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Studies of Stability of Nagaoka Ferromagnetism on a Triangular Lattice

Abstract

Moiré superlattices can be created by stacking two atomic layers of
different materials, and its electronic properties can be manipulated us-
ing easily adjustable external factors, such as the twist angle, making
them promising candidates for quantum simulators. In this study, first
we briefly examine the features of the triangular moire lattice of transi-
tion metal dichalcogenides (TMDs) by treating it as a periodic system
through both continuum and tight-binding models. The primary aim is
to investigate the magnetic characteristics by fully incorporating corre-
lations, which is challenging in a periodic system due to the vast size of
the Hilbert space. Therefore, we concentrate on finite-sized triangular
lattices.

We examine the finite-size twisted TMDs within a moiré triangu-
lar lattice and analyze their magnetic properties above half-filling. By
introducing one electron into a half-filled system, the total spin of the
ground state can reach its maximum, leading to the emergence of Na-
gaoka ferromagnetism. This form of magnetism arises from correlation
effects, essentially due to constructive interference among various many-
body configurations. We employ exact diagonalization methods to solve
the Hubbard Hamiltonian, fully accounting for these correlations. We
demonstrate the emergence of Nagaoka ferromagnetism by adding one,
two, and three electrons above half-filling, with the ferromagnetic char-
acteristics varying based on the geometries of finite triangular lattices.
Additionally, the interaction strength is analyzed to observe transitions
in total spin and assess system stability. The Nagaoka polaron is also
visualized within the finite triangular lattices.
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1 Introduction

This section provides a brief overview of the moiré superlattice and its unique
characteristics, and using the hubbard model as a method to do simulation.
From the simulation we may observe the magnetic characteristic of the system
that arises when particles like electrons on the lattice are above half-filling,
which is known as Nagaoka ferromagnetism.

1.1 Moiré Superlattice

Moiré patterns, by definition, occur when two periodic patterns are superim-
posed with a slight rotation (see Figure 1). In solid states, moiré patterns or
moiré structures on layered materials have been observed and it can be gener-
ated through rotation between layers or mechanical disruption of the crystal
structure [8]. Initially, this pattern did not receive much attention, until the
advent of graphene then it was realized that moiré structures were an effective
way of tuning band structure [1]. By modifying the moiré structure, it can in-
fluence the energy levels distribution, which can affect the material’s electrical,
optical, and magnetic properties.

The moiré structure “lattice” or repeating pattern is larger (expanding to
several nanometers) compared to the conventional materials structure which
is in an atomic scale. This larger size makes it easier to study in the experiment
using optical and other measurement techniques. Additionally, since it is two-
dimensional (2D) we can examine the entire surface using techniques that focus
on surface observation such as scanning tunneling microscopy (STM) [8–10].

Fig. 1: Illustration of two atomic layers with hexagonal unit cells, twisted with angle θ,
forming triangular moiré structure (green shape). The AA stacking is aligned configuration
and AB (BA) stacking is misaligned configuration [1].

The 2D layered materials that were mentioned before are known as van der
Waals (vdW) materials such as hexagonal boron nitride (hBN), graphene, and
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transition metal dichalcogenides (TMDs) [11]. These materials consist of one
or several atomic layers bonded strongly by covalent or ionic interactions within
the layers, while vdW forces are sufficient to stack them between layers. VdW
heterostructures can be formed by stacking different structures using ”tear
and stack” technique [12] without requiring lattice matching. By carefully
selecting and stacking different materials, one can engineer band structures,
control charge carrier mobility, and introduce new physical phenomena like
tunneling and charge transfer.

The distinctive feature of a moiré superlattice is the appearance of flat bands
especially at certain ‘magic angle’ (e.g. 1.1°) which first observed in twisted bi-
layer graphene (TGB) [10,13]. These flat bands occur when the band structure
flattens close to zero Fermi energy due to strong coupling between layers. The
flat low-energy bands are expected to have wave functions that are localized
in real space, which are notably concentrated in AA stacking areas (where the
layers are aligned, as shown in Figure 1). AA has a high local density of states
while in contrast, the wave functions in region AB (BA) stacking exhibit very
low density states.

Localization of the wave function implies that electrons have limited freedom
to move throughout the lattice, with minimal overlap between different regions
(such as AA and AB). As a result, the energy levels of electrons don’t change
much with momentum which leads to weak dispersion. This weak dispersion
in momentum space means the kinetic energy is substantially lower than the
on-site Coulomb interaction [13].

The interaction between electron-electrons will form strong correlation phases,
where they behave in a highly interdependent manner and generate complex
properties. Several phases related to interparticle interactions have been al-
ready observed, like Mott insulator states at one hole per moiré superlattice
unit cell or generalized Wigner crystal states at other partial fillings [14–16].
Additionally, high density states of flat bands can give rise to exotic quan-
tum phenomena such as superconductivity and unconventional superconduc-
tivity [17].

1.2 Transition Metal Dichalcogenides (TMDs)

The maxima and minima of local density states of moiré lattice are arranged
periodically forming triangular, rectangular, hexagonal or other arrangement
depending on the materials [8]. Our focus is on twisted structures forming
triangular lattices as in Figure 1. TBG is one example of twisted material
that forms triangular lattices, but our main interest is in transition metal
dichalcogenides (TMDs) which have electronic bandgap [2].

TMDs are composed of transition-metal elements from groups IV-X of the
periodic table (e.g., Mo, W) combined with chalcogen elements (e.g., S, Se,
Te) [2, 18]. The typical structure of monolayer TMDs resembles a sandwich,
with one layer of metal atoms placed between two layers of chalcogen atoms
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Fig. 2: In TMD monolayers, the ABA stacking configuration features aligned chalcogens
and is referred to as the 2H phase, whereas the ABC stacking configuration is with mis-
matched chalcogens (1T phase) [2, 3].

(technically, it consists of 3 atomic layers, see Fig.2). Some examples of TMDs
are molybdenum disulfide (MoS2), tungsten disulfide (WS2), molybdenum dis-
elenide (MoSe2), and tungsten diselenide (WSe2).

1.2.1 TMDs electronic properties

Experimental studies have revealed that the band structure of TMDs tran-
sitions from an indirect energy gap (bandgap) to a direct bandgap when its
bulk structure is reduced to a monolayer [19–21] due to the lack of interaction
between layers. Light emission is much more efficient in direct bandgap and
simpler in the engineering of electronic devices. In addition, TMDs bandgap is
tunable and can be regulated by external factors like the twist angle, making
them good candidates for quantum simulators [18].

Two important characteristics of TMD monolayer are inversion symmetry and
strong spin-orbit coupling (SOC) [2, 3, 21]. Inversion symmetry occurs when
the physical properties of a structure remain the same after inverting its spatial
configuration, as it is in bulk MoS2. In monolayer, the inversion symmetry is
broken due to asymmetrical arrangement between chalcogen atoms.

SOC is the relativistic effect of interaction between an electron’s spin and its
orbital motion around the nucleus causing splitting in the electron energy lev-
els depending on their spin orientation (see Figure 3). In structures that have
inversion symmetry the SOC effects cancel out because the spin-orbit is sym-
metrically distributed. The SOC effects persist and become more pronounced
when the symmetry is broken, and the coupling is especially strong in TMDs
monolayer as the atomic number of the transition metal atoms rises [21].

The interplay of these properties leads to controllable spin-valley coupling,
meaning that valley polarization of charge carriers directly influences spin po-
larization [2]. Spin-valley coupling in TMDs occurs in band edge K-K’ valleys
within the Brillouin zone (Fig.3), meaning that electrons in the K valley have
an opposite spin orientation to those in the K’ valley as a consequence of time-
reversal symmetry [3]. In monolayer, the K-K’ valleys are the key areas where

1 INTRODUCTION 3



Studies of Stability of Nagaoka Ferromagnetism on a Triangular Lattice

the conduction band minimum and valence band maximum are located. This
inherent characteristic could be utilized to develop spintronic devices without
the need for magnetic materials.

Fig. 3: (a) K-K’ valleys in the Brillouin zone [3]; (b) Valley splitting leads to spin splitting,
the splitting in highest valence band (VB) larger than in conduction band (CB) [4]; (c)
In a direct bandgap MoSe2/WSe2 heterostructure, the VB and CB originate from different
layers [5].

1.2.2 Triangular moiré lattice of TMDs

The formation of a triangular moiré lattice in TMDs can be achieved either by
twisting monolayers at small angles or it emerges due to mismatch of stacked
heterostructures with different lattice constants [5,18]. In twisted bilayer con-
figuration, AA stacking (see Fig.1) occurs when the transition metal atoms
align directly with each other (denoted as MM), while AB (or BA) stacking
refers to a mismatch between the metal and chalcogen atoms (MX or XM).
In MM stacking the overlap of the wavefunctions from both layers is consider-
able, resulting in a strong interaction or strong coupling, whereas the coupling
in the XM (MX) is weaker [22]. Examples of TMD heterostructures include
MoSe2/WSe2, WSe2/MoS2, and WSe2/WS2.

The direct band gap persists even though the edges of the valence and con-
duction bands, which remain within the K valleys, are situated in different
layers [5,22]. This happens due to strong coupling, where the overlapping wave
functions between the layers create hybridized states with electronic properties
distinct from those of the individual layers. Figure 3 shows the narrow band
gap formed between the conduction band minima of MoSe2 and the valence
band maxima of WSe2.

In twisted TMDs, the emergence of flat bands can drive the system into a Mott
insulating state [4, 15, 23]. When the system is at half-filling (number of elec-
trons equal to number of moire lattice), the flat bands amplify electron-electron
interactions and strong repulsion between electrons leads to their localization
yielding insulating behavior. One way to regulate this insulating state is by
adjusting the twist angles.
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1.3 Theoretical methods: continuum, tight-binding, and
Hubbard model

In a crystal lattice system, the distance between charge carriers (electrons or
holes) corresponds to the atomic spacing [18]. In contrast, a single charge
carrier in the moiré superlattice is affected by thousands of atoms which act as
a long-period potential (moiré potential). The formation of the moiré lattice
alters the electronic energy bands, resulting in moiré bands. For instance,
in WSe2/WS2, the valence moiré bands are formed by holes in WSe2 moving
within the periodic moiré potential. As a result, TMD superlattices offer a
solid platform for exploring many-body physics.

Here we give a short explanation of the methods that are used in this work for
solving TMD moiré triangular lattice systems, i.e. continuum model, tight-
binding, and hubbard model. The three methods are commonly used for the
system of particles in crystal lattices. For more detail explanations are provided
in Chapter 2 Methodology.

Fig. 4: (a) The proximity of overlapping orbital wave functions ϕ causes electrons to jump
to nearest neighbor orbitals with hopping energy t [6]. (b ) When two electrons occupy
the same orbital with different spin (↑ and ↓), the energy to resist electron repulsion is the
on-site Coulomb energy U [ref???]

