds
us.

What can be said about this space from the sensual point of view? First
we can say that it has three dimensions (we will not be taking time into
account), that is, intuitively, everything can be measured in three basic
ways. Bodies are parts of the space and all of them have three-dimensions
as well—in every day experience we do not encounter anything like less than
three-dimensional entities.

This is of course a very specific notion of space. But we do not aspire to
maintaining that this is the only legitimate one. We take what can be called
a phenomenalistic stance and try to describe the most general properties
of something that we encounter in our every day experiences and where
virtually our all sensual experience takes place.

3. Relations between parts of the perspective space

If we examine the world that surrounds us we can say that it comes to us
in parts. We never experience the world as a whole, but only its bigger or
smaller parts. Let us agree that we call parts of the world ‘regions’. Certainly
the intuitive notion of part excludes the situation in which an object is a part
of itself. It is the case since we naturally expect that any part of any region
is something else than that region. Similarly, our experience tells us that if
a region x is a part of a region y, then the latter cannot be a part of the
former. On the other hand, if a region x is a part of another one, say y, then
every region that is a part of x must be a part of y.

Remark 3.1. Above we treat part of relation as something that holds between
regions of the perspective space and is somehow ontologically rooted in this
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Figure 1. Region y is a part of x and x contain a part z that is disjoint from y.

x y
z

Figure 2. Elliptical region x is neither a part of elliptical region y nor is identical with y

and it contains region z which is disjoint from y.

space. By this we just want to say that we do not look at this relation as
at some set of ordered pairs. Mathematical model of part of relation will be
introduced in Section 4. ⊣

What else can be said about the relation in question? First, if x is a part
of y then there should be some z which is a part of y and is disjoint from x
(that is regions x and z have no common parts (see Figure 1)). Second, if x
is neither a part of y nor is identical with y, than x should have some part
z which is disjoint from y (see Figure 2). In light of this disjointness will
also be some useful relation which will help us describe some most general
properties of parts of the perspective space. Another important relation is
that of overlapping, which holds between regions x and y in case they have
at least one common part, that is in case they are not disjoint.

As it has just been said, two regions overlap if they have a common part.
If we consider Tatra Mountains as a region, then it overlaps both Poland
and Slovakia, the part that they share with Poland are simply Polish Tatra
Mountains, the one shared with Slovakia are Slovakian Tatra Mountains.
But if you consider a book and a table to be regions of the space and a
situation in which the book is on the table, then they have no common part
alas there is no «empty» space between them—we can say that they touch
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Figure 3. Both pairs of regions x, y and v, z are pairs of connected regions. x and y overlap,
but v and z do not, so they are externally connected to each other.

each other or, using mathematical terminology, they are externally tangent

to each other. If one of the above situations holds, that is if regions overlap
or touch each other, we say that they are connected (see Figure 3).

If you take the book from the table and put it on a shelf, the book and
the table are no longer connected, and in such a case we can say that the
book and the table are separated. Similarly, France is externally tangent
to Germany but is separated from Sweden or Poland for example. Internal

tangency is a counterpart of external tangency and holds between regions x
and y, if x is a part of y and touches the complement of y, that is this part
of the space which is outside x.

Another important relation between regions is that of non-tangential

inclusion. For example, Montana—one of the US states—is a part of the US
but it touches the territory of Canada, it is externally tangent to it (so this
internally tangent to the US), to use the terminology introduced above. Thus
it is tangent to something which is disjoint from the US. On the other hand,
Colorado, being in the middle of the US, is not connected with any region
being outside the US. Thus we can say that it is non-tangentially included

in the US territory. So generally, one region is non-tangentially included
in another region in case it is not connected with any part being disjoint
from the latter (for both internal tangency and non-tangential inclusion see
Figure 4 on p. 160).

Thus amidst those relations that hold among regions of the space we can
distinguish the following basic ones

1. part of relation;

2. overlapping relation which holds between regions if they have some com-
mon part;

3. disjointness relation which holds between regions if they do not overlap;
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4. connectedness relation which which holds between regions if they either
overlap or touch each other;

5. separation relation which which holds between regions if they are not
connected;

6. external tangency relation which which holds between regions if they are
connected but do not overlap;

7. internal tangency relation which which holds between regions if one of
them is a part of another and the former is externally tangent to the
complement of the latter;

8. non-tangential inclusion relation which holds between regions if one of
them is a part of another and the former is not connected with anything
that is disjoint from the latter.

Let us agree that we call all those properties and relations of regions that
are expressible by means of 1–8 spatial properties and relations.

4. Mereology

To construct an ontological foundation for geometry we will need not just
one, but two different notions of set. The first one is the notion of set that
can be named Cantorian or distributive. This is a standard mathematical
approach. Here sets are considered as collections consisting of some objects,
that can either be sets or any other unambiguous objects. Distributive sets
have such property that given a set X, usually the elements of elements of
X are not elements of X. It only happens in general in case of special sets
called transitive ones. Moreover, while forming sets from objects that are
not sets themselves we obtain objects of different, higher type which usually
do not share properties of their elements. Thus when we do, for example,
first-order Peano arithmetic we take natural numbers as elements of the
domain. Sets of natural numbers are not natural numbers anymore and are
objects of second order. When we, for instance, form a set of all triangles in
Euclidean space, then what we achieve is not a geometrical figure. Moreover
what we find in this set are only triangles, their constituents are not in the
set in question since they are not triangles.

Different approach to sets was developed at the beginning of the XXth
century by Polish logician Stanisław Leśniewski. His theory of sets was to be,
roughly speaking, a mathematical formalization of the notion of parthood.
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Thus, while doing mereology we want to mathematically explain what it
means that object x is a part of an object y.

4.1. Basic notions, axioms and facts

Let then M be a non-empty set and ⊏ ⊆ M × M be a binary relation which
we will call a relation of being a part. To facilitate further considerations we
introduce an auxiliary relation, which is to hold between elements x and y
in case either x ⊏ y or x = y

x ⊑ y
df

⇐⇒ x ⊏ y ∨ x = y . (def ⊑)

In case x ⊑ y we will say that x is an ingrediens of y.1 By the above
definition, the relation ⊑ is reflexive

x ⊑ x . (r⊑)

We will now put axioms on ⊏ that are to grasp intuitions described in
Section 3. The first two of them say that ⊏ transitive and have a property
which is often called Weak Supplementation Principle (see for example [22,
p. 28]), that is

(M1) x ⊏ y ∧ y ⊏ z =⇒ x ⊏ z , (t⊏)

(M2) x ⊏ y ⇒ ∃z(z ⊏ y ∧ ¬ ∃u(u ⊑ z ∧ u ⊑ x)) . (WSP)

As it is noticed in [18, p. 71] and [19, p. 228], from (WSP) we obtain that
⊏ is irreflexive

x 6⊏ x . (irr⊏)

So 〈M,⊏〉 is a strictly partially order set. Moreover, irreflexivity and tran-
sitivity of ⊏ together entail asymmetry of ⊏

¬(x ⊏ y ∧ y ⊏ x). (as⊏)

As it is easily verified, by (def ⊑), (irr⊏), (as⊏) and (t⊏), we have that

x ⊏ y ⇐⇒ x ⊑ y ∧ x 6= y ,

x ⊏ y ⇐⇒ x ⊑ y ∧ y 6⊑ x ,

1Here we use original Leśniewski’s terminology [12, 14]. The relation of being an in-

grediens of is often called a part of relation, where the term ‘part’ allows for so called
improper parts, i.e. whole objects.
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x ⊏ y ∧ y ⊑ z =⇒ x ⊏ z , (4.1)

x ⊑ y ∧ y ⊏ z =⇒ x ⊏ z , (4.2)

x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z , (t⊑)

x ⊑ y ∧ y ⊑ x =⇒ x = y , (antis⊑)

so the relation ⊑ is transitive and antisymmetrical.
By (def ⊑), we have

¬ ∃z∈M(z ⊑ x ∧ z ⊑ y) =⇒ ¬ ∃z∈M(z ⊏ x ∧ z ⊏ y)

and, by (r⊑)

¬ ∃z∈M (z ⊑ x ∧ z ⊑ y) =⇒ x 6= y . (4.3)

Therefore, immediately from (WSP), we have that no object consists of
exactly one part

x ⊏ y =⇒ ∃z∈M(z ⊏ y ∧ z 6= x) .

Thus, any object either has no part at all or has at least two parts.
We also obtain that 〈M,⊏〉 is not a trivial structure, i.e. M is not a

singleton, iff M has at least two elements with no common ingrediens (see
also (4.3)):

∃x,y∈M x 6= y ⇐⇒ ∃x,y∈M ¬ ∃z∈M(z ⊑ x ∧ z ⊑ y). (4.4)

Immediately from (4.4) and (r⊑) we have that 〈M,⊏〉 contains the small-
est element (with respect to ⊑) iff it is trivial

∃x∀y x ⊑ y ⇐⇒ ∀x,y∈M x = y .

