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Abstract: With his research on Aristotle’s syllogistic, Jan Łukasiewicz initiates the branch of
logic known as the calculus of names. This field deals with axiomatic systems that analyse
various fragments of the logic of names, i.e., that branch of logic that studies various forms
of names and functors acting on them, as well as logical relationships between sentences
in which these names and functors occur. In this work, we want not only to present the
genesis of the calculus of names and its first system created by Łukasiewicz, but we also
want to deliver systems that extend the first. In this work, we will also show that, from
the point of view of modern logic, Łukasiewicz’s approach to the syllogistic is not the only
possible one. However, this does not diminish Łukasiewicz’s role in the study of syllogism.
We believe that the calculus of names is undoubtedly the legacy of Łukasiewicz.

Keywords: calculus of names; logic of names; Łukasiewicz; Aristotle’s syllogistic; semantics
of logic of names
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1. Introduction
In this work, we want not only to present the genesis of the calculus of names and

the first system developed by Jan [1–4] but also to present systems that are an extension of
that initial one, including those enriched with singular sentences of Stanisław Leśniewski’s
Ontology, which are not classified as syllogistic. In this work, we will also show that,
from the point of view of modern logic, Łukasiewicz’s approach to syllogisms is not the
only possible one. It in no way diminishes Łukasiewicz’s role in the study of syllogistics.
We believe that the calculus of names is indisputably Łukasiewicz’s legacy.

In the first section, we will present the logic of names and so-called traditional logic.
We will present various possible interpretations and forms of categorical sentences in the
modern logic of names.

Section 3 will be devoted to the calculus of names as a specific development of
traditional logic. We will present the origins of this calculus and Łukasiewicz’s original
system. We give the set-theoretic semantics of this system and show that it is equivalent to
the lexical semantics (when we take an appropriate set of non-empty general names for
the name variables). We will note that Łukasiewicz’s calculus is sound and complete not
only with respect to the set of all non-empty general names but also with respect to the
set of general names having at least two references (we will formally prove these facts in
Section 7).

In Section 4, we present other possible approaches to formalising Aristotle’s syllogistic.
They come from, among others, John Corcoran [5,6], Timothy John Smiley [7], and Robin
Smith [8]. We also present a “competitive approach” in the form of sequent calculus.

In Section 5, we will discuss two modern takes on the calculus of names that allow it
to be applied to empty names. The first of them (using the so-called weak interpretation
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of universal affirmative sentences) was reported and researched by J. C. Shepherdson [9].
We will present a series of definitional extensions of his system and give its set-theoretic
semantics. We will note that Shepherdson’s system is sound and complete not only with
respect to the set of all general names but also with respect to the set of general names that
are either empty or have at least two references, i.e., we exclude names with exactly one
reference (we will formally prove these facts in Section 7). The second approach (using the
so-called strong interpretation of universal affirmative sentences) was initiated by Jerzy
Słupecki [10]. However, his system is not complete. This was noted in [11], where complete
extensions of Słupecki’s system are also given.

In Section 6, we present and analyse extensions of both types of systems with singular
sentences of Leśniewski’s Ontology. Arata Ishimoto [12] gave the propositional (quantifier-
free) fragment of this theory. Firstly, we analyse the fusion of Shepherdson’s system with
this fragment. We give four axiomatisations of this fusion. Moreover, we will present
a series of definitional extensions of this fusion and give its set-theoretic semantics. We
will note that it is sound and complete with respect to the set of all general names (see
Section 7). Secondly, we analyse the fusions of complete extensions of Słupecki’s system
with the quantifier-free fragment of Ontology. We give axiomatisations of these fusions and
show that they are definitionally equivalent to the fusion of Shepherdson’s system with the
quantifier-free fragment of Ontology.

In Section 7, we present different approaches to the proof of completeness of calculi
of names with respect to set-theoretic semantics. The first approach comes from [9], where
a technique similar to that used to prove Stone’s representation theorem for the elementary
theory of Boolean algebras is used. This approach uses appropriate filters constructed from
the elements of a given algebra (a model of a given theory). The second approach consists
of the appropriate direct application of Henkin’s method to calculi of names. This method
is commonly used in the proof of the completeness of propositional logic or predicate logic.
In it, we use canonical models built for maximal consistent sets in a given calculus. We
give two ways of doing this.

In the last section, we briefly present other possible extensions of the systems con-
sidered earlier by adding a few new kinds of sentences. They will be traditional singular
sentences, Czeżowski’s singular sentences (with a subject of the form ‘this S’), and identities
for singular names.

2. The Logic of Names and Traditional Logic
2.1. The Logic of Names

The logic of names is constructed using the method of logical schemes (see, e.g., [13]),
which consists of the fact that, based on the analysis of the surface syntactic structure of
sentences and expressions of natural language, sentence schemes are introduced in which
various types of schematic letters appear instead of names. Name logic is an intermediate
link between propositional logic and predicate logic. In propositional logic, we study
relations between sentences but are not interested in the syntactic structure of sentences in
which there are no propositional conjunctions. We look only at relationships that depend
solely on propositional connectives. In quantifier logic, the opposite is true; we analyse the
deep structure of sentences using quantifiers’ binding variables and additionally introduce
sentential connectives. These are characteristics of the modern mathematical stage of
formal logic.

The logic of names can be regarded as a systematic development of specific fragments
of traditional, pre-mathematical formal logic. We include not only the known piece of it,
which is Aristotle’s syllogistic, but also studies on compound names and relative names.
The latter, as oblique syllogisms, were already considered by Aristotle in his Prior Analytics
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and Joachim Jungius in his Logica Hamburgensis. However, a systematic theory thereof
appeared only in the nineteenth century in the works of Hamilton, Schröder, and de Morgan.
De Morgan analysed reasoning such as the following: since every horse is a mammal, then
every horse’s head is a mammal’s head.

The Aristotelian syllogistic deals with categorical sentences that have one of the
following four schemes:

• Every S is a P (universal affirmative)
• Some S is a P (particular affirmative)
• No S is a P (universal denial)
• Some S is not a P (particular denial)

These schemes can be used for any general name. The letter ‘S’ is to be replaced by
a general name appearing as a subject, and the letter ‘P’ is to be replaced by a general
name appearing as a predicate. The following natural interpretation of these sentences is
generally accepted:

• ‘Every S is a P’ is true if and only if the extension of the name S is included in the
extension of the name P;

• ‘Some S is a P’ is true if and only if the names S and P have a common referent;
• ‘No S is a P’ is true if and only if the extensions of the names S and P are disjoint;
• ‘Some S is not a P’ is true if and only if the name S has a referent that is not a referent

of the name P.