Continuum model. This model is within a single-particle picture where the
behavior of particles is described individually without considering interaction
between particles. The low-energy of moiré band can be calculated using the
continuum effective Hamiltonian model as the system is periodic [1,4]. Bloch’s
theorem is applicable at any twist angle due to hopping in this model is both
local and periodic. The electron hopping between layers is localized, meaning
that the interaction is determined by the specific position within the lattice. In
areas with MM stacking, the coupling is stronger, making it easier for hopping
to occur in those regions. Following the principles of Bloch’s theorem, the
numerical solution for moiré energies is solved using plane wave expansion.

Tight-binding model. This model is also within a single-particle picture and
provides a more detailed approach by taking into account the atomic structure.
Electrons are tightly bound to the atomic orbital and it can move or hop to
neighboring sites due to the overlap of their nuclei wave functions [24]. In
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a moiré lattice, electrons can hop either within the same layer or between
different layers. The tight-binding Hamiltonian model includes terms for both
on-site energies U and hopping integrals t. By appropriate mapping, one can
transit from a continuum model to a tight-binding model for a given energy
band.

Hubbard model. John Hubbard proposed a model in 1963 to study the
interactions of electrons in the narrow energy bands of transition metals [25].
This model introduces an on-site interaction term that accounts for the energy
cost when two electrons occupy the same atomic site, in addition to the hopping
term that describes electron movement between sites. Essentially, the Hubbard
model is a more detailed version of the tight-binding model that incorporates
electron-electron interactions. In moiré superlattices, this model can be used
to investigate correlation effects.

The moiré band structure in TMD bilayers is much simpler [18], allowing the
moiré system to be represented as a single band with two fold-degeneracy that
comes from spin-orbit splitting. Observation is focusing on the valence band
where a large spin splitting happens. Thus from these considerations we can
use the single-band Hubbard model. In addition, heterobilayers are chosen to
avoid degeneracy that comes from both layers.

1.4 Moiré magnetism

The emergence of magnetic properties due to exchange interaction has been
observed in vdW materials which can be categorized based on their magnetic
order, such as ferromagnetic or antiferromagnetic states [26–28]. In ferro-
magnetic exchange interaction, electron spins align in the same direction to
minimize energy, whereas in antiferromagnetic exchange, spins align in oppo-
site directions. The Pauli exclusion principle and on-site Coulomb interaction
are key factors that influence the spin arrangement in these materials. In het-
erostructures, one layer can alter the magnetic properties of another, leading
to magnetism that can be controlled or tuned.

Experimental study has shown that moiré patterns in twisted vdW materials
can generate magnetic properties in the system [29]. This study investigates
magnetic properties by slightly varying the twist angle. Moiré lattices are
known for their significant correlation effects, so the interaction between moiré
potential and exchange interactions between layers leads to the formation of
new magnetic states.

1.4.1 Nagaoka ferromagnetism

In 1966 Nagaoka studied the emergence of ferromagnetic states, known as
Nagaoka ferromagnetism [30], purely from electron-electron interaction due
strongly correlated systems. The model is assumed to be half-filled states (the
number of sites equal to the number of electrons) with one hole added to the
system. Due to strong on-site repulsion, this hole itinerant and polarized the
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spin of surrounding electrons. The analysis is based on the Hubbard model in
a narrow conduction band with on-site Coulomb interaction much larger than
the hopping integral.

Experimental studies on Nagaoka ferromagnetism have been performed on
(2x2) quantum dots [31,32] with configurations of three electrons in four sites
(almost half-filling). As it is already shown by Nagaoka, a single hole in this
setup induces a ferromagnetic ground state by facilitating constructive inter-
ference when the system has maximum total spin.

Fig. 5: (Above) An illustration from Ref. [7] demonstrating how introducing holes into a
half-filled system can polarize the surrounding electron spins around the hole. (Below) The
interaction strength (Ut ) represents the ratio between the on-site Coulomb interaction U and
the hopping integral t. A higher interaction strength results in a larger area influenced by
the Nagaoka bubble.

Another experimental study was conducted on a larger system, involving the
observation of ultracold fermions in a tunable triangular optical lattice [7].
Nagaoka polarons, a localized Nagaoka ferromagnet, were observed in the ex-
periment (see Fig.5). These polarons formed as a result of doping a single hole
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for each smaller region in a half-filled system, with the polaron’s size reaching
up to 30 sites. The experiment involves preparing the material with half-filled
particles. Then, additional holes are introduced as dopants. These holes act as
itinerant and polarize the surrounding region, with the extent of the affected
area determined by the ratio between on-site interaction and hopping energy.
A higher ratio leads to a larger region being polarized by each dopant electron.
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2 Methodology

This section offers a thorough explanation of the mathematical model and
the procedure for conducting this computational experiment. We examine the
TMD moire triangular lattice with continuum model and with tight binding as
a case study, and Hubbard model as our primary focus. We also provide a de-
tailed explanation on solving the Hubbard system using Exact Diagonalization
method.

2.1 Continuum model: single particle approximation

A continuum model describes crystal structure as a continuous matter that
fills the occupied spaces, by neglecting that matter consists of discrete smallest
components such as atoms. This method employs a single-particle approxima-
tion where the interaction of electrons and nuclei is described as an effective
one-electron potential U(r), and electron-electron interactions are neglected.
This model is good for studying large systems such as bulk matter.

In a perfectly periodic lattice, the effective potential must fulfill the character-
istic periodicity, meaning each lattice site has identical localized potentials [6],

U(r + R) = U(r), (1)

in two-dimensional (2D) cases, r is the lattice position vector and R is the
Bravais lattice vector that have general form as,

R = n1a1 + n2a2.

n1, n2 are integer numbers, a1,a2 are lattice vectors in real space with ai

can be expressed as ai(x, y) in Cartesian coordinates. To obtain the energy
eigenvalues and eigenvectors of the system, it is necessary to solve the time-
independent Schrödinger equation for a single particle with mass m:

Ĥ|ψ(r)⟩ = E|ψ(r)⟩, (2)

where |ψ(r)⟩ is a state function. The Hamiltonian operator Ĥ consists of
kinetic energy and the effective potential

Ĥ = − h̄2

2m
∇2 + U(r), (3)

with ∇2 = ∂2

∂x2 + ∂2

∂y2
. For simplicity, all operators will be written without a

hat ( ˆ ) from this point forward.

The solution for Eq.2 is derived from Bloch’s theorem, which asserts that the
wavefunctions of electrons in a periodic potential can be represented as a plane
wave multiplied by a periodicity function

|ψ(r)⟩ = eik·ru(r), (4)
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known as the Bloch’s wavefunction. u(r) = u(r + R) is the Barvais lattice
periodic function which obey Eq.1, thus we can show

|ψ(r + R)⟩ = eik·R|ψ(r)⟩. (5)

k represents wave vectors that characterize the momentum states of electrons.
In reciprocal space (momentum space), k is defined as

k = x1b1 + x2b2. (6)

x1, x2 are real and b1, b2 are reciprocal lattice vectors (a reciprocal space basis,
called G-basis, can be formed from linear combinations of b1,2 vectors, Gi,j =
ib1 + jb2, i, j-integers).

The periodic potential of lattices is defined in reciprocal space through Fourier
transform, and bj correspond to ai by satisfying

ai · bj = 2πδij, (7)

δij is Dirac delta. The electronic properties of a system, including energy
bands, can be analyzed using a particular region in reciprocal space called
the Brillouin zone. The behavior of wavefunctions within the Brillouin zone
described by the wave vector k, which indicates how the wavefunction is dis-
tributed in space.

2.1.1 Case: Continuum model for moiré triangular superlattice

In this section we apply the continuum model in TMDs moiré triangular su-
perlattice. We start from constructing the 2D triangular lattice system in real
space with [33,34]:

a1 = aM
(
− 1

2
,

1

2

√
3
)
, (8a)

a2 = aM
(1

2
,

1

2

√
3
)
, (8b)

where aM epresents the moiré period or lattice twist angle. The moiré period
is obtained by dividing the TMD lattice constant a0 by the twist angle θ [4]:

aM ≈ a0
θ
, (9)

with a0 = 0.328 nm for WS2 and θ is an dimensionless variable.

We constructed a hundred sites of the moiré triangular lattices with Eq.8 with
Python as shown on Figure 6 (left). The twist angle used in this simulation is
θ = 2.0o, which corresponds to the formation of the valence moiré band in the
WSe2/MoSe2 heterostructure, as previously demonstrated in Ref. [4]. We will
vary the twist angle later for more exploration.

The reciprocal vectors are written as:

b1 =
2π

aM

(
− 1,

1

3

√
3
)
, (10a)

2 METHODOLOGY 10



Studies of Stability of Nagaoka Ferromagnetism on a Triangular Lattice

-84 -70 -56 -42 -28 -14 0
x [nm]

-85

-55

-25

5

35

65
y
 [
n
m

]

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
100

a1

a2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
kx

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

k y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

b1 b2

Fig. 6: (left) Representation of TMD moiré triangular lattices in real space with Eq.8, and
(right) in a reciprocal space (G-basis) (Eq.10).

b2 =
2π

aM

(
1,

1

3

√
3
)
. (10b)

Figure 6 (right) presents a depiction of G-basis with 19 reciprocal vectors
referred to as the G points, G(b1, b2).

To define the 1st Brillouin zone, the Wigner-Seitz cell in a reciprocal space,
one must draw perpendicular bisectors between the origin (0,0) or G10 in this
context, with the nearest G point. Figure 7 shows the construction of the 1st

Brillouin zone through the mapping of k wave vectors. Using Eq.6, the k wave
vectors in Cartesian coordinate is defined by

kx =
i

Nx

b1x +
j

Ny

b2x, (11a)

ky =
i

Nx

b1y +
j

Ny

b2y. (11b)

i, j are integers and Nx, Ny are the number of lattice sites in real space with
total number of sites N = Nx × Ny = 100, in this case. With k ≡ |k| =√
k2x + k2y, we obtain 100 k points (10 × 10) as well.

An effective mass of WSe2 introduced asm∗ 0.35m0, withm0 is the free electron
mass. We obtain the moiré band Hamiltonian [4]:

H = − h̄
2Q2

2m∗ +
∑
b

V (b)eib·r. (12)

with h̄ is reduced Planck’s constant, and Q = |k + G| a momentum. Since
the potential is real and each TMD monolayer possesses three-fold rotational
symmetry, its value depend on the phase ϕ as shown below (see Figure 8)

V b1 ≡ V (b1)eib·r → V eiϕ, (13a)

V b2 ≡ V (b2)eib·r → V eiϕ, (13b)
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Fig. 7: The 1st Brillouin zone: (left) mapping k wave vectors using Eq.11. (right) dis-
tributing the wave vectors within the 1st Brillouin zone by drawing perpendicular bisectors
(purple lines perpendicular with bj).