Therefore, in non-trivial structures there are no objects that could be treated
as zero. Thanks to this we have «natural» understanding of the notion of
atom, according to which an atom is an arbitrary object that has no parts.
Let at be the set of all atoms in 〈M,⊏〉, i.e.at := {x ∈ M | ¬ ∃y∈M y ⊏ x}.

Now we introduce a formal counterpart of the spatial relation of overlap-

ping. To simplify mathematical apparatus we slightly generalize the notion
of overlapping by allowing that every object overlaps itself.

x , y
df

⇐⇒ ∃z∈M(z ⊑ x ∧ z ⊑ y) . (def ,)
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Some immediate consequences of the above definitions, (r⊑) and (t⊑) are

x , x , (r,)

x , y ⇐⇒ y , x , (s,)

x ⊑ y =⇒ x , y , (4.5)

z , u ∧ z ⊑ x ∧ u ⊑ y =⇒ x , y . (4.6)

However, it is not difficult to notice that if x and y have at least one
part, then they overlap only in case they have some common part, so we
actually remain as close as possible to our intuitions. Indeed, by (4.1) and
(4.2) we achieve that

x, y /∈ at ∧ x , y =⇒ ∃z∈M(z ⊏ x ∧ z ⊏ y) .

Moreover
x ∈ at ∧ x , y =⇒ x ⊑ y .

Thus, thanks to the above two conditions and (antis⊑) we have that x , y
iff exactly one of the following is the case

• x, y ∈ at and x = y,

• x ∈ at and x ⊏ y,

• y ∈ at and y ⊏ x,

• ∃z∈M (z ⊏ x ∧ z ⊏ y).

In addition, in general case

x , y ⇐⇒ x ⊑ y ∨ y ⊑ x ∨ ∃z∈M(z ⊏ x ∧ z ⊏ y).

Now we can simply define disjointness as the set-theoretical complement
of , in M × M

x H y
df

⇐⇒ ¬ x , y . (def H)

It follows immediately from the above definitions, (r,) and (s,) that

¬ x H x , (irrH)

x H y ⇐⇒ y H x . (sH)
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4.2. Mereological sums (collective classes) of objects

The crucial notion of mereology is that of mereological sum.2 By defining
it we want to say what it means that some object is a mereological sum

(or collective class) of some distributive class of objects. Intuitively, we
aim to express explicitly how to assemble an object from some given class
of elements of the domain of discourse. Let us suppose that we are given
such a class, for example a class of cubes in some space. An object x to
be a mereological sum of those cubes in question must of course include
every cube from this class as its part. This assures that we have not «lost»
anything in the procees of assembling. But we also have to ensure that x
is not too large, that is that every its part has something in common with
some element from the class of cubes. We can do this by demanding that
every part of x has a common part with some cube from the class. Thus,
still informally but more precisely, given a (distributive) class of some S-es
we can say that

an object x is a mereological sum of S-es if and only if every S

is an ingrediens of x and every ingrediens of x has a common
ingrediens with some S.

Using the above intuitions we can easily express the notion of mereological

sum in a formal way. Let x ∈ M and X ⊆ M . Let ‘x sum X’ means that x
is a mereological sum of all members of X. So

x sum X
df

⇐⇒ ∀y∈Xy ⊑ x ∧ ∀z∈M(z ⊑ x ⇒ ∃y∈X y , z) . (def sum)

Thus sum is a relation that holds between elements of a domain and its
subsets, i.e., sum ⊆ M × 2M .

Another question that emerges in this place is: for which subsets of M
there exist their mereological sums? We leave it to the reader to check that
reflexivity of ⊑ and the definition of sum excludes the existence of a sum of
the empty set, that is

¬ ∃x∈M x sum ∅.

2Instead of “mereological sum” the term “fusion” is used sometimes. However, the latter
is usually reserved for a different notion which has the same extension in mereological
structures (that is, there are two notions defined differently, but in mereology they are
co-extensive). Both notions were introduced by Leśniewski [13, 14] as explications of the
notion of collective class (collective set).
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But what about non-empty subsets of a domain? The axioms presented so
far do not tell us much about which non-empty subsets of M have their
sums. We can easily prove that

x sum {x} ,

x sum {y | y ⊑ x} , (4.7)

∃y y ⊏ x ⇐⇒ x sum {y | y ⊏ x} .

Lemma 4.1 ([18, 19]). The condition (M2) holds if and only if (irr⊏) holds

and the following condition is satisfied

x sum {y} ⇐⇒ x = y . (S)

But the above facts and lemma are not very helpful since sets which
are assembled already contain, respectively, x or x with its all parts, so the
process of assembling in those cases is rather uninteresting and trivial.

The most important cases are of course those in which we assemble some-
thing «new» from the objects given. And the axioms (M1) and (M2) do not
tell us anything decisive beyond the above trivial cases. Therefore we need
an additional axiom.

4.3. An axiom of sum existence

Setting aside philosophical questions about which subsets of M can and
should have their mereological sums we observe that from a point of view of
constructing geometrical systems we need to assure that every non-empty
subset of a domain of discourse has its sum. And this can only be done by
introducing the strongest possible version of an axiom of sum existence

(M3) ∀X∈2M \{∅}∃x∈M x sum X . (∃ sum)

Any structure 〈M,⊏〉 satisfying (M1)–(M3) will be called by us a (classical)
mereological structure.

In every mereological structure we have that [18, p. 108]

∀X∈2M ∀x,y∈M(x sum X ∧ y sum X =⇒ x = y). (fun-sum)

Moreover, as proved in [18, p. 75] and [19, p. 224], the conditions (t⊑), (4.7),
(∃ sum) and (fun-sum) together entail the following law of separation, which
is called in [22] Strong Supplementation Principle

x 6⊑ y =⇒ ∃z(z ⊑ x ∧ z H y). (SSP)
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By (t⊑), (r⊑) and (SSP) we obtain

x ⊑ y ⇐⇒ ∀z(z , x ⇒ z , y)

⇐⇒ ∀z(z H y ⇒ z H x).
(4.8)

and

x sum X ⇐⇒ ∀y(y , x ⇔ ∃z∈X z , y)

⇐⇒ ∀y(y H x ⇔ ∀z∈X z H y).
(4.9)

A very important consequence of (∃ sum) and (fun-sum) is existence of
the unity of a mereological structure. Of course such an object is the sum
of the whole set M . We will denote it by ‘1’, that is (using description
operator) 1 := (ι x) x sum M . (def 1)

By this definition
∀x∈M x ⊑ 1 .

If x 6= 1, then we define the complement of x as the only object y such that
x H y and 1 sum {x, y}. We will denote it by ‘−x’. Formally, this can be
introduced by

x 6= 1 =⇒ −x := (ι y) y sum {z ∈ M | z H x} , (def − x)

because for any x 6= 1 we have {z ∈ M | z H x} 6= ∅, by (WSP).
By (4.9) we have

x 6= 1 =⇒ x H −x ,

x 6= 1 =⇒ (y H x ⇔ y ⊑ −x) ,

x 6= 1 6= y =⇒ (x ⊑ y ⇔ −y ⊑ −x) ,

x 6= 1 =⇒ − − x = x ,

x 6= 1 =⇒ 1 sum {x, −x}.

Let us notice that there is one more reason to consider mereology as a
good model of the perspective space. In it there is no region which is located
everywhere, that is such which is a part of every other one. Absence of zero
element lets us avoid rather artificial situation in which we are forced to talk
about such region (as it is the case in Boolean algebras for example). It
makes mereology slightly more difficult to apply, since some operations are
not always feasible and must be treated as partial ones (like the complement
operation above). Thus we simply must be more careful than in case of
structures that have zero element in their domains.
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4.4. Filters and ideals in a mereological structure

We round off this section with the notions of filter and ideal in a mereological
structure. To define them we need binary operations of mereological sum and
mereological product

x ⊔ y := (ι z) z sum {x, y} . (def ⊔)

x , y =⇒ x ⊓ y := (ι z) z sum {v ∈ M | v ∈ x ∧ v ∈ y} , (def ⊓)

A filter in a mereological structure 〈M,⊏〉 is any non-empty set F ⊆ M
such that

(f1) if x, y ∈ F then x , y and x ⊓ y ∈ F ,

(f2) if x ∈ F and x ⊏ y, then y ∈ F .