To avoid any further ambiguity, we emphasise that the extension of a given general
name is the distributive set of all its referents (i.e., it is its extension in Frege’s sense). Thus,
every empty general name (i.e., this without any referent) has as its extension the empty
set (which is included in every set).

The method of logical schemes allows the study of a broad class of natural language
sentences. In addition to categorical sentences, we can also study singular sentences of the
form ‘a is a P’ and ‘a is not a P’, in the subject of which there is a name pointing to exactly
one object. We also have a whole spectrum of sentences corresponding to categorical
sentences; for example, these are sentences such as ‘S is the same as a P’ (or otherwise:
‘Every S is a P and vice versa’, ‘All S is a P and vice versa’), ‘Exactly one S is a P’, ‘At
most one S is a P’, ‘The only S is a P’, and others. We can analyse plural sentences such
as ‘Exactly two Ss are Ps’, ‘At least two Ss are Ps’, ‘At most two Ss are Ps’, and others. We
can also treat modal versions of these sentences in which the copula ‘is’ is replaced by one
of the following phrases: ‘must be’ or ‘maybe’; the phrase ‘is not’ is replaced with one of
the phrases ‘must not be’, ‘must not be’, ‘may not be’, or ‘cannot be’. It is also possible to
analyse sentences whose subjects and predicates have compound names of the following
form: ‘S and P’, ‘S or P’, and ‘not-S’. The same applies to relative names such as ‘friend’,
‘mother’, and others. We can also transform the latter sentences from active to passive (e.g.,
‘reader’ to ‘read by’) and, from two such names, create a third relative name (e.g., ‘mother’s
father’). We do not have to limit ourselves to relative terms but may extend the approach
to verbs, e.g., instead of ‘is a reader’, we take ‘reads’ (see, e.g., [14,15]).

Rich metalogical research can be carried out on the material given above; various
types of set-theoretic semantics and axiomatisations of different fragments of the logic of
names consistent with it can be introduced.

2.2. Traditional Logic

For some reasons [6] (pp. 103–104), the Aristotelian syllogistic was applied only to
non-empty general names (i.e., those with at least one referent). Traditional logic was a
continuation of Aristotle’s syllogistic. Therefore, it also took over the limitation of applying
only to non-empty general names. Traditional logic, through argument schemes, studied
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the logical relationships between categorical sentences. The primary connection between
them is the entailment relation (in symbols, ∴). It is the converse of a logical consequence.
In traditional logic, the entailment relation was expressed by so-called correct argument
schemas (or argument forms). If categorical propositions are understood naturally, when
we limit the applications to non-empty names, all of the argument schemes distinguished
by traditional logic are valid because true premises always give a true conclusion. So,
in traditional logic, the following argument schemas are valid:

• Every S is a P ∴ Some S is a P subalternation
• Every S is a P ∴ Some P is an S conversion per accidens
• No S is a P ∴ Some S is not a P subalternation
• No S is a P ∴ Some P is not an S conversion per accidens
• Every S is a P ∴ It is not the case that no S is a P contrariety
• It is not the case that some S is a P ∴ Some S is a P subcontrariety
• Every M is a P, Every S is a M ∴ Some S is a P Barbari
• Every M is a P, Every M is a S ∴ Some S is a P Darapti
• Every P is a M, Every M is a S ∴ Some S is a P Bamalip
• No M is a P, Every S is a M ∴ Some S is not a P Celaront
• No P is a M, Every S is a M ∴ Some S is not a P Cesaro
• Every P is a M, No S is a M ∴ Some S is not a P Camestros
• Every P is a M, No M is a S ∴ Some S is not a P Calemos
• No M is a P, Every M is a S ∴ Some S is not a P Felapton
• No P is a M, Every M is a S ∴ Some S is not a P Fesapo

Moreover, the scheme ‘Some S is an S’ is generally true (i.e., it is valid). Notice that if
we allow empty general names, the above argument schemas and the sentence schema are
no longer valid.

2.3. A Contemporary Approach to the Logic of Names

In the contemporary approach, we allow empty general names, so some argument
forms of traditional logic are no longer valid. So, the following question arises:

• Can the meaning of categorical sentences be changed to preserve the validity of
argument forms of traditional logic, even when substituting empty names is allowed?

This new interpretation is to meet, however, the following condition:

• When terms are limited to non-empty terms, it coincides with natural usage.

Therefore, to “save” the subalternation and conversion per accidens of affirmative
sentences, contrariety and syllogisms Barbari, Darapti, Bamalip, Celaront, Cesaro, Camestros,
Felapton, and Fesapo, the so-called strong interpretation of universal affirmative sentences
was used, where, for its truth, we require the non-emptiness of the name in its subject. Thus,

• A universal affirmative sentence (in the strong interpretation) is true if and only if
it has a non-empty name in the subject, the extension of which is included in the
extension of the name from the predicate.

An interpretation where we do not apply the added requirement is called weak.
Of course, for non-empty names, the two interpretations are indistinguishable.

Note that with the strong interpretation, if we allow empty names, then

• ‘Some S is not a P’ is not a contradiction of ‘Every S is a P’ and vice versa.

Indeed, if S is an empty name, both sentences are false.
For this reason, Tadeusz Kotarbiński [16] (pp. 233–234 in 1966), followed by Czesław

Lejewski [17] (pp. 128–130 in 1984), proposed the use of additional universal affirmative
sentences of the form ‘All S is a P’, which are true for any empty name standing in the
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subject (regardless of what name stands in the predicate). These sentences, therefore,
have the interpretation of universal affirmative sentences in the weak sense. Kotarbiński’s
and Lejewski’s proposal indicates that they believed that in the meaning of the phrase
‘all S’, there is no reservation about the non-emptiness of S; that is, this reservation is
implicitly related to the phrase ‘every S’. When we limit ourselves to non-empty names,
the interpretations of both types of universal affirmative sentences coincide. Namely, what
is supposed to be implicit in the meaning of ‘every S’ is implied in the assumption imposed
on the names.

Note that for new universal affirmative sentences, for all general names,

• ‘Some S is not a P’ is a contradiction of ‘All S is a P’ and vice versa.

To “save” the subalternation of denial sentences and the Camestros syllogism, it is
enough to use the strong interpretation for universal denial sentences, where we require the
non-emptiness of the name standing in the subject for their truth. Thus,

• A universal denial sentence (in the strong interpretation) is true if and only if it has a
non-empty name in the subject whose extension is disjoint with the extension of the
name of the predicate.

Lejewski [17] (p. 130 in 1984) proposed the introduction of two functors to construct
universal denial sentences. In addition to the functor of weak exclusion ‘no . . . is . . . ’, he
introduced the functor of strong exclusion ‘every . . . is not . . . ’.