V b12 ≡ V (b12)eib·r → V e−iϕ, (13c)

with b12 = b1 + b2, where the last term on the right was obtained through a
Fourier transform.
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Fig. 8: Potential function in the six nearest neighbors governed by phase function, ϕ, due
to the three-fold rotational symmetry of TMD monolayer [4].

Equation 14 below show the Hamiltonian matrix of Eq.12 for 19 G points with
c = − h̄2

2m∗ is a constant. In the off-diagonal part, only the nearest neighbors of
each G point have non-zero elements (they have the largest contribution and
we neglect farther terms, what is believed to be a good approximation). We
can get the energy eigenvalues and eigenvectors by solving this Hamiltonian
matrix using the diagonalization method Eq.21 which is introduced in Section
2.2 below. The moiré band of TMD triangular lattice obtained from solving
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this Hamiltonian matrix will be discussed in the next section.

H =



1 · · · 9 10 11 · · · 19
c|k1 +G1|2 · · · 0 0 0 · · · 0 1

...
. . .

...
...

... · · · ...
...

0 · · · c|k1 +G9|2 V b2 0 · · · 0 9
0 · · · V b2∗ c|k1 +G10|2 V b2 · · · 0 10
0 · · · 0 V b2∗ c|k1 +G11|2 · · · 0 11
... · · · ...

...
... · · · ...

...

0 · · · 0 0 0
. . . c|k1 +G19|2. 19


(14)

2.1.2 Moiré energy band: Continuum model

We compute the valence moiré bands of twisted TMDs by solving the Hamilto-
nian matrix from Eq.14 using the diagonalization method described in Eq.21,
and present the results in Figure 9. The simulation employs 127 G-points and
a (21 × 21) k-point grid, with increased G-points improving the accuracy of
the calculations. Fig.9 (left) displays the energy distribution of the highest en-
ergy band within the first Brillouin zone for a twist angle of θ = 2.0o, a phase
ϕ = −94o (parameter values from Ref. [4]). Vm is an external voltage that has
a significant role to open the gap of the moire band, and in this case, we use
Vm = 11 meV. The highest band maxima are shown to be concentrated in the
Γ regions, indicating the electron density is focused in that area, reaching a
value of 10.3 meV, while the minimum value is found at the K-K’ edge areas.
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Fig. 9: (left) enerrgy distribution of the 1st maximum energy band in the 1st Brillouin zone
(127 G points, (21 × 21) k-mesh , θ = 2.0o, V = −11meV, ϕ = −94o; (right) the 1st, 2nd,
and 3rd highest energy band in Γ−K −K ′ − Γ regions.

Further analysis focuses on the region under the red arrows, which represent
the selected k-points that start from Γ, move to K, then K ′, and finally return
to Γ. This path is used to construct the three highest energy bands of the
system as shown in Fig.9 (right). The topmost band (1st band) extrema also
can be seen located in the Γ region, with the band width (W ) equal to 7.9
meV, representing the energy difference between the maximum and minimum
values in the top band. In contrast, the second and third bands exhibit high
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energy density in the K-K’ regions. The energy gap Eg which is the energy
difference between the lowest value in the top band and the highest value in
the band below it, is 20.5 meV.
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Fig. 10: The width W and bandgap Eg varies as twist angle θ changes.

Figure 10 illustrates how the energy gap Eg varies with changes in the twisted
angle θ while keeping other parameters constant. Observations were made
only for angles ranging from 1.0o to 5.0o. As twist angle increases, the energy
gap decreases and reaches nearly zero at θ = 5.0o, with the maximum energy
gap observed at θ = 1.0o degrees. Additionally, the band width W increases
as twist angle increases. Notable features are observed at a twist angle of 1,
where the width is nearly zero. This indicates that the top band is flattened
and well-separated from the other bands due to a high energy gap.

2.2 Tight-binding model

Tight-binding models arise by considering two significant properties of crys-
talline materials [35]: (1) crystals are composed of atoms arranged in a periodic
structure, which then produces periodic potentials due to the arrangement of
atoms in most stable state; (2) electrons follow Pauli’s exclusion, which re-
stricts two electrons with opposite spins from sharing the same energy level.
With more electrons in the lattice due to an increase in the number of atoms,
it will raise the energy level and the highest level known as Fermi level or va-
lence energy. We can examine the electronic characteristics of crystals at this
highest level.

In the lower energy levels, electrons are more tightly bound to atoms, but at
the valence level, they are freer, making their kinetic energy dominant while
electron-electron interactions become negligible [35]. To describe this valence
electron, it is assumed that the electron interacts with the periodic potential
but retains the freedom to move by considering the possibility of hopping to
neighboring sites. The electron’s wave function |Ψ(r, k)⟩ can then be expressed
as a linear combination |Φ(r, k)⟩ of atomic orbitals |ϕ(r)⟩, which forms the
basis of the tight-binding model.
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In a situation where r is similar to the lattice spacing, we need to consider
particle-particle interactions, e.g. the Coulomb interaction, and incorporate
this as an adjustment U(r) to the periodic potential. Then the Hamiltonian
of crystal lattice H can be expressed as:

H = Hatom + U(r), (15)

where Hatom is the Hamiltonian of localized atom with,

Hatom|ϕi(r)⟩ = ϵatom,i|ϕi(r)⟩. (16)

ϵatom,i is the eigenenergy for orbital i.

The solution of Eq.15 must adhere to Bloch’s theorem due to the periodic
nature of the lattice, by considering the orbital wave function decreases (but
not vanishes) as the correction parameter U(r) increases. Then the electron’s
wave function in the lattice system is described by (for further details, see
Ref. [35]):

|Ψj(r, k)⟩ =
∑

Cj|Φ(r, k)⟩. (17)

Cj is a complex coefficient and |Φ(r, k)⟩ is the Bloch function that expressed
with atomic wave function:

|Φj(r, k)⟩ =
1√
N

∑
R

eik·r|ϕj(r −R)⟩. (18)

N represents the number of primitive cells, j = 1, · · · , n number of Bloch
function, and the exponential part known as phase factor in Bravais lattice.

We can obtain a tight-binding model for a given energy band from a continuum
model by using a relation:

tn =
1

N

∑
k

e−ik(Ri−Rj)Ek, (19)

with Ek are energies of a given energy band obtained from a continuum model
shown in Fig. 9. tn are tight-binding hopping integral given by:

tn = ⟨ϕi|H|ϕj⟩ =


t1 = t, i, j nearest neighbors

t2, i, j next nearest neighbors

..., ...

0, otherwise.

(20)

As the distance between the sites grows, the magnitude of the hopping param-
eter decreases.

Tight-binding Hamiltonian can be determined by diagonalizing the matrix or
solving the secular equation:

det(H − IE) = 0, (21)

from the Schrödinger equation:
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(H − E)|Ψ⟩ = 0.

I is identity matrix with the 2D form:

I =

(
1 0
0 1

)
. (22)

This section covers the first quantization approach in the tight-binding model,
which describes the system within Hilbert space (using position and momen-
tum). The next section is to discuss the tight-binding model in second quan-
tization, where the system is represented in Fock space using creation and
annihilation operators.

For a certain case of a triangular lattice with six nearest neighbor and a nearest
neighbor approximation, the energy band is written as:

ϵtbk = 2t[cos(ka1) + cos(ka2) + cos(ka1 + ka2)]. (23)

2.2.1 Case study for a finite system of 2-site problems

Fig. 11: Illustration parity operator p acts as mirroring...

Solving 2-site problem using parity operator p

The parity operator p is a symmetry operator that reflects the spatial co-
ordinates of a system. A parity operator acts as a reflection operator on a
wave function |ψ⟩ (Fig.11)

p|ψ⟩ = a|ψ⟩, (24)

with a is a constant. By applying the parity operator, the wave function is
classified into symmetric and antisymmetric (even and odd parity) categories.
This classification simplifies the process of solving the Schrödinger equation
by solving each wave function separately.

If p operates twice on the same |ψ⟩, the wave function is mirroring to its
original position:

p2|ψ⟩ = |ψ⟩ = a2|ψ⟩. (25)

Thus, a2 = 1 is required with possible solutions a = ±1. Hence from Eq.25 we
can write

p|ψ⟩ = ±|ψ⟩, (26)

meaning that after applying the parity operator, the wave function will either
remain unchanged (symmetric) or change sign (antisymmetric).
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In this section, we demonstrate how to solve a finite system with two-site
lattice using the parity operator p. Figure 11 illustrates two sites with their
atomic orbitals, |ϕ1⟩ and |ϕ2⟩, separated by a distance r. Since the orbitals are
identical, applying the parity operator to |ϕ1⟩ will yield |ϕ2⟩, and vice versa.

The wave function |ψ⟩ for this two-site system is expressed as:

|ψ⟩ = c1|ϕ1⟩ + c2|ϕ2⟩, (27)

with c1, c2 are coefficients. Applying the parity operator to this wave function
yields even and odd solutions, as shown in Eq.26. The next step is to analyze
these solutions separately.

Positive solution, |ψ+⟩. Substituting |ψ⟩ in Eq.27 into Eq.26 and focusing
on even solution, we write

p(c1|ϕ1⟩ + c2|ϕ2⟩) = c1|ϕ1⟩ + c2|ϕ2⟩,

c1|ϕ2⟩ + c2|ϕ1⟩ = c1|ϕ1⟩ + c2|ϕ2⟩ = |ψ+⟩.

From the equation above, we can infer that c1 = c2, then it becomes c1(|ϕ1⟩+
|ϕ2⟩) = |ψ+⟩. Apply normalization condition,

|ψij|2 = ⟨ψi|ψj⟩ = δij, (28)

to this wave function |ψ+⟩ to get the coefficient value of c1:

|ψ+|2 = ⟨ψ+|ψ+⟩ = c∗1c1(⟨ϕ1| + ⟨ϕ2|)(|ϕ1⟩ + |ϕ2⟩) = 1,

c∗1c1(⟨ϕ1|ϕ1⟩ + ⟨ϕ1|ϕ2⟩ + ⟨ϕ2|ϕ1⟩ + ⟨ϕ2|ϕ2⟩).

Assuming c1 is real, then we get the coefficient value c1 = 1√
2

and also c2 = 1√
2
.

The final form of the positive solution or symmetric wave function is,

|ψ+⟩ =
1√
2

(|ϕ1⟩ + |ϕ2⟩). (29)

Negative Solution, |ψ−⟩. With the same process as in positive solution, the
negative solution defined as |ψ−⟩

p(c1|ϕ1⟩ + c2|ϕ2⟩) = −(c1|ϕ1⟩ + c2|ϕ2⟩),

c1|ϕ2⟩ + c2|ϕ1⟩ = −c1|ϕ1⟩ − c2|ϕ2⟩) = |ψ−⟩.