Remark 4.1. Let us notice that the notion of filter may be treated as a
formalization of the notion of large element in the domain. To be more
precise, the first condition says that if x and y are large, then their common
part is large as well. The second one says that everything that is above some
large element must be large as well. In consequence, 1 is large, as expected.
Of course being large is a relative property, that is elements are large or not
with respect to the greatest element of a domain of discourse. ⊣

Let F be the set of all filters in 〈M,⊏〉. Of course, for every F ∈ F :1 ∈ F and for any x ∈ M \ {1} if x ∈ F then −x /∈ F . Notice that, by
(4.4), M ∈ F iff 〈M,⊏〉 is trivial, i.e. M = {1}. For each x ∈ M the set
Fx := {y | x ⊑ y} is a filter such that x ∈ Fx.

We call a filter F an ultrafilter (or maximal) iff there does not exist a
G ∈ F such that F ( G. Let U be the set of all ultrafilters in F . In
the usual way, applying the Kuratowski-Zorn Lemma, we obtain that every
filter in F is included in some ultrafilter from U . Thus, for each x ∈ M
there exists an F ∈ U such that x ∈ F .

For an arbitrary F ∈ F the following conditions are equivalent:

• F ∈ U ,

• for each x ∈ M \ {1}: either x ∈ F or −x ∈ F ,

• for all x, y ∈ M : if x ⊔ y ∈ F then either x ∈ F or y ∈ F .

A set X ⊆ M has finite intersection property iff for any finite subset Y
of X there exists its infimum with respect to ⊑. Let us remind that if X has
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this property then the set {y ∈ M | ∃x1,...,xn∈X x1 ⊓ . . . ⊓ xn ⊑ y} belongs to
F ; we say that this filter is generated by X.

An ideal in a mereological structure 〈M,⊏〉 is any non-empty set I ⊆ M
such that

(i1) 1 /∈ I,

(i2) if x, y ∈ I then x ⊔ y ∈ I,

(i3) if x ∈ I and y ⊑ x, then y ∈ I.

Remark 4.2. As the notion of filter may be treated as a mathematical coun-
terpart of the notion of large element, the notion of ideal is formalization
of the notion of small element. According to our intuitions 1 is not small,
mereological sum of finite number of elements is again small and everything
that is below some small element is a small element as well. ⊣

More on mathematical and metamathematical properties of mereological
structures can be found in [18], [19] and [22]. The reader interested in the
problem of mereology as a tool to reason about the space may want to
consult [25].

5. Connection structures

We extend a mereological structure 〈M,⊏〉 with a relation C ⊆ M × M
and consider relational structures 〈M,⊏,C〉. In case x C y we say that x
is connected with y. What is the advantage of having such a relation at
hand? If we are able to axiomatize it properly, then we may express the
spatial relations of touching between objects, that is those of external and
internal tangency. We cannot do this in mereological structures, in which
we can only talk about overlapping and disjointness. Suppose then that we
axiomatized C properly and let us denote external and internal tangency by,
respectively, ‘ET’ and ‘IT’. Then

x ET y
df

⇐⇒ x H y ∧ x C y , (def ET)

x IT y
df

⇐⇒ x ⊑ y ∧ x C−y . (def IT)

Thus we simply have that ET := H ∩ C = C \ ,. So to assure that the
theory of C will enrich mereology in a non-trivial way we must axiomatizeC in such a way that will exclude the situation in which C = ,.
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Now we need to put specific axioms on C. The first three are rather
obvious

(C1) x C x , (rC)

(C2) x C y =⇒ y C x , (sC)

(C3) x C y ∧ y ⊏ z =⇒ x C z .

From these axioms we obtain that relations ⊏, ⊑ and , are included in the
relation C, i.e.

x ⊑ y =⇒ x C y , (5.1)

x , y =⇒ x C y . (5.2)

Remark 5.1. By (r⊑) and (r,) we obtain that (C1) may be replaced with
either (5.1) or (5.2). ⊣

Let us call the set theoretical complement of C a separation relation. We
will denote it by ‘)(’, thus

x )( y
df

⇐⇒ ¬ x C y . (def )()

In case x )( y we say that x is separated from y. By (C3) and (5.2), respec-
tively, we obtain

x )( z ∧ y ⊏ z =⇒ x )( y , (5.3)

x )( y =⇒ x H y . (5.4)

A very important relation for us will be that of non-tangential inclu-

sion of regions. As the name indicates (see also Section 3), a region x is
non-tangentially included in a region y in case x is separated from the mere-
ological complement of y (see Figure 4). Thus we define another auxiliary
relation ≪ ⊆ M × M such that

x ≪ y
df

⇐⇒ ∀z∈M(z C x =⇒ z , y)

⇐⇒ ∀z∈M(z H y =⇒ z )( x) .
(def ≪)

Of course
∀x∈M x ≪ 1 . (5.5)

Notice that, by (4.8) and (5.2), ≪ is included in ⊑, i.e.

∀x,y∈M(x ≪ y =⇒ x ⊑ y). (5.6)
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y

x

x1

y1

Figure 4. x touches the complement of y, while x1 is non-tangentially included in y1.

Moreover, we have

∀x,y∈M

(

y 6= 1 =⇒ (x ≪ y ⇔ x )( −y)
)

.

Now notice that

x ≪ y ∧ y ⊑ z =⇒ x ≪ z ,

x ⊑ y ∧ y ≪ z =⇒ x ≪ z .

Hence, by (5.6), the relation ≪ is transitive

x ≪ y ∧ y ≪ z =⇒ x ≪ z . (t≪)

By (5.5), 1 ≪ 1; so ≪ is not irreflexive. Thus, it is not asymmetric, too.
But, by (5.6) and (antis⊑), ≪ is antisymmetrical:

x ≪ y ∧ y ≪ x =⇒ x = y . (antis≪)

Another intuition about connection is that if a region z is connected with
a sum of regions x and y, then z is connected with x or y

(C4) z C x ⊔ y =⇒ z C x ∨ z C y ,

But by (C1) and (C3), since x ⊑ x ⊔ y and y ⊑ x ⊔ y, we obtain the converse
implication to (C4). So we have

z C x ⊔ y ⇐⇒ z C x ∨ z C y . (5.7)

Remark 5.2. (5.7) may replace both (C3) and (C4). Indeed, if x C y and
y ⊏ z, then y ⊔ z = z and x C y ⊔ z, by (5.7). ⊣
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Axioms (C1)–(C4) form a basic set of postulates for connection relation.
Thus any structure 〈M,⊏,C〉 such that 〈M,⊏〉 is a mereological structure
and the relations ⊏ and C satisfy (C1)–(C4) will be called by us a connection

structure. However, depending on what we want to obtain by means of our
theory we can of course add some extra axioms.

Let us remind that our goal is to point a way towards construction of
a mathematical model of the perspective space. If we examine this space
one more time we can see that if two regions of this space are separated,
then there is a region which is separated from one of those two and non-
tangentially includes another. Thus we introduce another axiom, which we
can call after [2, p. 124] interpolation axiom

(C5) x )( y =⇒ ∃z∈M(x ≪ z ∧ z )( y) .

Finally, since there seem to be no gaps in the space between any given region
and its complement we require that every region (different from the space)
is connected with its complement

(C6) x 6= 1 =⇒ x C −x .

As it is easily seen, both (C5) and (C6) are also motivated by our desire
to construct Euclidean space. Abandoning the latter axiom would allow
spaces of points that are not connected (in topological sense), so cannot be
Euclidean.

6. Geometry

To shed some light on what geometry is let us first distinguish its three
aspects: practical, mathematical, and metamathematical.

From practical point of view geometry can be seen as a branch of applied
science. It is used by physicists to build and develop theories in physics
(both applied and theoretical), and by engineers to raise constructions like
buildings and bridges. As its name indicates geometry is about measuring
and this latest activity is crucial in both examining and transforming the
world that surrounds us.

As a mathematical theory geometry can be viewed as a formal theory:
a collection of basic concepts and axioms built upon first or second order
logic that are simply a peculiar kind of machinery to produce strings of
symbols that we usually call theorems. A little bit different approach is
model theoretic one, in which we treat geometry as a theory of relational
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structures. Again its aim is to reveal as many as possible properties of
such structures. Thus for example Pythagorean theorem is a result of using
geometry as a mathematical theory.

Finally metamathematical aspect concerns questions about geometry as a
mathematical theory (in both approaches, formal and model theoretic). Such
questions may be about primitive concepts, relations between them, inde-
pendence of axioms, possibility of some constructions, models of axiomatic
systems of geometry. Thus proving that the parallel axioms is independent
from the remaining ones is a metamathematical theorem, and such is any
proof of the impossibility of squaring the circle.