To “save” the conversion per accidens of denial sentences and the Calemos syllogism,
we must use an even stronger, super-strong interpretation of universal denial sentences,
requiring both names to be non-empty for their truth. Thus,

• A universal denial sentence (in the super-strong interpretation) is true if and only if it
has non-empty names in both the subject and the predicate, the extensions of which
are disjoint.

Neither Kotarbiński nor Lejewski used this interpretation. Furthermore, they did not
introduce new sentences expressing it. In [11,18,19], it was proposed that these should be
sentences of the form ‘Every S is not a P and vice versa’. This was modelled on Kotarbiński’s
comments on the phrase ‘every S’ and on the sentences he used in the form ‘All S is a P
and vice versa’ (which state that the ranges of both names are equal).

Again, when we limit ourselves to non-empty general names, the interpretations of the
three types of universal denial sentences coincide. Indeed, this is implicit in the meaning
of ‘every S’ and explicitly implied in the assumption imposed on the names. Moreover,
what is expressly contained in the meaning of the phrase ‘and vice versa’ is implicit in
interpreting the functor ‘no . . . is . . . ’.

3. Calculus of Names as an Extension of Traditional Logic
3.1. The Genesis of the Calculus of Names

As stated in the introduction, Łukasiewicz is undoubtedly the creator of the calculus
of names. The following words from him [2] show the genesis of this calculus: (The Polish
text of [2] was translated by the author of this paper. The Polish term ‘reguła wnioskowania’
is translated as ‘rule of inference’.)

5. A fundamental difference exists between a logical thesis and a rule
of inference.

A logical thesis is a sentence in which, apart from logical constants, there are
only sentence or name variables, which is true for all values of the variables that
occur in it. An inference rule is a prescription that authorises a person which
make inferences to derive new theses based on recognised theses. For example,
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[. . . ] the principles of identity [such as “If p, then p” and “Every a is an a”] are
logical theses, but the rule of inference is the following «rule of detachment»:

Whoever accepts as true the implication “If α, then β” and the antecedent of
this implication “α” has the right to accept as true also the consequent of this
implication “β”.

The problem is that the fact that a given implication is considered to be true can be
understood differently. Since the antecedent α and the consequent β appearing in the
implication considered by Łukasiewicz have variables, two situations can be considered
(here, ‘variable’ may be replaced by ‘schematic letter’; Quine [20] wrote about the significant
difference between these terms; the name ‘calculus of names’ probably comes from the fact
that it is about “variables” for which we substitute names and perform some “calculus” on
its formulas):

1. If, with a given admissible substitution for variables (schematic letters), the schemes
‘If α, then β’ and α give true sentences, then, with this substitution, we also have a true
sentence obtained from the schema β.

2. If the formulas ‘If α, then β’ and α are logically valid (i.e., they give true sentences
under any admissible substitution for variables), then β is also logically valid.

Thus, in the first of the above points, we treat the rule of detachment as the following
valid argument form (or argument schema):

p If p, then q
q

p p → q
q

where the letters ‘p’ and ‘q’ stand in the place of sentences. However, the second point
says that the rule of detachment from two logically valid formulas always leads to such a
formula, and so it has the following scheme:

α If α then β

β

α α → β

β

where α and β represent arbitrary sentence formulas. Here, this rule is then something that,
from two logically valid formulas, “produces” a third one. Depending on needs, the rule of
detachment can perform one of the above roles or both.

The detachment rule is used in the latter role in logical calculi, including the calculus of
names. It is a “generator” of theses, and it has to be logically valid. This generator derives
theses from axioms. The detachment rule says that if α and α → β are already justified,
then β is justified. This means that a line in a derivation containing β is justified, provided
that (for some α) both α and α → β appear in the derivation before β. Since initial theses
(axioms) are logically valid, the rules used (including the rule of detachment) transform
logically valid formulas into new such formulas. Therefore, all these obtained with their
help are also logically valid.

However, in some logical calculi, not all rules perform both of the roles indicated
above. The primary example is the substitution rule used by Łukasiewicz. It says that from
any logically valid formula, every permissible substitution for “variables” gives a logically
valid formula. This rule does not even have a scheme by which to express it. Hence, it
cannot be “confused” with a scheme of correct reasoning (argument form).

Another example, which has a scheme, is the following rule of necessitation:

α

It is necessary that α

α

□α
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It is accepted in all normal modal logics. It takes us from a logically valid formula to a new
logically valid formula. However, the following argument form is not valid (where the
letter ‘p’ stands in the place of a sentence):

p
It is necessary that p

p
□p

Indeed, we have true sentences that are not necessary. For this reason, we cannot reason
according to this scheme in modal theories, where we are interested in true sentences that
are not logically true.

The above remarks generally refer to the genesis of various types of logical calculi.
The origin of the calculus of names itself can be found by continuing the quote from [2]:

6. The original Aristotelian syllogism is a logical thesis, the traditional
syllogism has the meaning of a rule of inference.

The Barbara mode given [below], [. . . ], is an implication of the type “If α and
β, then γ”, [. . . ]. As an implication, an Aristotelian syllogism is a proposition
that Aristotle holds to be true, namely that the proposition is true for all values
of the variables “a”, “b” and “c” that occur in it. Therefore, we get true sentences
if we substitute some constant values for these variables. Since in the considered
mode, apart from variables, there are only logical constants, namely “if-then”,
“and” and “every-is”, the Aristotelian syllogism is a logical thesis.

The traditional syllogism:
Every b is an a
Every c is a b
Every c is an a

is not an implication. It consists of three sentence forms, listed one under the
other, which do not form a single sentence. Since a traditional syllogism is not
a proposition, it cannot be true or false either since, according to the generally
accepted view, truth and falsity belong only to propositions. A traditional
syllogism is, therefore, not a thesis. If we substitute some constant values for
the variables in this syllogism, we do not get a proposition but an argument form.
So a traditional syllogism is an argument schema and has the meaning of a rule
of inference, which can be more precisely expressed as follows:

Whoever accepts as true premises of the form “Every b is an a” and “Every
c is a b” has the right to accept as true a conclusion of the form “Every c is an a”.
(Footnote 11 added: “How imprecise the historical studies of logic to date are is
evidenced by this very characteristic detail: all the authors I know who have
written about Aristotelian logic, [. . . ], present Aristotelian syllogisms in the
traditional form, without even realising the fundamental difference between
these forms.”)

7. Thanks to the distinction between logical theses and rules of inference, it
became possible for logical sciences to construct axiomatically in the form of
deductive systems.