We can see that −c1 = c2 and after normalization, the final form of the negative
solution or antisymmetric wave function is,

|ψ−⟩ =
1√
2

(|ϕ1⟩ − |ϕ2⟩). (30)

Solving 2-site problem using diagonalization method
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In this section, we will address the same 2-site problem using the diagonaliza-
tion method (Fig.11). We begin by writing the time-independent Schrödinger
equation Eq.2 acts on the wave function |ψ⟩ described in Eq.27:

H(c1|ϕ1⟩ + c2|ϕ2⟩) = E(c1|ϕ1⟩ + c2|ϕ2⟩).

The next step is to project the equation above using ⟨ϕ1|, ⟨ϕ2|, resulting in two
equations:

c1⟨ϕ1|H|ϕ1⟩ + c2⟨ϕ1|H|ϕ2⟩ = E(c1⟨ϕ1|ϕ1⟩ + c2⟨ϕ1|ϕ2⟩),

c1⟨ϕ2|H|ϕ1⟩ + c2⟨ϕ2|H|ϕ2⟩ = E(c1⟨ϕ2|ϕ1⟩ + c2⟨ϕ2|ϕ2⟩).

According to the nearest neighbor rules in Eq.20, we obtain ⟨ϕi|H|ϕi⟩ = 0,
⟨ϕi|H|ϕj⟩ = t, and from the normalization condition in Eq.28, we derive
⟨ϕi|ϕi⟩ = 1, ⟨ϕi|ϕj⟩ = 0. The two equations then become:

0 + c2t = Ec1,

c1t+ 0 = Ec2.

Express these equations in matrix form as follows:(
0 t
t 0

)(
c1
c2

)
= E

(
c1
c2

)
.

The next step is to subtract E
(
c1
c2

)
from both sides, then multiplied E with

identity matrix Eq.22 obtaining:(
−E t
t −E

)(
c1
c2

)
= 0. (31)

By applying the diagonalization method in Eq.21, the energy eigenvalues E
are determined by solving:

det

(
−E t
t −E

)
= 0.

From this point, we arrive at a simple quadratic equation E2 − t2 = 0 with
solutions E = ±t. Next, we need to determine the eigenvectors corresponding
to these energy eigenvalues. Since there are two energy eigenvalues (E = +t
and E = −t), we can find two possible eigenvectors.

First solution: E = +t. Subtitute E = t into Eq.31, then perform the
matrix multiplication to get:

−tc1 + tc2 = 0 · · · (a),

tc1 − tc2 = 0 · · · (b).

The two equations are equivalent. From equation (a), we find that −c1+c2 = 0,
which implies c1 = c2. Substitute this into the wave function Eq.27:

|ψ⟩ = c1(|ϕ1⟩ + |ϕ2⟩).
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After normalizing the wave function with Eq.28, the final expression for the
eigen wave function for E = +t is

|ψ⟩ = 1√
2
(|ϕ1⟩ + |ϕ2⟩),

which is the same as the Positive solution |ψ+⟩ Eq.29.

Second solution: E = −t. The same procedure is applied here as in the
First solution, but with E = −t substituted into Eq.31:(

t t
t t

)(
c1
c2

)
= 0.

By solving this, we find c1 = −c2. Substituting this value into the wave
function yields |ψ⟩ = c1(|ϕ1⟩ − |ϕ2⟩). After the normalization the eigen wave
function is:

|ψ⟩ = 1√
2
(|ϕ1⟩ − |ϕ2⟩),

which matches the Negative solution |ψ−⟩ from Eq.30.

2.2.2 Moiré energy band: Tight-binding model

In this section, we extend our analysis from Section 2.1.2 by using a trans-
formation between a continuum model and a tight-binding model. To cal-
culate the energy of the TMDs lattice we take the following parameters:
ϕ = −94o, θ = 2.0o, and Vm = −11 meV. We map the top band to the tight-
binding model from Eq.34, incorporating the hopping parameters for the first
t1, second t2, and third t3 nearest neighbors, as shown in Figure 12. Except
when the parameter becomes the independent variable on the x-axis, the val-
ues remain constant. The energy band aligns well with the continuum model,
with a slight variation due to the correction of the hopping energy of electrons
(see Figure 12). The hopping energy changes with the external voltage Vm.
As the voltage increases and widens the bandgap, it becomes more difficult
for electrons to hop between energy bands or requires more energy to do so.
In Figure 12 (upper-right), the highest hopping energy occurs when there is
no external voltage (Vm = 0) because, at that point, the moiré band has no
bandgap.

As the twist angle increases, the hopping energy also rises. A larger twist an-
gle reduces the moiré pattern size, increasing wavefunction overlap and facil-
itating electron transitions between different patterns. Additionally, hopping
energy rises with increasing width, consistent with the previous analysis of
W and the band gap. A smaller width indicates a flatter band with a larger
bandgap. Since hopping energy relates to the kinetic energy required for elec-
tron movement, smaller twist angles create a larger moiré pattern, leading to
more electron localization in the AA region. We also observed that the first
nearest neighbor obtained a much greater impact in this analysis compared to
the second and third nearest neighbors.

2 METHODOLOGY 19



Studies of Stability of Nagaoka Ferromagnetism on a Triangular Lattice

K ′ K

0.0
1.2
2.2
3.2
4.2
5.2
6.2
7.2
8.2

E 
[m

eV
]

continuum
TB - t1
TB - t1, t2
TB - t1, t2, t3

14 10 6 2 2 6 10
Vm [meV]

0.5

0.0

0.5

1.0

1.5

2.0

t 
[m

eV
]

t1
t2
t3

1 2 3 4 5
2.9

0.0

2.9

5.9

8.9

11.9

t 
[m

eV
]

0 20 40 60 80 100
W( )

2.9

0.0

2.9

5.9

8.9

11.9

t 
[m

eV
]

Fig. 12: The observation of the tight-binding approach on the top band takes into account
the first, second, and third nearest neighbors (t1, t2, and t3). Additionally, we demonstrate
how the hopping energy changes with variations in voltage Vm, twist angle θ, and width W .

2.2.3 Second quantization

Second quantization emphasizes the quantization of fields by considering par-
ticles as excitations of these fields, and it is represented using creation and
annihilation operators (c† and c) used to add or remove electrons in vacant
states |0⟩ [36]:

c|0⟩ = 0, (32a)

⟨0|c† = 0. (32b)

Operator c† and c obey the commutation rules for fermions:

{c†i , c
†
j} = c†ic

†
j + c†jc

†
i = 0, (33a)

{ci, cj} = cicj + cjci = 0, (33b)

{ci, c†j} = cic
†
j + c†jci = δij, (33c)

{ciσ, cjσ′} = 0, (33d)

{ciσ, c†jσ′} = δijδσσ′, (33e)

with i, j describe states and σ, σ′ describe the spin orientation (e.g. ↑ or ↓).
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The Hamiltonian Eq.15 then must be expressed using these operators. The
tight-binding Hamiltonian in second quantization has already been derived
as [35]:

Htb =
∑
ij

⟨i|H|j⟩c†ijcij, (34)

i, j are the states in Hilbert space basis with ⟨i|H|j⟩ = ⟨ϕi|H|ϕj⟩ = t related
to hopping integral.

2.3 Many-body Hamiltonian and Hubbard model

The many-body Hamiltonian represents the total energy of a system with
multiple interacting particles. General many-body Hamiltonian has a form
[34]:

H =
∑
ijσ

tijc
†
iσciσ +

1

2

∑
ijklσσ′

⟨ij|v|kl⟩c†iσc
†
jσ′ckσ′clσ = H0 +Hc (35)

where the Coulomb potential is described by,

⟨ij|v|kl⟩ =

∫∫
dr⃗dr⃗′

ϕ∗
i (r⃗)ϕ

∗
j(r⃗′)ϕk(r⃗′)ϕl(r⃗)

|r⃗ − r⃗′|
(36)

Hamiltonian given by Eq.35 commutes with projection of spin on z axis oper-
ator, spin Sz,

Sz =
1

2
(N↑ −N↓). (37)

Many-body Hamiltonian commutes also with total spin operator,

[S2, H] = 0, (38)

which allows one to determine magnetic properties of the ground state.

Hubbard models describe the behavior of valence electrons in a crystal lattice
by combining kinetic energy, represented by hopping parameters as in tight-
binding models, with Coulomb interaction. We can consider different versions
of Hubbard model, generalized Hubbard model, extended Hubbard model, and
the simplest version, on-site Hubbard model (which is called Hubbard model).
The generalized Hubbard model is given by 35 with restriction of Coulomb
matrix elements ⟨ij|v|kl⟩ to nonzero terms for U = ⟨ii|v|ii⟩, D = ⟨ij|v|ji⟩,
X = ⟨ij|v|ij⟩, A = ⟨ii|v|ij⟩ [37,38]. For Hubbard model, only on-site repulsion
is nonzero, U = ⟨ii|v|ii⟩, and can be written as:

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
i

c†i↓ci↓c
†
i↑ci↑. (39)

2.3.1 Solving 2-site many-body problem with two particles using
Exact Diagonalization method

Figure 13 below show the electron configurations for two-site two-particle sys-
tems. There are six possible configuration states in this case, with each state
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can be represented with creation (c†1, c
†
2) operator (index 1, 2 denoted the num-

ber of a site) operating with unoccupied or vacuum state |0⟩. For simplicity
|ψi⟩ = |i⟩; where i = 0, 1, 2, ..., and notiation for electron spin up = ↑ with
spin down = ↓.

Fig. 13: Two-site two-particle problem with the configuration states.

To solve the two-site system, we must find nonzero matrix elements ⟨i|H|j⟩ =
⟨ϕi|H|ϕj⟩, where a many body wavefunciton is |ψ⟩ =

∑
iAi|ϕi⟩ and Ai are

unknown coefficients. The objective is to determine the Hamiltonian matrix.
We begin by splitting the Hamiltonian as shown in Eq.35 and then calculate
it step by step for each state, from |1⟩ to |6⟩. Starting with |1⟩, we project it
with ⟨ϕ1| = ⟨1|:

⟨1|H|1⟩ = ⟨1|H0|1⟩ + ⟨1|Hc|1⟩.

Let’s start by solving the first sequence:

⟨1|H0|1⟩ =
∑
ijσ

tij⟨0|c2↓c1↓c†iσcjσc
†
1↓c

†
2↓|0⟩

= t12⟨0|c2↓c1↓c†1↑c2↑c
†
1↓c

†
2↓|0⟩ + t12⟨0|c2↓c1↓c†1↓c2↓c

†
1↓c

†
2↓|0⟩

+ t21⟨0|c2↓c1↓c†2↑c1↑c
†
1↓c

†
2↓|0⟩ + t21⟨0|c2↓c1↓c†2↓c1↓c

†
1↓c

†
2↓|0⟩.