Among metamathematical questions we can distinguish those that con-
cern ontology of geometry as a mathematical theory. Thus in this particular
case we simply ask: is it necessary to take points as first-order objects of
geometry or can they be replaced with some other entities? And if so, what
axioms do we need to obtain a system that will be definitionally equivalent
to the three-dimensional Euclidean geometry? Actually those two questions
interwind and this would be impossible to answer just one of them not trying
to answer the other one. To be more precise, to show that we can replace
points with some other objects we must prove that the constraints put upon
them let us obtain Euclidean geometry. And vice versa, to prove that the
system of axioms is strong enough to share all the theorems of Euclidean
geometry we must first say what its domain of discourse is.

7. Point-based geometries

In set theoretical approach to geometry we deal with some pure relational
structures.3 A domain of a structure is a set of all points, which is called
space (this is of course something different than the perspective space). We
will denote such a set by means of letter ‘P’. Other primitive notions of such
a structure can be elementary or not.

In [5], with reference to David Hilbert’s [11], the authors examine struc-
tures of the form 〈P,L,P, B, D〉, in which P is a non-empty set of points, L

3Let us remind that by a pure relational structure we mean any tuple 〈D, R〉, where
D is a domain while R is a family of relations each of which is a relation in D or in a
power set of D or is a hybrid relation, that is their elements are for example in D × 2D.
If for any R ∈ R there is a natural number n such that n > 1 and R ⊆ D

n, then we
say that R is an elementary relation. If every R ∈ R is elementary, then we call 〈D, R〉
an elementary relational structure. Those structures that do not satisfy this condition are
called non-elementary ones.
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and P are subsets of 2P (thus this notions are non-elementary, so structures
examined are non-elementary as well), B and D are, respectively, ternary
and quaternary relation in P. Elements of L and P are called, respectively,
lines and planes, B is called betweenness relation and D equidistance rela-

tion. Next, we put specific axioms on P, L, P, B and D, and in this way
we obtain a system of geometry that would probably satisfy Euclid and his
contemporaries.

We can modify the above approach to start with structures 〈P, B, D〉 and
subsequently take such a collection of axioms that L and P will be definable
be means of B. The set of lines can be defined in the following way

X ∈ L
df

⇐⇒ ∃p,q∈P(p 6= q ∧

X = {r ∈ P | 〈r, p, q〉 ∈ B ∨ 〈p, r, q〉 ∈ B ∨ 〈p, q, r〉 ∈ B} ∪ {p, q}),

where the condition ‘〈r, p, q〉 ∈ B’ says that point p is between points q and r.
To define P, first we introduce a new relation L ⊆ P

3, so called relation

of collinearity of points

〈p, q, r〉 ∈ L
df

⇐⇒ ∃X∈L(p ∈ X ∧ q ∈ X ∧ r ∈ X).

Subsequently we define a triangle, whose cones are located in three points
p, q, r (in symbols ‘tr(pqr)’) that are not collinear

tr(pqr) := {a ∈ P | ¬ L(p, q, r) ∧ (a = p ∨ a = q ∨ a = r ∨

〈p, a, q〉 ∈ B ∨ 〈p, a, r〉 ∈ B ∨ 〈q, a, r〉 ∈ B)}.

Now we define

X ∈ P
df

⇐⇒ ∃p,q,r∈P

[

¬ L(p, q, r) ∧ X =
{

c ∈ P |

∃a,b∈P[a 6= b ∧ a, b ∈ tr(pqr) ∧ 〈c, a, b〉 ∈ B ∨ 〈a, c, b〉 ∈ B]
}

]

.

Thus, in light of the above constructions, we conclude that to construct
Euclidean geometry one can do with just three primitive notions: of point,
of betweenness relation and of equidistance relation.

However, we will briefly describe one more solution of the problem which
is especially important for our presentation of point-free geometry. To con-
struct a system of Euclidean geometry one actually needs only two primi-
tive notions, as it was proved by Italian mathematician Mario Pieri in [17]
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(an English translation in [16]). These notions are that of point and that
of equidistance relation, which in Pieri’s system case is a ternary relation
among points. Denoting this relation by means of ‘�’ we can say that while
doing geometry in Pieri’s manner we analyze elementary structures 〈P, �〉,
since � ⊆ P

3. Now we of course have to choose axioms to define L, P, B

and D in such a way to be able to prove that this approach is definition-
ally equivalent to Hilbert’s one. A heuristic argument for feasibility of such
a proof together with a presentation of Pieri’s constructions can be found
in [8]. The following theorem is crucial for Pieri’s structures.

Theorem 7.1 ([8]). All Pieri’s structures are isomorphic, for any Pieri’s

structure 〈P, �〉 is isomorphic to 〈IR3, �IR3

〉, where �
IR3

is introduced by

means of the following definition

x̄ȳ �
IR

3

z̄
df

⇐⇒ ̺(x̄, z̄) = ̺(ȳ, z̄) , (def �
IR

3

)

where x̄, ȳ, z̄ ∈ IR3 and ̺ : IR3 × IR3 → IR3 is the standard Euclidean metric.

8. Points

Space of Euclidean geometry and physics (for which such geometry is a
model of the surrounding world) is a distributive set of points, which are its
simplest constituents. However, as Russell noticed it in [21, p. 119] “no one
has ever seen or touched a point”. Points are absent from sensually accessible
objects, and things which we encounter in the perspective space seemed not
to be built out of them. It is also hard to imagine any kind of experiment
which could «prove» that points are basic constituents of the space that
embraces us. Thus it seems quite reasonable to assume that points cannot
be found in the world. As we read in [3, s. 431] „nature does not provide
objects without dimensions (a property that geometry ascribes to points)”.
One could even say more than this—nature does not provide objects that
would have less than three dimensions. Apart from points, in nature we will
not encounter either one-dimensional lines and segments or two dimensional
planes and surfaces. On the contrary, space of geometry is «full» of objects
which are even stranger than those mentioned, of course from everyday life
point of view.

So what are space of geometry and objects that exists within it? First,
this space is a distributive set, that is something that is abstract and is much
closer to Platonic realms than to the perspective space. Similar thing can be
said about its «pieces», that is subsets of the set of all points. Thus figures,
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as sets of points, are abstract objects. Space which is an object of analysis in
geometry and physics is infested with abstract objects. On the other hand,
the perspective space does not share this property—we are rather inclined
to say that it is very concrete.

According to the Euclid’s definition, a point is an object that does not
have dimensions. So it is something essentially different from objects occu-
pying the perspective space like trees and grains of sand and so on. Thus
according to our intuitions taken from everyday life on one side and from
natural sciences on the other, something that is built out of dimensionless
things should be deprived of dimensions as well. Objects that we sensu-
ally encounter have dimensions, so this fact testifies against points being
constituents of the perspective space.

Remark 8.1. Spaces which are analyzed in geometry and physics are built
from infinitely many dimensionless points, and these spaces have dimen-
sions and, in a way, «parts». Actually they can have an arbitrary (in case
of geometry even infinite) number of dimensions (of course under a specific
meaning of the term ‘dimension’). They also have (uncountably) infinitely
many «parts», if we treat the relational notion of being a subset as an anal-
ogon of the relational notion of being a part. The problem in question does
not concern mathematical theories as such, since they handle very well the
transition from points to objects that have «parts» and dimensions, but this
kind of transition is totally unnatural in the world of which those theories are
models. Even if we treat the space in Leśniewski’s manner, as a mereological
sum (but not a distributive set) of all points (see p. 167), it is still hard to
understand how the three-dimensional perspective space can be constructed
from dimensionless objects. ⊣

The above objections against classical point-based geometry can be
briefly summed up in the following way

(i) points, from which in a geometrical or a physical model space is built,
are neither sensually experienced nor its existence can be derived from
data (both by some experiment or some kind of reasoning); moreover
we cannot point to objects in the real world, that could be «natural»
counterparts of points;

(ii) the space of geometry and its «parts» as distributive sets are abstract
and as such they cannot be experienced empirically; the perspective
space and its parts are concrete (sensually experienced);

(iii) all objects that exist in the perspective space have dimensions and
parts, so points cannot be elements of this space.
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The problems described above were a stimulus to search for some other,
different from point-based one, approach to geometry. Those approaches are
usually named point-free or pointless. It must be stressed here that those
geometries do not either aim at replacing classical geometry with some other
formal science or question usefulness of the notion of point. It will not be
an exaggeration if we say that introduction of this notion to science by the
ancients was ingenious and enabled really impressive development of both
mathematics and physics. The names ‘point-free’ and ‘pointless’ are a bit
misguiding here, since those are not theories which do not have any notion
of point whatsoever. The crucial difference between point-based and point-
free geometry lies in the fact that in the latter we will not find the notion of
point among its primitive notions but it is defined by means of other primitive
notions which intuitive interpretation is less problematic. In light of what has
been said so far—point-free geometry looks for such foundations for classical,
point-based geometry which are most satisfying from a point of view of our
intuitions and representations concerning the perspective space. Point-free
geometry still talks about points but the difference is that these are abstract
objects constructed from objects that can be found in the perspective space.
Points as such objects are still to behave like those in classical geometry and
standard geometrical relations are to hold among them. Let us notice as well
that points as constructed from spatial objects does not have dimensions in
this sense like the perspective space and its parts have, since they are not
spatial at all. Therefore they satisfy, in a way, the Euclid’s definition.