The problem, however, is that Łukasiewicz used the term ‘rule of inference’ with two
meanings. Firstly, he writes that a traditional syllogism is a “rule of inference” qua a valid
argument form (or a valid argument schema), i.e., it preserves the truth in the following
sense: if its premises are true, then its conclusion is also true. Secondly, the detachment
rule he used in his calculus of names is a “rule of inference” preserving validity, i.e., from
two logically valid formulas, always leads to such a formula. It is a “generator” of theses
that must be logically valid since used axioms are logically valid.
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Łukasiewicz states that syllogisms cannot be treated as rules of inference because such
rules can transform only sentences. However, rules of inference can be viewed differently.
Namely, as in sequent calculus, they can be viewed as transforming argument forms (see
Section 4). This does not mean that we think that Aristotle’s syllogistic should be treated as
a sequent calculus, though the system presented in the next subsection can be transformed
into a sequent calculus (see Section 4). However, we mainly wanted to show that the term
‘rule of inference’ can be used in a third sense.

3.2. Łukasiewicz’s Calculus of Names

Łukasiewicz presented his reconstruction of Aristotle’s syllogistic as a calculus of
names for the first time in [1]. He repeated it in his works [2,3] and then in [4] (Section 25).
This reconstruction is presented in the continuation of the previously quoted text from [2]:

8. The theory of the Aristotelian syllogism, which Aristotle has already
tried to axiomatise, but which has not yet been presented in an axiomatic form,
is based on two fundamental concepts: “Every a is a b”, in the signs “Uab”,
and “Some a is a b”, in the signs “Iab” and on the following axioms:

1. Every a is an a.
2. Some a jest an a.
3. If every b is an a and every c is a b, then every c is an a.
4. If every b is an a and some b is a c, then some c is an a.
In the signs (the functors “U” and “I” come before the arguments, and such

same the conjunction sign “K” = “and”):
1. Uaa.
2. Iaa.
3. CKUbaUcbUca (Barbara).
4. CKUbaIbcIca (Datisi).
The expressions “Some a is not a b”, in the signs “Oab”, and “No a is a b”,

in the signs “Yab”, can be defined as follows (Łukasiewicz used his bracketless
notation here. In [4] ‘U’ and ‘Y’ were replaced by ‘A’ and ‘E’, respectively):

Df1. Oac = NUab.
Df2. Yab = NIab.
By both rules of substitution and detachment (propositional variables may

be substituted with propositional forms of Aristotelian logic, for name variables
only other name variables), and with the help of theses of propositional logic,
from these axioms and definitions, we can derive all 24 (not 14 nor 19!) the cor-
rect modes of Aristotelian syllogistic. (Footnote 14 added: “The axiomatisation
of Aristotelian syllogistic presented here, as well as the deduction of all modes,
can be found in the script from my lectures, delivered in the autumn trimester
of 1928/29 at the University of Warsaw, entitled: Elementy logiki matematycznej
[. . . ]” [1]).

We will use the aa following abbreviations for schemes of categorical sentences (the
abbreviations are derived from the vowels in the Latin words ‘affirmo’ and ‘nego’):

SaP—for ‘Every S is a P’
SiP—for ‘Some S is a P’
SeP—for ‘No S is a P’
SoP—for ‘Some S is not a P’

Using the above abbreviations, we will reconstruct the Łukasiewicz calculus, which
we will denote by Ł. We will use the countably infinite set GN of name letters (for which we
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use ‘S’, ‘P’, ‘M’, and ‘Q’ with or without indices). From the name letters and the constants
‘a’, ‘i’, ‘e’, and ‘o’, we build atomic formulas corresponding to the abbreviations of categorical
sentences given above. Moreover, we use the Boolean propositional connectives ‘¬’, ‘∧’, ‘∨’,
‘→’, and ‘↔’ (for negation, conjunction, disjunction, material implication, and equivalence)
and brackets. The set of atomic formulas determines the set ForŁ of all formulas of Ł,
which is built in the standard way from the atomic formulas, the Boolean propositional
connectives, and brackets. Thus, ForŁ is the smallest set X such that

• all atomic formulas belong to X,
• if α, β ∈ X and ∗ ∈ {∧,∨,→,↔}, then ¬α ∈ X and (α ∗ β) ∈ X.

Let us adopt the following notation of Łukasiewicz’s four axioms. The first two are
the principles of “identity” (see the quote from [2] on p. 6), and the next two correspond to
the traditional Barbara and Datisi syllogisms:

SaS (Ia)

SiS (Ii)

(MaP ∧ SaM) → SaP (Barbara)

(MaP ∧ MiS) → SiP (Datisi)

In the last quote, Łukasiewicz adopted three rules for deriving theses: detaching, substitut-
ing, and defining. The last one does not apply today. Instead, additional specific axioms
are introduced as equivalences called definitions (it can also be assumed that the notations
of the form ‘SeP’ and ‘SoP’ are only abbreviations for the formulas ‘¬ SiP’ and ‘¬ SaP’,
respectively; this means that the formers are not among the formulas at all, and such a
solution for ‘SoP’ was attempted by Słupecki [10]; see the further point in Section 5.2).
In our case, these equivalences will assume the contradictions of the pairs SeP – SiP and
SaP – SoP:

SeP ↔ ¬ SiP (df e)

SoP ↔ ¬ SaP (df o)

Łukasiewicz added fourteen tautologies of implication–negation fragments of classical
propositional logic (CPL), in which he replaced propositional variables with schemes
of categorical sentences and their conjunctions [4] (pp. 88–89 in 1957). To facilitate the
derivation of theses, all substitutions of all CPL tautologies with formulas of the calculus of
names can be adopted as axioms. However, the essence of this calculus is contained in its
specific axioms, i.e., in (Ia), (Ii), (Barbara), (Datisi), (df e), and (df o).

Further, to obtain theses of Ł, without detailed explanations, we will use the necessary
tautologies of CPL and the rules of detachment and uniform substitution. We will only
specify on the left side of a given thesis which axioms or previously obtained theses should
be used. We obtain all implications corresponding to the argument schemes of traditional
logic given in Section 2.2:

(Ci) PiS → SiP conversion, by (Ia) and (Datisi)
(Ce) PeS → SeP conversion, by (Ci) and (df e)
(aSi) SaP → SiP subalternation, by (Ii) and (Datisi)

SaP → PiS conversion per accidens, by (aSi) and (Ci)
(eSo) SeP → SoP subalternation, by (aSi), (df e) and (df o)

SeP → PoS conversion per accidens, by (eSo) and (Ce)
SaP → ¬ SeP contrariety, by (aSi) and (df e)
¬ SiP → SoP subcontrariety, by (aSi) and (df o)
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(Barbari) (MaP ∧ SaM) → SiP by (Barbara) and (aSi)
(Darapti) (MaP ∧ MaS) → SiP by (Datisi) and (aSi)
(Bamalip) (PaM ∧ MaS) → SiP by (Barbara), (aSi) and (Ci)
(Camestros) (PaM ∧ SeM) → SiP by (Barbari), (df e) and (df o)
(Calemos) (PaM ∧ MeS) → SiP by (Camestros) and (Ce)
Felapton) (PeM ∧ MaS) → SoP by (Barbari), (df e) and (df o)
(Fesapo) (MeP ∧ MaS) → SoP by (Felapton) and (Ce)
(Celaront) (MeP ∧ SaM) → SoP by (Darapti), (df e) and (df o)
(Cesaro) (PeM ∧ SaM) → SoP by (Celaront) and (Ce)

Note that apart from (Ci) and (Ce), the rest of the above implications cannot be obtained
without using (Ii). Moreover, similarly, but without using (Ii), we obtain implications
corresponding to the remaining thirteen traditional syllogisms.