The summation goes up to 2 because we are dealing with a 2-site system.
The result simplifies to only 4 sequences due to i ̸= j (since tii = tjj = 0).
Now, solve each sequence individually, beginning with the first sequence where
i = 1, j = 2, and σ =↑:

t12⟨0|c2↓c1↓c†1↑c2↑c
†
1↓c

†
2↓|0⟩.

To solve this, we need to move the annihilation operator to the right, where
it acts on |0⟩, and move the creation operator to act on ⟨0|. This can be done
by applying the commutation rules for fermions Eq.33.

Consider c2, we want to move this operator to the right by swapping it with
c†1 using the rules from Eq.33c, resulting in c2↑c

†
1↓ = −c†1↓c2↑. Then, switch c2↑

with c†2↓ according to Eq.33d (introducing a negative sign once more). This
gives us:

t12⟨0|c2↓c1↓c†1↑c2↑c
†
1↓c

†
2↓|0⟩ = t12⟨0|c2↓c1↓c†1↑c

†
1↓c

†
2↓c2↑|0⟩ = 0.
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We obtained zero from the above equation, as indicated by Eq.32a. Repeating
the same steps for the second, third, and fourth sequences and applying the
commutation rules yields:

t12⟨0|c2↓c1↓c†1↓c2↓c
†
1↓c

†
2↓|0⟩ = 0,

t21⟨0|c2↓c1↓c†2↑c1↑c
†
1↓c

†
2↓|0⟩ = 0,

t21⟨0|c2↓c1↓c†2↓c1↓c
†
1↓c

†
2↓|0⟩ = 0.

Therefore, summing up all the sequences gives ⟨1|H0|1⟩ = 0. Next, project
H0|1⟩ again with ⟨2|, ⟨3|, ⟨4|, ⟨5|, and ⟨6|.

Since the two-site with two-particle problem has six configuration states, we
need to perform the same calculation of H0 as above for |2⟩, |3⟩, |4⟩, |5⟩, |6⟩ and
projected them. This will give us the (6 × 6) Hamiltonian matrix for H0:

H0 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 t21 t12
0 0 0 0 −t21 −t12
0 0 t12 −t12 0 0
0 0 t21 −t21 0 0

 . (40)

This H0 corresponds to the kinetic energy of the particles, as described by the
hopping parameter t.

Next, solve Hc as given in Equation 35, beginning with the evaluation of
⟨1|Hc|1⟩:

⟨1|Hc|1⟩ =
∑

ijkl,σσ′

vijkl⟨0|c2↓c1↓c†iσc
†
jσ′ckσ′clσc

†
1↓c

†
2↓|0⟩.

Similar to H0, the summation in Hc goes up to 2 meaning the indices i, j, k, and
l are either 1 or 2. Consequently, we will encounter longer sequences compared
to H0. Starting with i = k = 1 and j = l = 2, we obtain vijji = v1221 for all
possible spin values σ and σ′:

v1221⟨0|c2↓c1↓c†1σc
†
2σ′c2σ′c1σc

†
1↓c

†
2↓|0⟩ = v1221⟨0|c2↓c1↓c†1↑c

†
2↑c2↑c1↑c

†
1↓c

†
2↓|0⟩

+ v1221⟨0|c2↓c1↓c†1↑c
†
2↓c2↓c1↑c

†
1↓c

†
2↓|0⟩

+ v1221⟨0|c2↓c1↓c†1↓c
†
2↑c2↑c1↓c

†
1↓c

†
2↓|0⟩

+ v1221⟨0|c2↓c1↓c†1↓c
†
2↓c2↓c1↓c

†
1↓c

†
2↓|0⟩.

We need to solve these four sequences. The first sequence (σ = σ′ =↑) and the
second sequence (σ =↑, σ′ =↓) can be easily solved by moving the annihilation
operator c1↑ to the right to act on |0⟩, as done in solving H0. Both sequences
result in zero.

For the third sequence (σ =↓, σ′ =↑), we need to swap c1↓ with c†1↓ by using
commutation rule Eq.33e.

c1↓, c
†
1↓ = c1↓c

†
1↓ + c†1↓c1↓ = 1 → c1↓c

†
1↓ = 1 − c†1↓c1↓.
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Substituting this into the third sequence will divide it into two separate se-
quences. Then, as usual, move the annihilation operator to act on the vacuum
state. The process is described as follows:

v1221⟨0|c2↓c1↓c†1↓c
†
2↑c2↑c1↓c

†
1↓c

†
2↓|0⟩ = v1221⟨0|c2↓c1↓c†1↓c

†
2↑c2↑(1 − c†1↓c1↓)c

†
2↓|0⟩

= v1221⟨0|c2↓c1↓c†1↓c
†
2↑c2↑(1)c†2↓|0⟩

− v1221⟨0|c2↓c1↓c†1↓c
†
2↑c2↑(c

†
1↓c1↓)c

†
2↓|0⟩

= −v1221⟨0|c2↓c1↓c†1↓c
†
2↑c

†
2↓c2↑|0⟩

+ v1221⟨0|c2↓c1↓c†1↓c
†
2↑c2↑c

†
1↓c

†
2↓c1↓|0⟩

= 0.

In the fourth sequence, begin by swapping the two pairs of c1↓ and c†1↓:

v1221⟨0|c2↓c1↓c†1↓c
†
2↓c2↓c1↓c

†
1↓c

†
2↓|0⟩ = v1221⟨0|c2↓(1 − c†1↓c1↓)c

†
2↓c2↓(1 − c†1↓c1↓)c

†
2↓|0⟩

= v1221⟨0|c2↓(1)c†2↓c2↓(1)c†2↓|0⟩
− v1221⟨0|c2↓(1)c†2↓c2↓(c

†
1↓c1↓)c

†
2↓|0⟩

− v1221⟨0|c2↓(c†1↓c1↓)c
†
2↓c2↓(1)c†2↓|0⟩

+ v1221⟨0|c2↓(c†1↓c1↓)c
†
2↓c2↓(c

†
1↓c1↓)c

†
2↓|0⟩.

As usual, moving the annihilation operator to act on |0⟩ or moving the creation
operator to act on ⟨0| in the second, third, and fourth sequences results in zero.
This leaves only the first sequence remaining:

v1221⟨0|c2↓c1↓c†1↓c
†
2↓c2↓c1↓c

†
1↓c

†
2↓|0⟩ = v1221⟨0|c2↓c†2↓c2↓c

†
2↓|0⟩

+ v1221⟨0|c†2↓c2↓c2↓c
†
1↓c1↓c

†
2↓|0⟩

+ v1221⟨0|c†1↓c2↓c1↓c
†
2↓c2↓c

†
2↓|0⟩

− v1221⟨0|c2↓c†1↓c1↓c
†
2↓c2↓c

†
1↓c1↓c

†
2↓|0⟩

= v1221⟨0|c2↓c†2↓c2↓c
†
2↓|0⟩ + 0 + 0 − 0

= v1221⟨0|c2↓c†2↓c2↓c
†
2↓|0⟩.

Again, by using Eq.33e:

v1221⟨0|c2↓c1↓c†1↓c
†
2↓c2↓c1↓c

†
1↓c

†
2↓|0⟩ = v1221⟨0|(1 − c†2↓c2↓)(1 − c†2↓c2↓)|0⟩

= v1221⟨0|0⟩ − v1221⟨0|c†2↓c2↓|0⟩
− v1221⟨0|c†2↓c2↓|0⟩ + v1221⟨0|c†2↓c2↓c

†
2↓c2↓|0⟩

= v1221 − 0 − 0 + 0

= v1221

This result corresponds to i = l = 1 and j = k = 2. Next, substitute various
combinations i, j, k, l to obtain values. Typically, this is done for U,D,X, and
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A in the generalized Hubbard model given in Eq.39:

⟨ii|v|ii⟩ = viiii = U,

⟨ij|v|ji⟩ = vijji = D,

⟨ij|v|ij⟩ = vijij = X,

⟨ii|v|ij⟩ = viiij = A.

Perform the calculation for all states to obtain the matrix Hc, which represents
the energy of particle-particle interactions.

Hc =


(D −X) 0 0 0 0 0

0 (D −X) 0 0 0 0
0 0 D −X A A
0 0 −X D −A −A
0 0 A −A U 0
0 0 A −A 0 U

 . (41)

Combine H0 and Hc to get the final form of the matrix H:

H =


(D −X) 0 0 0 0 0

0 (D −X) 0 0 0 0
0 0 D −X (t21 + A) (t12 + A)
0 0 −X D −(t21 + A) −(t12 + A)
0 0 (t12 + A) −(t12 + A) U 0
0 0 (t21 + A) −(t21 + A) 0 U

 .

We can see the Hamiltonian matrix above consists of a small matrix (2× 2) in
row (and column) 1 to 2, and matrix (4×4) in row 3 to 6. Now, let’s introduce
a new state that consists of a combination of states Fig.13.

↓↑ + ↓↑ |5′⟩ = 1√
2
(|5⟩ + |6⟩)

↓↑ − ↓↑ |6′⟩ = 1√
2
(|5⟩ − |6⟩)

Fig. 14: Introduce two new states which are the linear combination of original states |5⟩, |6⟩.

Figure 14 shows two new states (|5′⟩, |6′⟩) which is constructed by adding and
subtracting |5⟩ with |6⟩. Project these state with ⟨1|, ⟨2|, ⟨3|, ⟨4|, ⟨5′|, and ⟨6′|.
Here below we show the calculation for operator Hc acts on ⟨5′|, ⟨6′| and both
projected on ⟨3|:

⟨3|Hc|5′⟩ =
1√
2

(⟨3|Hc|5⟩ + ⟨3|Hc|6⟩),

⟨3|Hc|6′⟩ =
1√
2

(⟨3|Hc|5⟩ − ⟨3|Hc|6⟩).

We already have results for the right-hand components in Eq.41. By inserting
these value, we got:

⟨3|Hc|5′⟩ =
1√
2

(A+ A) =
2√
2
A,

⟨3|Hc|6′⟩ =
1√
2

(A− A) = 0.
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Hence, the final form of Hc becomes:

Hc =



|1⟩ |2⟩ |3⟩ 4⟩ |5′⟩ |6′⟩
(D −X) 0 0 0 0 0 ⟨1|

0 (D −X) 0 0 0 0 ⟨2|
0 0 D −X

√
2A 0 ⟨3|

0 0 −X D −
√

2A 0 ⟨4|
0 0

√
2A −

√
2A U 0 ⟨5′|

0 0 0 0 0 U. ⟨6′|


(42)

The non-diagonal values in matrix (4×4) are change comparing to the previous
result in Hc in Eq.41, and non-diagonal part of row and column |6′⟩ all zero.
From here we can see that the matrix (4× 4) is reduced into a matrix (3× 3).