9. Basic assumptions of point-free geometry

Let us begin this section with the following words of Russell’s [21, p. 119]

It is customary to think of points as simple and infinitely small, but
geometry in no way demands that we should think of them in this way.
All that is necessary for geometry is that they should have mutual
relations possessing certain enumerated abstract properties, and it may
be that an assemblage of data of sensation will serve this purpose.

It thus can be said that the task of point-free geometry is to construct such
mathematical objects among which there hold the same relations as among
«ordinary» points and which fulfill the following requirements

(i) their ontological status will be less problematic than in case of Eu-
clidean points;
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(ii) its «building material», out of which they will be constructed, could
be naturally and intuitively interpreted in the perspective space.

An important feature of point-free geometry is the fact, that its space
and figures are not distributive sets of points. This is a natural consequence
of eliminating the notion of point from primitive notions of such theories.
Both space and figures, which are its parts, are mereological sets in case of
the approach presented in his paper.

It was Leśniewski himself who in [12] proposed one of the first approaches
to geometry in which space and figures are not distributive sets. He assumed
however that among figures there are less than three-dimensional objects
and that dimensionless points are parts of space. Segments, lines, planes
and other figures were, at the same time, parts of space and mereological
sets of points. Space itself was the mereological sum (fusion) of all points.
Therefore his approach to geometry was still point-based. The difference
between his system and classical geometry lied in the fact that he used
mereological tools instead of set theoretical ones.4

From a formal point of view Leśniewski’s approach to geometry can be
characterized as follows. Let us assume that s is space, ⊏ is a relation of
being a proper part and that Pt, F , L and P are, respectively, distributive
sets of all points, figures, lines and planes.5 Then we have that

(i) s 6= Pt (space is not the set of all points);

(ii) s ∈ F (space is one of figures);

(iii) x ∈ F and x 6= s iff x ⊏ s (every figure which is different from space is
its part and conversely, every part of space is a figure);

(iv) Pt, L, P ⊆ F (all points, lines and planes are figures, therefore they are
parts of space).

From an ontological point of view Leśniewski’s approach has actually the
same faults as classical point-based geometries. To tell the truth neither
space nor figures are any longer identified with distributive sets of points,

4In contemporary systems of point-free geometry mereology is used next to set the-
ory. Leśniewski did not recognize the existence of distributive sets, so in his case purely
mereological approach was a consequence of his ontology.

5Here we use different symbols for these sets than earlier, since these are different sets
indeed. First, the set of all points is no longer space. Second, in classical geometry figures,
lines and planes are distributive sets of points. On the other hand, in the case considered
this are fusions of points. Clearly, this approach is incompatible with views of the creator
of mereology, since we use set theoretical tools.
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but still space is «infested with» less than three-dimensional objects whose
counterparts are not present in the perspective space.

In systems of point-free geometry we entirely accept (i). Instead of the
set F from (ii) we have the set of solids, which are also called regions or
spatial bodies. Contrary to F , the set of solids does not contain objects like
points, lines or planes. Its elements are only three-dimensional and «regular»
parts of space. By «regular» we mean such parts to which nothing having
less dimensions that whole space was either «added» or «subtracted».6 Let
us assume that the set of solids will be denoted by ‘S’. Now, points will be
distributive sets of solids or sets of sets of solids. Let us denote the set of
such points by ‘Π’. Except for the set of solids we also have the set of all «ab-
stract» figures understood, in a traditional way, as non-empty sets of points.
Denoting this set by ‘F’ we have that F := 2Π \{∅}. It follows from the above
remarks that Π∩S = ∅ = Π∩F, that is points are neither solids nor abstract
figures. Of course, the set of all abstract points is a figure, since Π ∈ 2Π\{∅}.
Lines and planes, similarly as in classical geometry, are distributive sets of
points. It is the case since after having generated points further geometrical
constructions are the same as those within point-based geometries. There-
fore now it is more reasonable to denote lines and planes by ‘L’ and ‘P’,
than by ‘P ’ and ‘L’, since elements of the latter sets are mereological sets.

We notice as well that while in point-based geometries F has the type (∗)
in a hierarchy of types over a base set, in point-free approach it has either
the type ((∗)) or (((∗))).

In light of what has been just said we have
(i′) s 6= Π;

(ii′) s ∈ S and s /∈ F (space is one of solids and is not an «abstract» figure,
that is it is not a distributive set of points);

(iii′) x ∈ S and x 6= s iff x ⊏ s (every solid which is different from space is
its part and conversely, every part of space is a solid)7;

(iv′) Π ⊆ 2S or Π ⊆ 22S and L,P ⊆ F (all points are sets whose elements
are solids or sets of solids; all lines and planes are abstract figures, but
they are not parts of s).

In light of the above remarks we can say that the conditions (iii′)–(iv′) are
natural assumptions of point-free geometry.

6Some authors put other constraints on solids but those will not be relevant for the
approach presented.

7Let us notice that from both (iii′) and transitivity of the parthood relation we have
that every part of a solid is a solid.
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10. From regions of space to points

Now we will explain how we can construct objects that can take the role
of points. But first let us remind that what we want to do is to build
a mathematical structure that will share all properties of the Euclidean
space, so in particular, such a structure must share all topological properties
with the Euclidean space. Moreover, taking mereology as a model of the
perspective space was, so to say, a first-level abstraction in our construction.
Points and space that they form will be on a second level—now what we aim
to do is to abstract points from elements of the mereological model.

Intuitively points can be treated as locations in space, but not all of them.
By a location we may understand for example some region of space, in a sense
that we speak about a localization of some object somewhere in space. But,
if we say for example that the Eiffel Tower is in France, this is a very vague
description—France is a very large country and compared to it the Eiffel
Tower is small and occupies a very small area of the French territory. Thus,
on the one side some localizations are too large to be points, on the other
they are not abstract objects, as we required them to be in Section 9. But
let us imagine that we try to explain to somebody where exactly in France
the Eiffel tower is localized. First we can say that it is in the northern part
of the country. Then, more exactly, that it is somewhere in Île-de-France
region, and still more precisely that it is in Paris, finally pointing to the
Champ de Mars as the place where the famous construction is erected. In
this process of explanation we take smaller and smaller regions of space that
eventually shrink so much to finally be (almost) exactly this place which is
occupied by the Eiffel Tower.

We can of course imagine continuing this process to converge to even
smaller regions of the space, and in extreme and limit case to the most
exact location in the space which cannot be precised any more. Of course
this idea resembles the process of convergence known very well in topology.
There when we, roughly speaking, lack some information about the power of
some subsets of a topological space8, we express the idea of limit by means
of filters.9 And usually construction of points from regions exploits this idea.

So, the intuition behind the whole idea is that a point is that around
which regions of the space «shrink». If the space is infinitely divisible, then

8Precisely speaking, when we do not know whether given space has a dense countable
subset.

9Of course, the equivalent way to do this is via so called nets.
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this process of shrinking does not terminate and at its limit we obtain that
location of the space that we can call a point.

Figure 5. A set of «shrinking» regions. We can imagine those regions to be smaller and
smaller, finally giving us a point.

Of course a point in this sense is a result of our ability to abstract some
property of the space and is not its part. If we decide to model the per-
spective space by means of mereology, then points must be constructed by
means of tools we have at hand. Since points are not elements of a domain,
then a natural idea is to take as points those sets of regions that «shrink»
around some location in the space. Thus our process of constructing points
includes the following two steps

(i) first, we distinguish some sets of regions that converge to some unique
location in the perspective space;

(ii) second, we take as point filters generated by those sets of regions (see
Section 4.4), by which we assure the uniqueness of points.

We may limit ourselves to only (i) in case our construction assures the
uniqueness of points (see the definition of the set ΠT on p. 181). How-
ever, we have to be rather careful while deciding to solve the problem in
question in this way. First, it may happen that two different sets of regions
can descend similarly, that is shrink towards the same location in the space,
as it can be seen in Figure 6.

As a result, we cannot take both of these sets to be points since we
would have undesirable situation in which two different sets would be the
same point. Of course the natural solution is to take as a point the filter
generated by each of those two sets. So, it may be said that a general idea
of constructing points reduces to defining some sets which will shrink to one
location in the space and then to take filters generated by those sets.
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Figure 6. Two sets of regions shrink to the same location in the space.