We consider Łukasiewicz’s system to be traditional because, just like traditional logic,
we can apply it only to non-empty names. We say that a formula is a traditional lexical
tautology if and only if it gives true sentences in all substitutions of non-empty general
names for name letters (variables). It is proved (e.g., [19]) that this system is sound and
complete in the sense that all lexical tautologies and only them are its theses.

The great advantage of the approach to the logic of names proposed by Łukasiewicz
is that for the semantic study of a given system, we can use methods known from the
metatheory of propositional and predicate logics (e.g., [19,21,22]). Moreover, we can
consider a given system one of the open first-order theories and use meta-theorems about
such theories [9,22].

Remark 1. We can also consider another version of Ł, which we obtain by rejecting the rule of
uniform substitution and accepting all substitution instances of the axioms of Ł as its specific
axioms. We can show that both versions have the same theses [13]. This second version was used,
among others, in [9].

3.3. Set-Theoretic Semantics for Łukasiewicz’s Calculus

Traditional models. In the semantic study of Ł, from a formal point of view, instead of
speaking of substitutions of general names for name letters, for ForŁ, it is better to use
set-theoretic semantics, which use traditional models of the form ⟨U, D⟩, where

• U is a non-empty set (universe),
• D is a function of denotation, which assigns to any name letter a non-empty subset of U.

(Like Corcoran [6] (p. 103), we could assume that the model (interpretation) is just the
mapping D itself, which assigns to any name letter a non-empty set.)

Using the previously given interpretation of the functors ‘a’, ‘i’, ‘e’, and ‘o’, we intro-
duce the notions of being a true formula in a model M = ⟨U, D⟩. For atomic formulas, for any
letters S and P , we assume the following:

• SaP is true in M iff the set D(S) is included in the set D(P);
• SiP is true in M iff the sets D(S) and D(P) have a common element;
• SeP is true in M iff the sets D(S) and D(P) have no elements in common;
• SoP is true in M iff D(S) has an element which is not an element of D(P).

For formulas built with propositional connectives, we use truth tables, i.e., we interpret
these connectives as in CPL.

We say that a formula is a traditional (set-theoretic) tautology (or is traditionally valid) if
and only if it is true in all traditional models. As can be easily seen, Ł is sound with regard
to set-theoretic semantics. Indeed, all axioms of Ł are traditional tautologies; uniform
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substitution and the detachment rule preserve the traditional validity of the formulas.
In Section 7, we show different ways of proving the completeness of Ł.

Set-theoretic tautologies vs. lexical tautologies. Since, to each general name, we can
assign a set that is its extension, every set-theoretic tautology is also a lexical tautology.
On the other hand, if every set was an extension of some name, then without any additional
conditions, it could be proved that the opposite holds, i.e., that every lexical tautology is a
set-theoretic tautology.

In fact, we lack names; we cannot assign a name to each set that would cover all of
its elements. However, as we know, in the model theory of predicate logic and, therefore,
the logic of names, not all sets are needed. Those that are determined by the formulas of
elementary number theory with one free variable will suffice. This theory covers what
can be said about natural numbers using the names of individual numbers, addition,
multiplication, equal signs, propositional connectives, and quantifiers. Both definitions of
tautologies denote the same set of formulas if the natural language, whose general names
we substitute for name letters, satisfies the following condition:

• For every set of natural numbers described above, there is a general name whose
extension is this set.

The above condition is not too high. After all, we are talking about such general names
as ‘smallest natural number’, ‘largest natural number’, ‘even number’, ‘number greater
than 10’, and similar others.

Polyreferential set-theoretic semantics for Łukasiewicz’s calculus. A general name that
has at least two referents (or exactly one referent) we will call polyreferential (or monoreferen-
tial). These names correspond to polyreferential models having the form ⟨U, D⟩, where U is a
set that has at least two elements and D is a function of denotation, which assigns to any
name letter a subset of U that has at least two elements.

Of course, polyreferential models are also traditional, and we use the same interpreta-
tion of formulas as in all traditional models.

We say that a formula is a polyreferential (set-theoretic) tautology if and only if it is true
in all polyreferential models. Since Ł is sound with respect to all traditional models, it is
also sound with respect to all polyreferential models. In remarks in Section 7, we will show
that Ł is complete with respect to all polyreferential models.

4. Other Possible Formal Approaches to Syllogistics
In this paper, we omit the disputes (e.g., [5–7]) over what Aristotle’s syllogisms are

and what form Aristotle’s syllogistic itself has, as it is irrelevant here. Below, we will show
that, according to Corcoran’s views, we can treat syllogisms as argument forms and apply
other types of inference rules to them. Smiley’s views on syllogisms and syllogistics will be
presented at the end of this section.

We use the notations of the form π1, . . . , πn =⇒ ω for (valid) argument schemes,
where lowercase Greek letters represent arbitrary sentence formulas as their premises
and conclusion (we assume that repeated premises and their order are unimportant in
a given sequent; therefore, we identify sequents that differ in one or both of these fea-
tures). Moreover, the notations of the form =⇒ ω are to express tautologies. A sequent
π1, . . . , πn =⇒ ω corresponds to the implication (π1 ∧ · · · ∧ πn) → ω.

One of the possible solutions is to use an appropriate natural deduction system with
inference rules corresponding to acceptable argument forms and the so-called proof con-
struction rules. With their help, we derive new argument forms. For example, Corcoran
[6,23] proposes an understanding of the Aristotelian syllogistic in which the proof construc-
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tion rule consists of assumption proofs, and selected correct syllogistic modes (as valid
argument forms) are treated as rules of inference. Corcoran presented this approach in his
polemic on Łukasiewicz. The presentations of Aristotle’s syllogistic in the form of a natural
deduction system can be found, among others, in [8,24,25].