Again, let’s introduce new states by combining |3⟩ and |4⟩ as shown in Fiq.15
below: With the same procedure, project these new states (|3′⟩, |4⟩) with

↓ ↑ + ↑ ↓ |3′⟩ = 1√
2
(|3⟩ + |4⟩)

↓ ↑ − ↑ ↓ |4′⟩ = 1√
2
(|3⟩ − |4⟩)

Fig. 15: Introduce two new states which are the linear combination of original states |3⟩, |4⟩.

⟨1|, ⟨2|, ⟨3′|, ⟨4′|, ⟨5′|, and ⟨6′|. Here we only show the calculation of Hc acts on
|3′⟩ and projected on ⟨4′|.

⟨4′|Hc|3′⟩ =
1√
2

(⟨4′|Hc|3⟩ + ⟨4′|Hc|4⟩)

=
1√
2

1√
2

(⟨3|Hc|3⟩ − ⟨4|Hc|3⟩ + ⟨3|Hc|4⟩ − ⟨4|Hc|4⟩).

Use values of the current Hc matrix in Eq.42:

⟨4′|Hc|3′⟩ =
1

2
(D +X −X −D) = 0.

After calculating all components we have the newest Hc matrix:

Hc =



|1⟩ |2⟩ |3′⟩ 4′⟩ |5′⟩ |6′⟩
(D −X) 0 0 0 0 0 ⟨1|

0 (D −X) 0 0 0 0 ⟨2|
0 0 (D −X) 0 0 0 ⟨3′|
0 0 0 (D +X) 2A 0 ⟨4′|
0 0 0 2A U 0 ⟨5′|
0 0 0 0 0 U. ⟨6′|


Take a look in the matrix (4 × 4) area which was already reduced into matrix
(3×3) in the previous calculation, now it is again reduced into a simpler matrix
(2 × 2).

In this study, we examine many-body problems by addressing strong electron
correlations in a finite-sized twisted moiré triangular lattice. We construct
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Fig. 16: Design of finite size of moiré triangular lattice arranged in single and double chain
(hexagonal) configurations, with the number of sites varying from Ns = 2, · · · , 13.

triangular lattices of varying sizes, ranging from the smallest with Ns = 2 to
the largest with Ns = 13. Additionally, we explore different shapes, including
single chains and double-chain (hexagonal) lattices. Fragments of the moiré
triangular lattice are depicted in Figure 16.

As demonstrated in our analysis of a two-site, two-particle many-body prob-
lem, placing two particles on two sites results in six possible configurations
and requires solving a (6 × 6) Hamiltonian matrix. In this study, we aim to
explore all possible particle arrangements within our lattice system. However,
accounting for all correlations in periodic systems is impractical due to the vast
size of the Hilbert space. Therefore, we concentrate on finite-sized systems to
fully capture the effects of correlations.
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3 Result and Discussion

This section examines the many-body problems in a finite-size moiré triangular
lattice using the Hubbard model, solved through exact diagonalization. The
primary goal is to investigate the emergence of kinetic magnetism associated
with Nagaoka ferromagnetism by analyzing spectral energy, phase diagrams,
spin transitions, and visualizing Nagaoka polarons through spin density.

As briefly mentioned in Section 1.4.1 of the Introduction, Nagaoka ferromag-
netism can be observed in a lattice system that is at half-filling with the ad-
dition of one electron or hole. The system is dominated by on-site Coulomb
interaction, leading to a ground state which has high total spin.

3.1 Spectral energy analysis for total spin calculation

First, we analyze spectral energy to determine the total spin S. Figure 17
shows the spectral energy for a finite triangular lattice with number of sites
Ns = 4, at half-filling with number of electron Ne = Ns = 4 particles, and
the spectral energy with one electron above half-filling Ne = Ns + 1 = 5. The
parameters used are hopping energy t = −3.0 meV, on-site Coulomb force
U = 1000 meV, dielectric constant ϵ = 10 (values provided by Ref. [38]),
and approximate twist angle θ ≈ 3.0o. The angle is considered approximate
because it is not directly included as a variable in the exact diagonalization
calculations. Instead, its value is derived from the relationship between the
twist angle and hopping energy, as shown in the tight-binding analysis in Figure
12. By defining the twist angle, we confirm that the finite triangular lattice
originates from TMDs. A large U value ensures the system experiences strong
correlation effects, satisfying one of Nagaoka’s conditions where U ≫ t.
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Fig. 17: Spectral energy of finite triangular lattice Ns = 4 sites with half-filling Ne = Ns

(left) and one electron above half-filling Ne = Ns + 1 (right). The parameter values are
t = −3.0 meV, U = 1000 meV, and ϵ = 10.

The spectral energy is plotted for all possible electron configuration for Ns = 4
at half-filling. As this system has 4 electrons, by obeying Pauli exclusion we
can arrange the electron as: (1) four spin up ”↑” (or spin down ”↓”), (2)
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three spin ↑ (↓) with one spin ↓ (↑), and (3) two spin ↑ with two spin ↓. The
energy of each configuration is plotted alongside their quantum spin number
Sz. Configuration with opposite spin orientation (e.g. 4 ↑ with 4 ↓) shares the
same Sz and energy level. Using Eq.37, the quantum spin can be calculated,
but here we focus only on the ground state energy. At half-filling the ground
state corresponds to the configuration of (2 ↑ 2 ↓), yielding Sz = 1

2
(2 − 2) = 0

and the total spin S = 0.0.

For systems above half-filling Ne = Ns + 1 the electron configurations can
be arranged as: (1) 4 ↑ (↓) with 1 ↓ (↑), and (2) 3 ↑ (↓) with 2 ↓ (↑).
The addition of one extra electron raises the energy level due to increased
on-site interactions. There are also excited states that emerge with a small
energy difference from the ground state. The ground state with one electron
above half-filling has a total spin S = 1.5, which is higher than when the
triangular lattice is at half-filling. This indicates the emergence of Nagaoka
ferromagnetism, characterized by a high total spin in the ground state. The
total spin value indicates that, as electrons spin is | ± 1

2
|, there are 1.5

0.5
= 3

unpaired electrons with the same spin orientation in the lattice to gain the
highest total spin in the ground state. Since these unpaired electrons share
the same spin orientation, the material exhibits ferromagnetic behavior.

3.2 Phase diagram for observing total spin of all possi-
ble particles on the lattices

We observe the total spin of the ground state and energy gap for all particles
Ne in the lattice, as displayed in Figures 18 and 19. Energy gap is the energy
difference between the ground state with the first excited state. All the moiré
fragments are examined in Figure 16, but only six finite sizes (Ns = 3, · · · , 8)
are shown here. Consider Figure 18, as it is easy to see that for finite-site 3,4,5,
the total spin is highest when one electron is added to half-filling (appointed
by a green arrow). For configurations below this, the total spin is limited to
either 0.0 or 0.5, depending on whether the number of particles is odd or even.
For instance, in the case of 3 sites, with four electrons, the total spin is 1.0,
indicating that there are two unpaired electrons. This configuration is achieved
by placing two electrons with opposite spins on one site and the remaining two
electrons on the other two sites, resulting in arrangements such as (3 ↑ 1 ↓) or
(3 ↓ 1 ↑).

When adding another electron, Ne = Ns+2 (or more), the total spin decreases
from having two unpaired electrons to just one unpaired electron (continuing
within the 3-site system), as the other electron pairs up. Pairs of electrons have
a rigid spin orientation; if one electron spins down, the other must spin up.
Consequently, these pairs are less susceptible to being influenced or polarized
by the spins of unpaired electrons.

The energy gap Eg in Figure 18 and 19 are observed to be relatively small
and nearly zero above half-filling. This is likely because the presence of more
electrons in the energy band makes it easier for additional particles to move
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Fig. 18: (Left) total spin S of the ground state and (right) energy gap Eg between the
ground state with excited states for all possible particles in the lattice. A small inset in the
top-right corner of each graph illustrates the finite lattices with Ns = 3, 4, 5 and a green
arrow denoted the highest total spin.

to the excited states, as the ground states are already populated. From this,
we can infer that when the lattice has the highest total spin, the energy gap
is very small. This is also already shown in Figure 17, where five electrons are
placed in four sites, excited states emerge right above the ground stage with a
very small energy gap in Sz = ±0.5.

Figure 19 reveals some unique observations as the finite moiré triangular lattice
grows in size. In particular, hexagonal lattice 6 sites in Fig.19(a) exhibit two
peaks in total spin, which is uncommon. We attribute the first peak to Nagaoka
ferromagnetism in this case. Additionally, the hexagonal lattice with 7 sites
and the single chain lattice with 8 sites (Fig.19(b) and (c)) show the highest
total spin with the number of particles equal to Ns+3 and Ns+2, respectively.
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Fig. 19: (Left) total spin S of the ground state and (right) energy gap Eg between the
ground state with excited states for all possible particles Ne in the lattice. A small inset in
the top-right corner of each graph illustrates the finite lattices with Ns = 6, 7, 8 and a green
arrow denoted the highest total spin.

The total spin does not immediately peak upon adding one electron (Ns + 1)
to the half-filling as is the case for site 3,4, and 5 in Figure 18.

Analyzing this through calculations, take site Ns = 6 as an example, the
maximum number of particles that can occupy this site is Ne = 12. The
highest total spin is achieved with 7 electrons, meaning there are 5 unpaired
electrons (the highest number of unpaired electrons we can achieve above half-
filling), giving an expected total spin S = 5 × 1

2
= 2.5. In Fig.19(a), the two

peaks have a total spin of 1.5, indicating that it is not the maximum total
spin. A similar situation occurs in Fig.19 (b) and (c): for site 7, the maximum
total spin observed is 2.0, but the calculated value should be 3.0. In site 8, the
observed maximum total spin is 3.0, while the calculated value is expected to
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be 3.5. This suggests that higher total spin can still be achieved in these three
sites, resulting in stronger ferromagnetism.

3.3 Spin transition as the dielectric constant ϵ varies

After analyzing all finite triangular lattices from Ns = 2 to Ns = 13 in the pre-
vious section, we demonstrated the emergence of Nagaoka kinetic magnetism
driven by spin arrangement and on-site interactions. Our next objective is to
address questions raised by the earlier observation: why did some lattice sites
not achieve the highest expected total spin, and what caused this? To begin,
we recall the parameters used: U = 1000 meV, t = −3 meV, and ϵ = 10.
These values satisfy the Nagaoka condition of U ≫ t, now we will explore
varying the dielectric constant ϵ. Dielectric constant reflects a material’s re-
sponsiveness to an electric field, with higher values indicating greater ease of
polarization. We will vary ϵ from 2,4,6,...,16 to investigate whether higher to-
tal spin can be achieved at each site and to assess how stable the magnetism is
with changes in dielectric constant. Adjusting the dielectric constant is more
feasible experimentally, allowing for better control over the lattice.
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Fig. 20: The spin transition, resulting from a change in total spin caused by changes in ϵ is
expressed as the ratio |Uet |, known as interaction strength, with U = 1000meV, t = −3.0meV.
The small figure showing the 7-site lattice, for both single-chain (left) and double-chain
(right), illustrates the general structure of the triangular lattice Ns of each graph. All total
spin and ϵ values are presented in Appendix A.