The above is not the only obstacle to be eliminated. Let us examine
the other ones. We of course have to exclude from our construction sets of
regions that look more or less like the one in Figure 7.

x1 x2 x3 x4 x5 x1x2x3x4x5

Figure 7. Descending regions x1, x2, x3, x4, x5 represent two different locations in the
space.

To analyze this situation we introduce notions of coherent and super-

coherent region.10

Definition 10.1. A region x is coherent iff

∀y,z∈M(x = y ⊔ z =⇒ y C z) .

Definition 10.2. A region x is super-coherent iff

∀y,z∈M

(

x = y ⊔ z =⇒ ∃u∈M (u ≪ x ∧ u , y ∧ u , z ∧ u ⊓ y C u ⊓ z)
)

.

10Both notions are used by Roeper in [20, p. 255]. However, he uses the term ‘convex’
instead of ‘super-coherent’. We decide to use the latter since convexity is generally stronger
property than coherence.
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x1 x2

Figure 8. Both x1 and x2 are super-coherent regions, x1 ⊔ x2 is a coherent but not a
super-coherent region.

Thus super-coherent region is such that allow us to «go» from anywhere to
anywhere within this region without touching its complement.

Coherent regions are not enough to assure the uniqueness of points—
Figure 9 represents the situation in which three different sets of descending
regions shrink to the same location in space. Of course, the third one would
be the set of regions consisted of coherent regions which parts are equally
divided between X1 and X2.

X1

X2

Figure 9. Three sets of regions descending to the same location in the space. The
third one consists of mereological sums of regions from X1 and X2; that is, it is the
set {x ⊔ y | x ∈ X1 ∧ y ∈ X2}.

Super-coherence let us avoid this difficulty since excludes the case de-
picted above. However, we do not have to require that those sets that are
to represent points have to consist of only super-coherent regions, but that
only super-coherent parts of those regions are relevant in construction of
points. For example in Figure 10 we can see incoherent regions descending
to some unique location in the space. This uniqueness is guaranteed by the
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fact that the process of descending takes place only within super-coherent
«leftmost» parts of incoherent regions x, y and z. The situation bears slight
resemblance to a construction of a part of the Cantor set of reals.

x x

y y
z z

Figure 10. Only super-coherent «leftmost» parts of incoherent regions x, y, z are relevant
for determining some unique location in the space.

Thus we should require something like this: if a set X of regions represents
a location in the space, then there is a subset of X which consists of super-
coherent parts of regions from X and represents the same location in the
space. This should not be difficult to notice that excluding sets of regions
such as the one in Figure 7 is a step towards Hausdorff (or T2) property of
a space of points we try to construct. But this does not fully eliminate the
problem of representing the same point by two different sets of regions. X1

and X2 both consist of super-coherent regions and they represent the same
location in the space. We may exclude this case by requiring that every set
X of regions that is to represent a point has to fulfil the following condition

∀x,y∈X(x 6= y =⇒ x ≪ y ∨ y ≪ x) .

Thus, since both X1 and X2 consist of regions that are connected with their
complements, they cannot serve as good candidates to represent points.

Remark 10.1. We could avoid this difficulty by taking as points some equiv-
alence classes of filters. We say that two filters F1 and F2 are connected iff
x C y, for all x ∈ F1 and y ∈ F2. Now in the set U of all ultrafilters (see
Section 4.4) we distinguish some special class U ′ of ultrafilters and prove
that connectedness relation on filters is transitive in U ′ × U ′. Then we
define a point to be an equivalence class under the relation of connectedness
between ultrafilters in U ′ ×U ′. The reader interested in details of the above
construction should consult [20].
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It is worth noticing that when we choose the above solution, then points
are sets of sets of regions, that is they have the type ((∗)) in the hierarchy
of types above a base set. When we decide to take as points simply sets of
regions, then points have the type (∗). ⊣

Another threat that is looming behind constructions above is that we
still have not eliminated those sets of regions that may represent points in
infinity, that is those sets of regions that have a structure of a set presented
in Figure 11. According to what we said above, we want our space of points
to be Euclidean. Allowing such sets of regions to represent points we actually
allow this space to be compact, which is not a property of Euclidean spaces.
Yet another problem is presented in Figure 12, where regions descend to
perpendicular lines rather than to a point. As it is seen the problem here is
also unboundedness of regions. In case cross-like regions were bounded, then
together with the requirement that they should be ordered by non-tangential
inclusion it would guarantee that they were shrinking in all directions and
thus to a point.

Figure 11. A set of regions shrinking to some location in infinity.

Figure 12. A descending set of regions that does not represent any point.
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A natural solution that comes to mind is introducing another notion of
bounded or limited region, and require that representatives of points contain
such regions (this is actually Roeper’s solution in [20]). As it seems that
the notion of bounded region is very hard (if possible at all) to be defined
properly solely by means of parthood and connection relations, the natural
choice is to enrich 〈M,⊏,C〉 with yet another primitive notion and try to
axiomatize it. If we agree that B ⊆ M is a family of regions that we will
call bounded ones, then examples of natural axioms for B could be

(B1) 1 /∈ B – the space is not bounded,

(B2) if x ∈ B and y ⊑ x, then y ∈ B – every subregion of a bounded region
is bounded,

(B3) if x, y ∈ B then x ⊔ y ∈ B – the mereological sum of bounded regions
is bounded.

So as we can see B is an ideal in 〈M,⊏〉 (see Section 4.4). This actually
goes along the intuitions that bounded regions should be small parts of
the space, while the space itself is something large. What else could be
said about bounded regions? It seems natural to assume that every region
contains a bounded subregion. Actually, following Roeper [20, p. 256] we
may even require something else that may help us locate bounded regions in
the space by saying that bounded subregions of given regions are certainly
in those places of the space where regions are connected with each other

∀x,y∈M(x C y =⇒ ∃z∈B(z ⊑ x ∧ z C y) . (B4)

Due to reflexivity of C, (B4) is of course stronger than simple assertion of
existence of bounded regions. From this and the axiom above we immedi-
ately obtain that every region has a bounded subregion. This should be clear
that we do not have to require that all regions in a representative of a point
are bounded—it is enough to assure that every such a representative con-
tain at least one bounded region. In such case those regions that are below
this bounded region are also bounded and only they have any importance in
determining a unique location in the space (see Figure 13).

Let us now summarize what properties sets of regions should have to be
representatives of points. So, X ⊆ M is a representative of a point iff

(r1) the relation of non-tangential inclusion is connected in X (in an ordi-
nary sense), that is

∀x,y∈X(x 6= y =⇒ x ≪ y ∨ y ≪ x) ,
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Figure 13. A set of regions is a representative of a point although it contains a region that
is unbounded.

(r2) every region in X has a non-tangentially included subregion that is also
in X

∀x∈X∃y∈X y ≪ x ,

(r3) X contains at least one bounded region,

(r4) if X consists of regions that are not super-coherent, then there ex-
ists a set X ′ of super-coherent subregions of elements of X satisfying
(r1)–(r3).

Notice that from some moment the set X contains only bounded regions,
such are all these below the one whose existence is postulated.

By a pre-point we will call any set (in a mereological structure) satisfying
(r1)–(r4) and denote the set of all pre-points by ‘Q’. By (r1) and (5.6), all
pre-points have finite intersection property (see Section 4.4), so points can
be defined as follows.

Definition 10.3. A point is any filter in 〈M,⊏〉 which is generated by some
element of Q, that is

α ∈ Π
df

⇐⇒ ∃X∈Q α = {y ∈ M | ∃x∈X x ⊑ y} . (def Π)

As we noticed it above points have the type (∗), which is different from
point-based systems of geometry where points, as elements of a domain,
have the type ∗. Solids are simply regions of the space, so they have the
type ∗. The space, which is the unity of 〈M,⊏〉, is different from the set
of all points, 1 6= Π, but is one of solids. Figures, as sets of points, are
sets of sets of regions, so they have the type ((∗)). Clearly no solid is a
figure, and in particular 1 is not a figure. Thus we can say that a method
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x y

X

Figure 14. A descending set X of regions is not a G-representative of a point, since x and
y overlap all regions in X but are not connected with each other.

of constructing points presented above preserves all the basic assumptions
of point-free systems of geometry.

11. Grzegorczyk’s construction

To present some particular construction of points we will shortly analyze
Grzegorczyk’s system of point-free topology from [10]. Let then 〈M,⊏,C〉
such that 〈M,⊏〉 is a mereological structure and C satisfies axioms (C1)–
(C3). The remaining axioms for C are consequences of the ones mentioned
and the only specific Grzegorczyk’s axiom (G).

Before we introduce (G) let us first introduce the family Γ of elements
of 2M that we will call G-representative of points.