Another possible solution is to reconstruct traditional logic using sequent calculus.
As axioms, we can accept the sequents corresponding to all substitution instances of the
axioms of Ł for all S,P,M ∈ GN (Remark 1):

=⇒ SaS (Ia)

=⇒ SiS (Ii)

MaP,SaM =⇒ SaP (Barbara)

MaP,MiS =⇒ SiP (Datisi)

SeP ⇐⇒ ¬SiP (df e)

SoP ⇐⇒ ¬SaP (df o)

where for formulas α and β, α ⇐⇒ β is short for two sequents α =⇒ β and β ⇐⇒ α.
Moreover, to facilitate the derivation of successive sequents, all sequents correspond-

ing to all substitutions of all consequents and tautologies in CPL with formulas from ForŁ

can be taken as CPL axioms. In other words, if we have a consequence φ1, . . . , φn ⊨ ψ in
CPL, then we take as an axiom the sequent π1, . . . , πn =⇒ ω, obtained from the consequent
by substituting the propositional letters with formulas from ForŁ. For example, we have
axiomatic sequents obtained from α ⇐⇒ ¬¬ α.

Further, we will write finite sequents of premises (possibly empty) using capital Greek
letters. To “generate” sequents, we use derivation (inference) rules such as the cut rule.
In the considered case, it will have the following form:

A =⇒ α B, α =⇒ ω

A, B =⇒ ω

For example, using the cut rule, from the sequents =⇒ SiS and SaP, SiS =⇒ SiP, we get the
sequent SaP =⇒ SiP corresponding to (aSi). Applying the cut rule to the sequents =⇒ PaP
and PaP, PiS =⇒ SiP, we get the sequent PiS =⇒ SiP corresponding to (Ci).

By the cut rule and the CPL axioms α, β =⇒ α ∧ β, α ∧ β =⇒ α, α ∧ β =⇒ β, α, β =⇒
α ∧ β, α, α → β =⇒ β, α ↔ β, α =⇒ β, α ↔ β, β =⇒ α, and α → β, β → α =⇒ α ↔ β, we
obtain the following derivable rules:

Π, α, β =⇒ ω

Π, α ∧ β =⇒ ω

Π, α ∧ β =⇒ ω

Π, α, β =⇒ ω

Π =⇒ α Π′ =⇒ β

Π, Π′ =⇒ α ∧ β

Π =⇒ α → β

Π, α =⇒ β

Π =⇒ α → β Π =⇒ α

Π =⇒ β

=⇒ α ↔ β

α ⇐⇒ β

Π =⇒ α → β Π′ =⇒ β → α

Π, Π′ =⇒ α ↔ β

In addition, as it is primary, the following deduction rule must be adopted:

Π, α =⇒ ω

Π =⇒ α → ω
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Notice that, using the deduction rule, by α → β,¬β =⇒ ¬α, α → ¬β, β =⇒ ¬α, ¬α →
β, β =⇒ ¬α (or α → β ⇐⇒ ¬β → ¬α, α → ¬β ⇐⇒ β → ¬α, and ¬α → β ⇐⇒ ¬β → α),
we obtain the following derivable contraposition rules:

Π, α =⇒ β

Π,¬β =⇒ ¬α

Π,¬α =⇒ ¬β

Π, β =⇒ α

Π,¬α =⇒ β

Π,¬β =⇒ α

Π, α =⇒ ¬β

Π, β =⇒ ¬α

Indeed, for example, suppose that Π, α =⇒ β. Then, by the deduction rule, we have
Π =⇒ α → β. Hence, by α → β,¬β =⇒ ¬α and cutting, we get Π,¬β =⇒ ¬α. The
procedure is similar for the other rules.

Moreover, using cutting, contraposition, and α ∨ β ⇐⇒ ¬(¬α ∧ ¬β), we obtain the
following derivable rules for disjunction:

Π, α ∨ β =⇒ ω

Π, α =⇒ ω

Π, α ∨ β =⇒ ω

Π, β =⇒ ω

Π, α =⇒ ω Π′, β =⇒ ω

Π, Π′, α ∨ β =⇒ ω

Indeed, for example, suppose that Π, α =⇒ ω and Π, β =⇒ ω. Then, by contraposition,
we get Π,¬ω =⇒ ¬α and Π,¬ω =⇒ ¬β. So, by an obtained derivable rule, we get
Π,¬ω =⇒ ¬α ∧ ¬β and Π,¬(¬α ∧ ¬β) =⇒ ω. Hence, by α ∨ β ⇐⇒ ¬(¬α ∧ ¬β) and
cutting, we get Π, α ∨ β =⇒ ω. The procedure is similar for the other rules.

Using the above rules, we obtain two new derivable rules that give the connection
between syllogisms as formulas and as sequents:

π1, . . . , πn =⇒ ω

=⇒ (π1 ∧ · · · ∧ πn) → ω

=⇒ (π1 ∧ · · · ∧ πn) → ω

π1, . . . , πn =⇒ ω

The above consideration shows that the reconstruction of Aristotle’s syllogistic as a
sequent calculus is equivalent to the reconstruction given by Łukasiewicz.

Another reconstruction of Aristotle’s syllogistic was given by T. J. Smiley [7]. He writes
(p. 139):

Given that Aristotle is concerned with deductions, i.e., with how conclusions
may be derived, we should expect him to be equally concerned with deducibility,
i.e., with what conclusions are derivable. We should also bear in mind that
deducibility can be discussed either by means of verbs such ‘as . . . implies . . . ’ or
‘. . . follows from . . . ’, or by means of conditionals such as ‘if . . . then necessarily . . . ’
or plain ‘if . . . then . . . ’; the difference between the verbal form and the conditional
form being merely the difference between mention and use. In this way think
we can explain Aristotle’s frequent use of conditionals in his discussions of
syllogistic without needing to identify, as Łukasiewicz does, the conditionals
with the syllogisms themselves.

Smiley says that Aristotle’s “argumentative structure” is suitably expressed by a proof-
sequence or deduction. To reconstruct Smiley’s notion of deduction, let us assume that π and α

represent schemas of categorical sentences, and Π represents their sets. Standardly, for all
name letters S and P, SaP and SoP (or SiP and SeP) are mutually contradictory. Smiley
[7] (p. 141) accepts the following “rules of inference”:

• SaM,MaP▷1 SaP

• SaM,MeP▷2 SeP

• PeS▷3 SeP

• PaS▷4 SiP

Two of them correspond to the Barbara and Celarent syllogisms, the third is the law of
conversion of universal denial sentences, and the fourth is the law of conversion per accidens
of affirmative sentences. Smiley’s reconstruction of Aristotle’s syllogistic is, thus, a kind
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of natural deduction system. We will show that it can also be represented as a kind of
sequent calculus.