Figure 20 illustrates the spin transition for lattices with one, two, three parti-
cles above half-filling (Ns + 1, Ns + 2, Ns + 3). The spin transition refers to the
change or reduction in total spin S from its maximum to minimum values as
the dielectric constant ϵ varies. In the graph, we label ϵ at which the total spin
starts to decrease: for example, if the total spin is maximized at ϵ = 4 and
decreases at ϵ = 6, we mark ϵ = 4. On the y-axis, we plot the ratio U to ϵt,
where U and t are constants. A smaller ϵ results in a larger ratio, which in turn
strengthens ferromagnetism, and vice versa. The figure contains two graphs
representing lattice sites from Ns = 3 to Ns = 12 with different geometries:
(left) single chain, and (right) double-chain or hexagonal configurations.
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Let’s begin by examining the spin transition in single-chain lattices (left fig-
ure). No transitions occur at sites 3 and 4, indicating that the total spin
remains unchanged, even when the dielectrict constant is altered from 2 to
16. The maximum total spin of site 3 is S = 1.0 and for site 4, it is S = 1.5
(see Appendix A); these values represent the highest possible total spin as
determined by the calculation analysis. The spin transition starts for electron
Ns + 1 from site 5, meaning that there’s a drop in total spin as we change ϵ.
For lattice 8 sites, we previously observed in Figure 19 that the total spin did
not reach its maximum when ϵ = 10. However, we now find that its highest
total spin, S = 3.5 occurs when ϵ = 4.

The spin transition in single-chain systems increases as the size of finite lattices
grows. For the Ns + 1 case, the interaction strength ratio grows rapidly as
the number of lattice sites increases. We did not plot the spin transition
for Ns = 10 to Ns = 12 due to limited ϵ values. A high ratio enables one
itinerant electron above half-filling to polarize electron spins over a larger area
or more sites. Since a higher ratio indicates stronger ferromagnetism, the
rapid spin transition with varying dielectric constants in the Ns +1 case shows
that the system with one electron above half-filling is highly unstable. Even
small changes in the dielectric constant can significantly affect its ferromagnetic
characteristics. For particles Ns + 2 and Ns + 3, the ratio is much lower
compared to Ns + 1, but these systems show more stable spin transitions as
the number of sites increases. As ϵ increases, the spin transition changes only
slightly.

In double-chain lattices, Figure 20 (right), the spin transition trend for Ns+1

is similar to that of the single-chain, exhibiting a rapid increase in interaction
strength as the number of triangular lattices grows. A notable difference ap-
pears at site 10, where the hexagonal lattice reaches its maximum total spin
at a lower interaction ratio. For particles Ns + 2 and Ns + 3, no spin transition
is observed around lattice sites 8 and 9, as the total spin remains unchanged
despite variations in the dielectric constant. While we observe many instances
of maximum total spin as ϵ is expanded from 2 to 16, in some cases, the max-
imum total spin is still not reached. For instance, in the hexagonal lattice
with 8 sites and Ns + 2, the total spin remains constant at S = 1.0, which is
not the maximum value, and for 9 sites and Ns + 2, the total spin stays at
S = 0.0. Moreover, from this analysis we observe that varying the geometries
of triangular lattices results in distinct characteristics.

Expanding ϵ for further analysis of single-chain sites Ns = 9, 10, 11, 12.
We extend the analysis for single-chain systems by examining larger sites Ns =
9, 10, 11, and 12, and varying dielectric constant both for ϵ ≤ 4 and ϵ ≥ 16.
Details for ϵ ≤ 4 values are provided in Appendix B, where we also examine
the spin transition for hexagonal and periodic lattices. Here, we will focus on
discussing the analysis for larger dielectric constant values ϵ ≥ 16.

In Figure 21, we extend the analysis to larger values of ϵ, focusing specifically
on single-chain sites 9 to 12. We plot the maximum total spin in the ground
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Fig. 21: The spin transition of a single-chain lattice site Ns = 9, 10, 11, 12 with U = 1000
meV, t = −3 meV. The dielectric constant ϵ is extended until the total spin S reaches its
minimum value.

state, starting from ϵ = 2, and continue until the total spin drops to its lowest
value (S = 0 for even particles and S = 0.5 for odd particles).

The highest total spin occurs when ϵ is low, and it diminishes as ϵ increases.
With smaller dielectric constant, the interaction strength ratio |U

ϵt
| becomes

larger, making it easier to observe Nagaoka ferromagnetism in systems with
low ϵ. This graph helps determine the optimal parameters for detecting fer-
romagnetic characteristics. Next for number of particle Ns + 1, the total spin
gradually decreases as ϵ rises. Interestingly, the spin reduction in the cases of
Ns + 2 and Ns + 3 is quite similar and there is unique behavior observed. For
example, at site 9 with 11 particles, the total spin drops to its lowest value of
S = 0.5 when ϵ is below 20, but then increases to S = 1.5 before disappearing
again near ϵ = 24. This reappearance of spin transition is also seen in 10-site
12 particles, 11-site 14 particles, and 12-site 15 particles systems.

Spin transition for varying geometries: single-chain and double-
chain.
In this sub part we compare the total spin of the ground state between single-

chain and double-chain or hexagonal finite triangular lattice. We plot the total
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Fig. 22: The ground state total spin (S) of a single-chain and double-chain lattices with
number of site from Ns = 5 to Ns = 12 and number of particle Ne = Ns +1, Ns +2, Ns +3.
Parameters: U = 1000 meV, t = −3 meV, and ϵ = 4.0.

spin in Figure 22 for the number of lattice sites Ns = 5 to Ns = 12. We omit
the cases for Ns = 3, 4 because the lattice shapes for both single-chain and
double-chain configurations are identical at these sizes. All other parameters
remain constant: U = 1000 meV, t = −3 meV, ϵ = 4, leaving the lattice
geometry as the sole differing factor. We selected ϵ = 4 because, at this di-
electric constant, the ground state of most finite triangular lattices achieves
its maximum total spin.

For single-chain systems with Ns + 1 electrons, the total spin reaches its maxi-
mum up to site Ns = 10, but then decreases for Ns = 11, 12.This suggests that
the 11-site and 12-site systems require a smaller dielectric constant to achieve
their maximum total spin. In the double-chain case with Ns + 1 electrons, a
smaller ϵ is needed starting at Ns = 9 to to reach the highest total spin. A
big drop in total spin occurs for Ns + 2 double-chain systems between site-7 to
site-10. Meanwhile, lattices with Ns + 3 remain mostly stable for both single-
chain and double-chain configurations. From here we can see that single-chain
triangular lattices are more stable, while double-chain or hexagonal lattices
are less stable, particularly for Ns + 2 particles.

3.4 Visualization of Nagaoka polaron with spin density

In this section, we present visualizations of the spin and charge densities of
electrons on the lattices. Spin density is defined as the difference between
the probabilities of spin-up (↑) and spin-down (↓) at the same lattice site.
Charge density is obtained by summing the probabilities of spin-up and spin-
down electrons at the same lattice site. Charge density offers insights into
the electronic properties of the system, while spin density reveals its magnetic
characteristics.
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Fig. 23: Visualization of spin density (left) and charge density (right) of single-chain lattice
Ns = 12 sites with Ns + 1 and Ns + 2 electrons. Parameter values: t = −3 meV, U = 1000
meV.

Spin and charge density of 12-site single-chain lattice.
Figure 23 illustrates the spin and charge densities for site Ns = 12 of a single-
chain triangular lattice with Ne = Ns+1 = 13 and Ne = Ns+2 = 14 electrons,
each system having two different dielectric constant values, ϵ. From the charge
density analysis (right-graph), we observe that electron charge is distributed
across the lattice sites with slight variations between them, and the lowest
density tends to concentrate at the edges of the lattices.

While the charge is evenly distributed for 12 and 13 electrons, the spin density
reveals a different pattern. Focusing on the top-left graph, which shows a 12-
site single-chain with 13 electrons, arranged with 12 spin-up and 1 spin-down,
and a value of ϵ = 2, we obtain a maximum total spin S = 3.5. The maxi-
mum total spin is lower than expected for this configuration, which is due to
parameter ϵ. The darker color in the center of the chain indicates a smaller
difference between spin-up and spin-down, suggesting that the probabilities of
this two spins are nearly equal in this region. This indicates that the probabil-
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ity of a spin-down electron (from 12 ↑ 1 ↓ configuration) is spread across the
middle of the chain. Meanwhile, the higher spin density at the edges indicates
a greater likelihood of unpaired electrons, which in this case are spin-up. This
observation of spin density reveals the presence of a Nagaoka bubble or Na-
gaoka polaron, similar to what is described in Ref. [7]. One itinerant electron
remains in the center, polarizing the surrounding spins. However, we cannot
observe the full extent of the bubble as shown in Figure 5 due to the limited
size of our lattice system, which consists of only 12 sites.

Next, we use a different configuration (8 ↑ 5 ↓), which results in a lower
maximum total ground state spin of S = 1.5 when ϵ = 4. In this case, the spin
density is concentrated in the center, while paired electrons tend to remain at
the corners. This demonstrates that altering the electron configuration within
the same system leads to significant changes in the system’s ferromagnetic
behavior.

Further analysis, we add one more electron to the system, resulting in a 12-
site single-chain triangular lattice with 14 electrons. By applying ϵ = 4 and
arranging the electron configuration (12 ↑ 2 ↓), we achieve the maximum total
spin of S = 4.0. As seen in the first spin density graph (top-left), the two spin-
down electrons are spread across the central region, with a high concentration
in lattice columns 1 and 4 along the x-axis. As we change the configuration
into (11 ↑ 3 ↓, as shown in the bottom-left graph), the two most concentrated
paired electrons are located in the corners. From this, we observe that the
spin-down electrons, being fewer in number, have more freedom and tend to
stay farther apart from each other.

Spin and charge density of 12-site hexagonal lattice.
We examine the spin and charge densities of a 12-site system arranged in a
hexagonal or double-chain structure, as shown in Figure 24. In this study, we
add one, two, and three spin-down electrons to the system while maintaining
a dielectric constant of ϵ = 2. The charge density is evenly distributed for
13 particles(12 ↑ 1 ↓), and for 14 particles (12 ↑ 2 ↓), we observe a higher
probability concentrated on two sites in the middle. For 15 particles (12 ↑ 3 ↓),
the charge density forms a unique pattern, with a denser charge concentrated
around a less dense site located at column 2 along the x-axis.