Definition 11.1. By a G-representative of a point we will understand any
non-empty set of regions X such that satisfies (r1), (r2) and the following
condition

∀x,y∈M

(

∀z∈X(z , x ∧ z , y) =⇒ x C y
)

. (g1)

That is

Γ := {X ∈ 2M \ {∅} | X satisfies (r1), (r2) and (g1)} . (def Γ)

A moment of reflection shows that (g1) grasps both (r3) and (r4). If
examined more closely, it indeed excludes the situations depicted in figures
7, 12 and 11. However, the answer to a question whether this categorically
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describes such situations is negative and we will briefly explain why it is the
case. First, Grzegorczyk’s axiom goes as follows.

Axiom G. For any x, y ∈ M that are connected, i.e. x C y, there exists a
set X ∈ Γ such that11

∀z∈X(z , x ∧ z , y), (g2)

x , y =⇒ ∃z∈X z ⊑ x ⊓ y . (g3)

By G-structure we will understand any triple 〈M,⊏,C〉 satisfying axioms
of mereology, (C1)–(C3) and (G). It is provable that all G-structures are
connection structures, i.e. they satisfy (C4). Moreover, we obtain that ⊑ is
definable by means of C (and thus also by ⊏)

x ⊑ y ⇐⇒ ∀z(z C x ⇒ z C y)

⇐⇒ ∀z(z )( y ⇒ z )( x).

A point in any G-structure is a filter generated by some element of Γ (by
(r1) and (5.6) all members of Γ have finite intersection property). Thus in
this case we have

α ∈ ΠG

df
⇐⇒ ∃X∈Γ α = {y ∈ M | ∃x∈X x ⊑ y} . (def ΠG)

Existence of elements of ΠG follows from (C1) and (G).
Let us now explain what is a role of the conditions (g2) and (g3). So far

we have defined points but we actually know nothing about the properties of
ΠG. The conditions in question are responsible for imposing some topological
structure on ΠG. To see that, first we define the set of internal points of a
given region x by means of the following definition

Irl(x) := { α ∈ ΠG | x ∈ α } . (def Irl)

We leave it to the reader to check that the family {Irl(x) | x ∈ M} is a basis
(in topological sense). Thus 〈ΠG, O〉, where O is the set of set-theoretical
sums of elements from the basis, is a topological space.

As it was noticed in [10] for any x, the set Irl(x) is non-empty and
regular open in 〈ΠG, O〉, i.e. Irl(x) = INT CL Irl(x), where INT and CL are,
respectively, operations of interior and of closure in 〈ΠG, O〉. Moreover,

x ⊑ y ⇐⇒ Irl(x) ⊆ Irl(y) , (11.1)

11In [10] the condition (g3) has the following form: ∃z∈M (z ∈ X ∧ (x ⊑ y ⇒ z ⊑ x). In
our case X 6= ∅, since X ∈ Γ. Moreover, one can prove that replacing both forms of (g3)
with one another we will obtain equivalent version of the axiom (G).
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α

x

Figure 15. The point α is an internal point of the region x (the dotted region is a member
of α and is an ingrediens of x).

x C y ⇐⇒ CL Irl(x) ∩ CL Irl(y) 6= ∅ , (11.2)

CL Irl(x) = { α ∈ ΠG | ∀y∈α x , y } . (11.3)

We can prove that 〈ΠG, O〉 is a Haussdorff (or T2) space, i.e. for any
two points α and β there are two disjoint open sets containing, respectively,
α and β. This is due to the fact that two points α and β have to contain
disjoint regions x ∈ α and y ∈ β, that is

α 6= β =⇒ ∃x∈α∃y∈β x H y .

The latest fact is obtained by means of (g2) and (g3). Of course, α ∈ Irl(x)
and β ∈ Irl(y). Moreover, from definitions of filter and Irl, by (4.6), we
obtain Irl(x) ∩ Irl(y) = ∅. So as disjoint open sets containing, respectively,
α and β it is enough to take Irl(x) and Irl(y).

Unfortunately, if we do not assume any other specific axioms except for
(G) we cannot prove much more about 〈ΠG, O〉 as a topological space. For
example, if the relation of external tangency is empty, then what we obtain
is a totally disconnected space. This is due to the fact that in such case
, = C (in consequence H = )(), so every region being a part of the space is
separated from its complement, owing to (irrH). In consequence (C6) is not
satisfied in such structures (except for the trivial one element mereological
structure). Moreover, one can prove that Grzegorczyk’s axioms allows for,
either finite or infinite, atomic structures. In case of such structures there
are such (probably among others) that are discrete (finite case) and such
that are one-point compactifications of a discrete space. So such spaces
are quite remote from the Euclidean space that we aim to grasp via some
structures put upon the space and its parts. Moreover, this is very hard



180 Rafał Gruszczyński, Andrzej Pietruszczak

to see how we could construct any geometrical relation between points that
would allow us to speak about geometry.12 There is another problem here
as well. Since among G-structures there are such that consist of finitely or
countably many elements, topological spaces built upon them will consist of
finitely or countably many points. In consequence we actually cannot speak
about any interesting geometry, since to produce such we need to have at
our disposal continuum of points.

Of course, we do not want to say that the above facts are weak points
of Grzegorczyk’s theory. His theory should rather be considered as one
determining quite a large class of topological spaces. This class can be
narrowed by adding additional axioms to the original set of postulates of
Grzegorczyk’s.

12. Tarski’s geometry of solids

Now we will show that due to Tarski’s ingenious ideas and constructions from
[24] we can indeed construct a point-free system of Euclidean geometry.

Again, let 〈M,⊏〉 be a mereological structure. Tarski’s idea was to enrich
such a structure with an additional primitive notion that he called a notion
of (mereological) ball. We will use letter ‘B’ to denote a set of balls and we
will briefly analyze relational structures of the form 〈M,B,⊏〉.

First, by means of B and ⊑ we define the notion of concentricity of

balls. To define it Tarski introduces a series of quite complicated definitions
of external tangency, internal tangency, external diametrical tangency and
internal diametrical tangency. All this relations hold in B, the first two of
them are binary and the second two ternary. To give the reader a feeling for
those definitions we will present a definition of external tangency of balls.
Detailed presentation is beyond the scope of this article but all the details
can be found in [9].

Definition 12.1. A ball a is externally tangent to a ball b iff (i) a is external
to b and (ii) for any balls x and y such that a is ingrediens of both x and y,
while x and y are external to b, it is the case that x is an ingrediens of y or
y is an ingrediens of x (see Figure 1613). Formally

12However there is such a possibility. In [7] Gerla presented a theory of pointless metric
spaces. One could check whether any of topological spaces obtained within G-structures
is metrizable in the sense of [7] and what are the properties of metrics defined.

13The figures 16 and 17 originally published in [9, pp. 491 and 495]. Used by permission
of Association for Symbolic Logic.
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a ET b
df

⇐⇒ a, b ∈ B ∧

a H b ∧ ∀x,y∈B(a ⊑ x H b ∧ a ⊑ y H b ⇒ x ⊑ y ∨ y ⊑ x).

a bxy

Figure 16. a is externally tangent to b.

Tarski’s proceeds in a similar way to define other relations listed above
to finally define a key binary relation of concentricity of balls. Intuitively,
two balls are concentric if they have the same middle point. However, we
cannot speak about points of course, since we have none at our disposal.
But we can overcome this difficulty by saying that a is concentric with b in
the case either a = b or a ⊏ b and there is a ball c such that touches a from
the outside (is externally tangent to it) and b from the inside (is internally
tangent to it) and can go all the way round a touching a and b at every
single moment of «movement». Of course the third possibility is that this is
b which is a part of a, everything else being similar. The reader interested
in details is asked one more time to consult both description and analysis of
this relation in [9].

Let us denote the concentricity relation of balls by means of ‘⊚’. Now
our gate to a definition of point is wide open, since as a point we can simply
take the set of all balls that are concentric with some given ball, that is

α ∈ ΠT

df
⇐⇒ ∃b∈B α = {x ∈ B | x⊚ b} . (def ΠT)

We could of course treat any such set as above as a representative of a point
and define points as filters generated by such sets but there would be no gains
resulting from such a definition. There is no problem with individuation of
points in case of Tarski’s theory. There are of course other sets descending to
exactly the same location as sets of concentric balls (sets of cubes, cuboids
etc.) but they are excluded from the set ΠT by its very definition. Of course,
we still know very little about mereological balls and at this stage we cannot
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exclude that they are indistinguishable from cubes for example. But the
remaining axioms to be presented further assure that balls are exactly those
entities we expect them to be.