To signify that there exists a deduction of ω from Π, Smiley [7] (p. 142) writes Π ⊢ ω.
Smiley gives the definition of formal deduction inductively. We will write this by using
one trivial deduction (α ⊢ α), a certain form of cutting, and the rule reductio ad impossibile:

Π1 ⊢ α1 Π2 ⊢ α2 α1, α2 ▷i ω

Π1, Π2 ⊢ ω
for i = 1, . . . , 4

Π1, ω ⊢ α Π2 ⊢ α

Π1, Π2 ⊢ ω

where α is the formula contradicting α (in the cut rule, Smiley used the following form for
any n, although n = 2 is sufficient since inference rules have one or two premises:

Π1 ⊢ α1 Πn ⊢ αn α1, . . . , αn ▷i ω

Π1, . . . , Πn ⊢ ω
for i = 1, . . . , 4)

Of course, using trivial deductions and cutting, for every i = 1, . . . , 4, we obtain

• If α1, α2 ▷i ω, then α1, α2 ⊢ ω.

In the above way, Smiley reconstructed Aristotle’s syllogistic (without the fourth
figure). We see that his reconstruction can be represented as a sequent calculus. However,
here, the sequents represent deductions, not argument forms.

Let us note, however, that Łukasiewicz rejected the alternative approaches to the
reconstruction of Aristotle’s syllogistic presented above. He believed that Aristotle’s
syllogisms have the form of implications.

5. Calculi Allowing Empty Names
We will present calculi that can also be applied to empty general names. As a standard,

we will assume that both functors of affirmative sentences will be primitive. The remaining
functors will be definable using the primitive ones. We understand the functor of particular
affirmative sentences with its natural interpretation, and we leave the abbreviation ‘i’ for
it. The problem, however, is that the functor for universal affirmative sentences has two
variations that differ when applied to empty names. As it is primitive, we will take the
weak interpretation in the first two points of this section and the strong one in the rest.

5.1. Shepherdson’s Approach

Shepherdson’s ai-system. For the weak interpretation of the functor for universal affir-
mative sentences, we will leave the abbreviation ‘a’ and—according to the proposal of
Kotarbiński and Lejewski—we can read it as ‘all . . . is . . . ’. The set of ai-formulas is built in
the standard way from the atomic formulas, the Boolean propositional connectives, and
brackets. For the set of the primitive functors ‘a’ and ‘i’, Shepherdson [9] proposed an
axiomatisation of the ai-system. Of Łukasiewicz’s four axioms, he left (Ia), (Barbara), and
(Datisi) but rejected the principle of identity (Ii) since it turns into a false sentence for all
empty names. Instead, Shepherdson took two axioms weaker than (Ii):

SiP → SiS (⋆)

¬ SiS → SaP (⋆⋆)

The first one says that every true particular affirmative sentence has a non-empty subject.
The second enforces the truth of all universal affirmative sentences with empty subjects.
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Notice that now, using only (Datisi), we obtain the following polysyllogisms:

(MiQ ∧ MaP ∧ QaS) → SiP (Datisi+)

(MiM ∧ MaP ∧ MaS) → SiP (Darapti+)

Of course, from (Datisi+) and (Ia), we obtain (Datisi).

The Shepherdsonian aieo-system. We can extend the set of ai-formulas to the set of aieo-
formulas as for Łukasiewicz’s calculus. To Shepherdson’s axioms, we add (df e) and (df o).
Moreover, all substitutions of all CPL tautologies with aieo-formulas are also accepted as
axioms. By Sh, we denote the system that has Shephedson’s axioms, definitions (df e) and
(df o), and two rules for deriving theses: detachment and substitution. We remember that
using these means, from (Ia) and (Datisi), we get (Ci). Moreover, by (Ci) and (df e), we get
(Ce). Of course, all theses of the Shepherdsonian aieo-system are also theses of Ł.

Remark 2. We can also consider another version of Sh, which we obtain by rejecting the rule of
uniform substitution and accepting all substitution instances of the axioms of Sh as its specific
axioms. We can show that both versions have the same theses [13]. This second version was used,
among others, in [9].

Definitional extensions of Sh. Let us define the unary functor ‘ex’ (“exists”) with which
we state the non-emptiness of a given name:

exS ↔ SiS (df ex)

Remark 3. The formula ‘exS’ is a thesis of Ł with respect to its axiom (Ii). Therefore, it makes no
sense to introduce definition (df ex) in Łukasiewicz’s calculus.

From axioms (⋆) and (⋆⋆), definition (df ex), and thesis (Ci) we have, respectively,

SiP → (exS ∧ exP)

¬ exS → SaP

From the above, (Datisi), and (df ex), we obtain

(SaP ∧ exS) → Si P

(SaP ∧ exS) → exP

Moreover, from (df o), (df e), and the theses already obtained, using CPL, we get

(¬ exS ∨ ¬ exP) → Se P

SoP → ex S

(SeP ∧ exS) → SoP

(SeP ∧ exP) → PoS

(exS ∧ ¬ exP) → SoP

For the strong interpretation of the functor of universal affirmative sentences, we
adopt the abbreviation ‘ȧ’, and—following Kotarbiński and Lejewski—we can read it as
‘every . . . is . . . ’. For ‘ȧ’, we adopt the following definition:

SȧP ↔ (exS ∧ SaP) (df ȧ)
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So, we obtain the following theses:

SȧP → SiP (ȧSi)

SȧP → (exS ∧ exP)

Now, let us—following Kotarbiński—introduce two symmetrical equality functors
for sentences of the form ‘All S is a P and vice versa’ and ‘Every S is a P and vice versa’.
Instead of those, Lejewski [17] (p. 130 in 1984) used sentences of the form ‘S is identical
with P’ (“the functor of weak identity”) and ‘Only every S is a P’ (“the functor of strong
identity”), respectively. What we are talking about here is the identity of the extensions of
two general names. Let us take the abbreviations ‘⊜’ and ‘ .

=’ for these functors and the
following definitions:

S⊜P ↔ (SaP ∧ PaS) (df⊜)

S .
=P ↔ (SȧP ∧ PȧS) (df .

=)

As we remember, apart from the weak interpretation of universal denial sentences,
we have two other interpretations: strong and super-strong. To express the former, we
can use the functor ‘no . . . is . . . ’, leaving ‘e’ and the definition (df e). For the strong and
super-strong interpretations, we can use the functors ‘every . . . is not . . . ’ and ‘every . . . is
not . . . and vice versa’, the abbreviations ‘ė’ and ‘ë’, and the following definitions:

SėP ↔ (exS ∧ SeP) (df ė)

SëP ↔ (exS ∧ exP ∧ SeP) (df ë)

So, the functor ‘ë’ is symmetrical, but ‘ė’ is not. Moreover, we have

SėP → SoP

SëP → (SoP ∧ PoS)

Set-theoretic semantics for Sh. In the semantic study of Sh, we can use set-theoretic
semantics as for Ł. Now, however, we use models of the form ⟨U, D⟩, where the universe U

is an arbitrary set (may be empty), and the denotation function D assigns to name letters
arbitrary subsets of U. With this only change, in the same way as in the first point of
Section 3.3, we define the notions of a formula being true in a model and of being a tautology.