In all three cases, where the system reaches maximum total spin, the spin
density is fairly evenly distributed across each lattice, in contrast to the single-
chain configurations. In the case of one electron above half-filling, the spin-
down electron pairs with the spin in the central region. For configurations with
two and three spin-down electrons, the denser distribution of paired electrons
follows the charge density pattern. From this, we observe that adding more
spin-down electrons beyond half-filling decreases the spin density at each site.
This is because the additional electrons reduce the probability of unpaired
electrons at the sites, leading to weaker ferromagnetic effects. Therefore, it
is challenging to determine the extent to which a single itinerant electron
influences its surroundings or to observe the Nagaoka bubble, as depicted in
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Fig. 24: Visualization of spin density (left) and charge density (right) of double-chain
lattice Ns = 12 sites with Ns + 1, Ns + 2, and Ns + 3 electrons. Parameter values: t = −3
meV, U = 1000 meV.

Figure 5, due to the small size of our finite triangular lattice system. For
further observation, additional spin and charge density results are provided in
Appendix C.
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4 Conclusion

Nagaoka ferromagnetism occurs when a half-filled system gains an additional
electron or hole. By ensuring that the system maintains a strong on-site
Coulomb interaction compared to the hopping energy, the ground state achieves
maximum total spin [30]. In this work, we focus on finite-size triangular lattices
of twisted TMDs, limited to a number of sites from Ns = 2 to Ns = 13, examin-
ing two geometries: single-chain and double-chain. We observe the emergence
of Nagaoka ferromagnetism in these finite lattices by adding a single electron
to the half-filling (Ns + 1), resulting in a ground state with maximum total
spin. Larger lattices exhibit higher maximum total spin, leading to stronger
ferromagnetic behavior. Additionally, at some finite systems, the maximum
total spin appear when adding two or three electrons (Ns + 2 and Ns + 3),
indicating that Nagaoka ferromagnetism remains present with two and three
electrons above half-filling.

We note that varying geometries result in distinct magnetic properties, and our
analysis shows that the single-chain configuration is more stable as the number
of sites increases, compared to the double-chain. We further explore this by
modifying the dielectric constant which related to the interaction strength
factor, as it is feasible to adjust in experimental setups. The triangular lattices
with Ns + 2 and Ns + 3 electrons exhibit more stable ferromagnetic properties
as the dielectric constant varies. This indicates that the total spin of the
lattice either remains constant or changes only slightly with adjustments in
the dielectric constant, eliminating the need to rely on specific dielectric values
to achieve ferromagnetism. In contrast, for finite triangular lattices with Ns +
1 electrons, we observe significant instability, with the total spin decreasing
rapidly as the dielectric constant increases.

As this study focuses on small segments of twisted triangular lattices of TMDs,
Nagaoka ferromagnetism can still be observed in larger systems. Moreover,
the tunability of TMDs through the twisting angle opens up the possibility of
constructing triangular lattices that exhibit Nagaoka ferromagnetism based on
the parameters established in this work.
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transfer in transition metal dichalcogenide superlattices,” Phys. Rev. B,
vol. 102, p. 201115, 2020.

[19] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli, and
F. Wang, “Emerging photoluminescence in monolayer mos2,” Nano let-
ters, vol. 10, no. 4, pp. 1271–1275, 2010.

[20] K. Mak, C. Lee, J. Hone, J. Shan, and T. Heinz, “Atomically thin mos2:
A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, p. 136805,
Sep 2010.

[21] Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced
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A Maximum total spin of all finite-site trian-

gular lattices

We provide graphs displaying the maximum total spin S of the ground state for
each finite-size triangular lattice in both single-chain and double-chain (hexag-
onal) configurations and the dielectrict constant ϵ correspond to it. This obser-
vation is based on varying ϵ values from 2,4,...,16, with an on-site interaction
of U = 1000 meV, hopping energy t = −3 meV, and the approximate twisted
angle θ ≈ 3.0o . The data from the table is also visualized as interaction
strength ratio in Figure 20, found in Section 3.3.
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Fig. 25: Maximum total spin values for single-chain and hexagonal lattices with variation
ϵ = 2, 4, · · · , 16. Parameter: U = 1000 meV, t = −3 meV.

The ϵ value indicates when the system maintains the highest total spin before
it begins to decrease as ϵ increases. In some cases on the Figure 25 (right),
the ϵ value is not provided because the total spin remains unchanged within
that permittivity range, such as for 3-site and 4-site lattices. In other cases,
we did not observe the highest total spin, such as in the 12-site single-chain
system with Ns + 1 = 13 particles and a big drop for double-chain systems
with Ns +2 particles. Therefore, in Appendix B, we extended the analysis to ϵ
values smaller than 2 to determine if the maximum total spin can be achieved
there especially for the 12-site single-chain system.

A MAXIMUM TOTAL SPIN OF ALL FINITE-SITE TRIANGULAR
LATTICES
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B Further analysis of spin transition

In this section we present graphs of spin transitions for various cases, including
extended ϵ values, hexagonal lattices, and periodic lattices.

Examine the spin transition of single-chain lattices for ϵ ≤ 4.
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Fig. 26: Spin transition of single-chain triangular lattice for Ns = 9, 10, 11, 12 with ϵ ≤ 4
for Ne = Ns + 1. Parameter: U = 1000 meV, t = −3 meV.

Figure 26 displays the total spin (S) of a single-chain with Ns = 9 to Ns = 12
sites for Ns + 1 particles, observing dielectric constant from ϵ = 0.2 to ϵ = 4.0.
From this graph, we can see that larger chains reach their maximum total spin
at lower ϵ values. We can also see the maximum total spin S = 5.5 of Ns = 12
is achieved at ϵ = 1.6, which explains why its maximum is not visible in Figure
21.

Analysis the spin transition of double-chain triangular lattices for
site Ns = 8, 9.

In Figure 21, no spin transition was observed in the double-chain lattice at
sites 8-9 for Ns + 2 and Ns + 3 particles within the range ϵ = 2, 4, 6, · · · , 16.
Therefore, in Figure 27, we extended the permittivity range to capture the
lowest total spin. For the hexagonal 8-site lattice with 9 particles, the total
spin remains constant at S = 1.0 and only begins to decrease when ϵ > 50.
With 10 particles, the total spin stays at S = 2.5 and drops after ϵ = 20.
Similarly, for the hexagonal 9-site lattice, the total spin for 11 and 12 particles
decreases when ϵ = 20. In both cases, we do not observe the highest total
spin for Ns + 2. From the small epsilon analysis in Figure 26, it is clear that
the highest total spin for Ns + 2 occurs when ϵ < 2. Moreover, for both site
numbers, the behavior of Ns+1 particles is similar, showing a rapid drop in
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Fig. 27: Extended ϵ observations for spin transitions in double-chain lattices with Ns = 8
(left) and Ns = 9 sites (right). The ϵ values are extended until the lowest spin is reached
for Ns + 1, Ns + 2, and Ns + 3 particles. Parameter: U = 1000 meV, t = −3 meV.

total spin.

The spin transition of double-chain triangular lattices.
Spin transition for double-chain or hexagonal lattices with Ns = 10, 11, 12, 13
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Fig. 28: The spin transition of double-chain or hexagonal lattices site Ns = 10, 11, 12, 13
with U = 1000 meV, t = −3 meV. The dielectric constant range is ϵ = 2, 4, 6, · · · , 16.
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sites are shown in Figure 28. The parameter range is ϵ = 2, 4, 6, · · · , 16 with
U = 1000 meV and hopping energy t = −3 meV. For the hexagonal 10-site
lattice with 12 particles, no spin transition is observed, and the total spin
remains at S = 0.0, which is the lowest possible spin, indicating the absence
of any magnetic characteristics. For triangular lattice Ns = 11, 12, 13, the spin
transition of Ns + 1, Ns + 2, and Ns + 3 particles exhibit a similar decline
compared to site-10.

The spin transition of periodic single-chain and periodic hexagonal
triangular lattices.
In this case, we introduce periodic lattices for both single-chain and double-
chain systems. The periodicity is defined along the x-direction by linking the
left and right edges of the triangular lattice. We can create periodic lattices
for single-chain systems with 10 and 12 sites, but not for 11 sites, due to
the periodic lattice requirement, which involves connecting the left and right
edges (similar to fitting a key into a keyhole). The same applies to construct-
ing periodic double-chain lattices. This periodicity is represented by adding
nearest-neighbor connections when constructing the Hamiltonian.
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Fig. 29: The spin transition of periodic double-chain or hexagonal lattices site Ns =
10, 11, 12, 13 with U = 1000 meV, t = −3 meV. The dielectric constant range is ϵ =
2, 4, 6, · · · .
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Figure 29 shows the spin transition for our periodic lattices: Ns = 10, 12
for single-chain and Ns = 9, 12 for double-chain. The parameter values are
U = 1000 meV and t = −3 meV, with ϵ depending on the lattices. The spin
drops sharply for periodic single-chains with Ns + 1 at both sites, while it
remains more stable with Ns + 3. A distinct trend is observed for Ns + 2: at
low dielectric constant values, the total spin is minimal, indicating an absence
of magnetic characteristics, but as the dielectric constant increases, the total
spin rises. In the case of periodic double-chain systems, no spin transition is
observed at site-9 with Ns + 3 and site-12 with Ns + 2.
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C Charge and spin density of periodic trian-

gular lattices
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Fig. 30: Visualization of spin density (left) and charge density (right) of periodic single-
chain lattice Ns = 12 sites with Ns + 1, Ns + 2, and Ns + 3 electrons. Parameter values:
t = −3 meV, U = 1000 meV.

This section illustrates the spin density and charge density for a periodic tri-
angular lattice with 12 sites, focusing on both single-chain and double-chain
configurations. We present the spin and charge density of a periodic single-
chain with Ns + 1 and Ns + 3 particles in Figure 30, with their maximum total
spin. In contrast, Ns + 2 does not achieve its maximum total spin, as noted in
Appendix B Figure 29, resulting in a darker appearance of the spin density.

We present the spin and charge density for a periodic double-chain with 12 sites
and particles Ns+1 and Ns+3 in Figure 31. The total spin of the ground state
for Ns + 2 remains at its minimum, indicating that Nagaoka ferromagnetism
is not observed in this case.

C CHARGE AND SPIN DENSITY OF PERIODIC TRIANGULAR
LATTICES
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Fig. 31: Visualization of spin density (left) and charge density (right) of periodic double-
chain lattice Ns = 12 sites with Ns + 1 and Ns + 3 electrons. Parameter values: t = −3
meV, U = 1000 meV.
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