The difference between Tarski’s approach and, for example, Grzegor-
czyk’s one is that in the former we are able to reconstruct a very important
ternary geometric relation, the one of equidistance of points. And this lets
us (as we pointed it in Section 7, see especially Theorem 7.1) speak about
Euclidean geometry. Tarski’s definition of equidistance relation is actually
very simple and intuitive. We say that points α and β are equally distant
from a point γ iff they are all equal to each other or there is a ball b in γ
such that no ball from either α or β is an ingrediens of b or is external to b.
Formally we define a relation � ⊆ Π3

T

αβ � γ
df

⇐⇒ α = β = γ ∨ ∃c∈γ ¬ ∃a∈α∪β

(

a ⊑ c ∨ a H c
)

. (12.1)

β

α

γ
c

Figure 17. α and β are equidistant from γ.

In our opinion Tarski’s greatest merit lies in the fact that he noticed that
the triangle relation is inherent in our intuitions rooted in the notion of ball.
And thanks to the relation just defined we are able to talk about geometry,
in particular about Euclidean geometry. This is what actually Tarski does in
one of the specific axioms of his theory, an axiom which is very powerful and
which actually forces the whole three-dimensional Euclidean geometry to be
a part of the system, as it simply states that 〈ΠT, �〉 is a Pieri’s structure,
that is 〈ΠT, �〉 satisfies all the axioms (expressed in set-theoretical language)
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of Pieri’s geometry

〈ΠT, �〉 is a Pieri’s structure. (P1)

An important observation is such that if we have the whole Euclidean
geometry at our disposal we can speak about topological properties of the
Euclidean space. In particular among the subsets of ΠT we can distinguish
those that are regular open in standard Euclidean topology. Let us remind
that regular open are those sets which, roughly speaking, have no «cracks»,
«holes», «threads» etc., which would have less dimensions than the whole
space, that is less than three dimensions in our case. Formally, regular open
are those sets which are equal to the interior of their closure. Let ROΠT

be
the set of all regular open sets in ΠT as topological space with Euclidean
topology and let RO

+

ΠT
:= ROΠT

\ {∅}. Moreover, let BOΠT
be the set of

all open balls in 〈ΠT, �〉.
To introduce remaining specific axioms of Tarski’s theory we define the

notion of internal point of a region in a similar way to the one presented
earlier, i.e.

α ∈ Irl(x)
df

⇐⇒ ∃b∈B(b ∈ α ∧ b ⊑ x) ,

which means simply exactly as much that α is an interior point of a region
x iff some ball from α is an ingrediens of x.

In Tarski’s sense a solid is an arbitrary sum of balls. Let S be the set of
all solids, i.e. S := {x ∈ M | ∃Y ∈2B x sum Y }.

This lets us state the second postulate of his theory: if x is a solid then
the set of interior points of x is a non-empty regular open set, i.e.

∀x∈S Irl(x) ∈ RO
+

ΠT
. (P2)

The third Tarski’s postulate says: if a set X of points is a non-empty regular
open set, then there exists a solid x such that X is the set of of all interior
points of x; i.e.

∀
X∈RO

+

ΠT

∃x∈S X = Irl(x) . (P3)

As it can be easily noticed this axioms are to ensure that regions are modeled
by regular open sets in Euclidean space. These sets often are argued to be
a decent counterparts of parts of the perspective space. However, some
authors maintain that the class of these sets is too large. This is due to
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the fact, that even among regular open sets such can be found that are too
peculiar to be counterparts of any parts of the perspective space.

In [24] Tarski assumed one more postulate which says the following: if
x and b are solids and all interior points of x are at the same time interior
points of y, then x is ingrediens of y; i.e.

∀x,y∈S(Irl(x) ⊆ Irl(y) =⇒ x ⊑ y) . (P4)

Unfortunately—as it was shown in [9]—in Tarski’s theory it is not prov-
able that every region is a solid

∀x∈M x ∈ S , i.e. M = S . (⋆)

We must accept (⋆) (or some equivalent condition) as a new axiom.
As we prove in [9, p. 496], in mereological structures the condition (⋆) is

equivalent to one saying that every region has a ball as its ingrediens, i.e.

∀x∈M∃b∈B b ⊑ x , (⋆⋆)

Indeed, (⋆) entails (⋆⋆), by (def sum) and the definition of S. Moreover, (⋆⋆)
says that the set B is dense in 〈M,⊏〉. In the standard way, from density
of B we can prove that every region is the mereological sum of set of balls
which are its ingredienses. So every region is a solid.

We also show in [9, pp. 516–517] that every structure 〈M,B,⊏〉 satisfying
(⋆) fulfils (P4). Thus our theory has only the following axioms: (P1)–(P3)
and (⋆) (or (⋆⋆)).

Theorem 12.1 ([9]). Let 〈M,B,⊏〉 satisfy axioms of mereology and (P1)–
(P3), (⋆). Then the mapping Irl is an isomorphism from 〈M,B,⊏〉 onto

〈ROΠT
, BOΠT

, ⊂〉.

Setting aside the problem of adequacy of the class of regular open sets
as models of regions of the space, we can prove that Tarski’s geometry of
solids is a very good construction of a point-free system of Euclidean geome-
try. Crucial metamathematical properties of his system are embodied in the
following theorem, where RO

+

IR
3 and BO

IR
3 are, respectively, the sets of all

no-empty regular open sets and open balls in three-dimensional Cartesian
space.

Theorem 12.2 ([9]). All structures 〈M,B,⊏〉 satisfying axioms of mereol-

ogy, (P1)–(P3) and (⋆) are isomorphic, since any such structure is isomorphic

to 〈RO
+

IR
3 , BO

IR
3 , ⊂〉.
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The most important steps in a proof of the above theorem are

(a) the fact that for any topological space 〈X, O〉, the pair 〈RO
+

O
, ⊂〉 is a

mereological structure;

(b) demonstration of the fact that for any ball b ∈ B, Irl(b) ∈ BOΠT
, which

is definitely the hardest part of the task.

Actually, what (b) shows is that our intuitions about balls as parts of the
perspective space (or rather as idealizations of some parts of the perspective
space) embodied in definitions and axioms of Tarski’s system are correct.

It is worth noticing as well that Tarski’s geometry of solids satisfies all
the basic assumptions of point-free systems of geometry. Moreover, elements
of ΠT consists of only such sets of regions that satisfy conditions (r1)–(r4)
(boundedness of balls is assured by Theorem 12.2).

To conclude this section, let us notice that thanks to Tarski’s definitions
of tangency relation between balls, we could actually prove that the con-
nection relation C is definable within Tarski’s structures. To see how this
could be done it is enough to notice that by means of ET we can define the
relation of external tangency of regions. Let us remind that every region is
the mereological sum of some non-empty set of balls. Thus we can define the
relation ET, of external tangency between regions, by te following formula

x ET y
df

⇐⇒ x H y ∧ ∃a∈B∃b∈B(a ⊑ x ∧ b ⊑ y ∧ a ET b) .

Now, C can be of course defined as follows

x C y
df

⇐⇒ x , y ∨ x ET y ,

and in light of Theorem 12.2 we can see that it satisfies (C1)–(C6). On the
other hand we have the conditions (11.2) and (11.3), where now CL is the
closure in the Euclidean topology in 〈ΠT, �〉 and the set Irl(x) consists of
points from ΠT. In language of Tarski’s theory conditions (11.2) and (11.3)
can be expressed as follows

x C y ⇐⇒ ∃a∈B∀b∈B(

a⊚ b =⇒ (b , x ∧ b , y)
)

.

Remark 12.1. (i) It is provable that if 〈M,B,⊏〉 is a model of geometry
of solids, then it can be definitionally extended to a structure 〈M,B,⊏,C〉
which satisfies axioms (C1)–(C3) and (G) (hence also all the axioms of con-
nection structures). ΠT takes the role of Γ, that is points from ΠT are
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G-representatives of points (in sense of Grzegorczyk). As the set of points
we can take either the set of all filters generated by elements of ΠT or sim-
ply ΠT.

(ii) Within Tarski’s theory points could as well be defined as filters gen-
erated by sets of concentric balls, that is as sets {y ∈ M | ∃b∈α b ⊑ y}, for
α ∈ ΠT. Let β be a filter generated by α ∈ ΠT. Then for any x ∈ M : x ∈ β
iff ∃b∈α b ⊑ x iff α ∈ Irl(x), and the operation Irl could be defined by means
of the same condition as in Grzegorczyk’s theory. ⊣

13. Conclusion

As we wrote it in the abstract, our intention was not to present mathemati-
cally developed theory of region-based geometry but rather show the reader
that it is possible to establish a transition between the sensual world and Pla-
tonic realm of pure geometry. We hope that we managed to obtain our goal
and that those that are interested in the problem will be able to transform
some intuitions presented above in yet another, different from constructed
so far, mathematical systems of point-free geometry and topology. That this
is task which is worth being undertaken is beyond doubt for us.
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