For definitional extensions of Sh, we re-introduce the notion of a formula being true in a
model. For any model M = ⟨U, D⟩, for all S,P ∈ GN, we assume the following:

• exS is true in M iff the set D(S) is non-empty;
• SȧP is true in M iff the set D(S) is non-empty and is included in D(P);
• S⊜P is true in M iff D(S) = D(P);
• S

.
=P is true in M iff D(S) = D(P) and the set D(S) is non-empty;

• SėP is true in M iff the set D(S) is non-empty and is disjoint with D(P);
• SëP is true in M iff the sets D(S) and D(P) are non-empty and they are disjoint.

For formulas built with propositional connectives, we use the standard truth tables.
We say that a formula is a (set-theoretic) tautology (or is valid) if and only if it is true in all
models. With the above interpretation, all accepted definitions are tautologies. As can be
easily seen, Sh is sound with regard to set-theoretic semantics. Indeed, all axioms of Sh
are tautologies; uniform substitution and the detachment rule preserve the validity of the
formulas. In Section 7, we show different ways of proving the completeness of Sh.



Axioms 2025, 14, 160 17 of 32

Remark 4. It can be assumed that model universes are non-empty. Namely,
A formula is a tautology if and only if it is true in every model with a non-empty universe.
Indeed, if α is true in every model with a non-empty universe, then it is true in a model with

D(S) = ∅ for each S ∈ GN. Hence, α is also true in the model with U = ∅.

Non-monoreferential set-theoretic semantics for a Shepherdsonian system. We remember
that in using Łukasiewicz’s calculus, we can exclude monoreferential names (empty names
are excluded out of necessity). In Section 7, we will show that Shepherdsonian systems can
apply only for non-monoreferential (i.e., empty or polyreferential) names. These names
corresponding to non-monoreferential models having the form ⟨U, D⟩, where

• U is a set that has at least two elements;
• D is a function of denotation that assigns to any name letter either the empty set or a

subset of U with at least two elements.

Of course, non-monoreferential models are also standard, and we use the same inter-
pretation of formulas as in all models.

We say that a formula is a non-monoreferential tautology if and only if it is true in all
non-monoreferential models. Since Sh is sound with respect to all models, it is also sound
with respect to all non-monoreferential models. In remarks in Section 7, we will show that
Sh is complete with respect to all non-monoreferential models.

5.2. Słupecki’s Approach

Słupecki’s system. Słupecki [10] proposed a calculus of names in which the functors of
affirmative sentences were primary and adopted the strong interpretation for universal
affirmative sentences. Therefore, we can abbreviate these functors as ‘ȧ’ and ‘i’, respectively.
The theses of Słupecki’s calculus can also be applied to empty names. This system includes
all correct Aristotelian syllogisms, the laws of the logical square, and conversion laws.

Słupecki adopted four ȧi-tautologies as axioms. The first is the law of conversion (Ci),
the second is the law of subordination (ȧSi), and the others are two syllogisms:

(MȧP ∧ SȧM) → SȧP (Bȧrbȧrȧ)

(MȧP ∧ SiM) → SiP (Dȧrii)

Moreover, Słupecki also adopts (df e) and a specific definition of the functor of par-
ticular denial sentences. It cannot be (df o) because it has ‘a’, not ‘ȧ’. Visually, however,
the definition adopted by Słupecki corresponded to (df o) because he used the letter ‘a’ but
understood it in the strong sense. Since we have established the meanings of the symbols
‘a’, ‘ȧ’, and ‘o’, we cannot replace ‘a’ with ‘ȧ’ in (df o), leaving the symbol ‘o’. We need to
replace the latter with another symbol. Let us assume that this symbol is ‘õ’ and that the
definition adopted for it is

SõP ↔ ¬ SȧP (df õ)

Moreover, all substitutions of CPL tautologies with ȧieõ-formulas are accepted as axioms.
We also have two derivation rules: detachment and substitution.

Notice that accepting (df õ) causes some interpretation complications. According to the
adopted interpretation for ‘ȧ’, we will get the interpretation of ‘õ’, which is not consistent
with the linguistic usage for particular denial sentences (cf. Section 2.3). Namely, it turns
out that a sentence of the form ‘SõP’ is to be true iff either the name S is empty or it has
a referent that is not a referent of the name P. Słupecki himself saw this [10] (p. 189). He,
therefore, tried to circumvent the difficulty by advising that
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[. . . ] the sentence Oab [corresponds to our ‘SõP’] understand only as an abbrevia-
tion of the sentence NUab [corresponds to our ‘¬ SȧP’] and read: it is not the case
that every a is a b (The author of this paper translates the Polish text from [10]).

Thus, we are to reject the original finding that his ‘O’ (corresponding to ‘õ’) is the
symbolic notation of the functor ‘some . . . is not . . . ’ and assume that it is only the symbolic
notation of the phrase ‘it is not the case that every . . . is . . . ’. The consequences of this
are as follows. The meaning of ‘SõP ↔ ¬ SȧP’ is just an abbreviation of the identity
‘¬ SȧP ↔ ¬ SȧP’. Similarly, ‘(PȧM ∧ SõM) → SõP’ and ‘(MõP ∧ MȧS) → SõP’ are only
abbreviations for ‘(PȧM ∧¬ SȧM) → ¬ SȧP’ and ‘(¬MȧP∧ MȧS) → ¬ SȧP’ obtained from
(Bȧrbȧrȧ) after substitution and the contraposition of CPL. In the alphabet of Słupecki’s
calculus, no symbol would represent the functor of particular denial sentences.

As already mentioned, in Słupecki’s system, all Aristotelian syllogisms, as well as the
logical square and conversion laws written with ‘ȧ’, ‘i’, ‘e’, and ‘õ’, are obtained. However,
as shown in [11], the theses of this system are not, for example, the following ȧi-tautologies:
(⋆) and

SiS → Sȧ S

SiP → SȧS (†)

SȧP → SiS (‡)

SȧP → Sȧ S

SȧP → PȧP

However, one cannot claim that Słupecki did not want to obtain implications with identities
in consequents because, by (Dȧrii), (Ci), and (ȧSi), we get

PȧS → SiS (%)

Complete axiomatisations of ȧi-tautologies. In [11,18,19], it was shown that the following

four sets form full axiomatisations of all ȧi-tautologies:

A. Słupecki’s axioms plus formula (†);
B. (Ci), (Bȧrbȧrȧ), and (Dȧrii) plus formulas (†) and (‡);
C. (ȧSi) and (Bȧrbȧrȧ) plus (†) and the following formula:

(MȧP ∧ MiS) → SiP (Dȧtisi)

D. (Bȧrbȧrȧ), (Dȧtisi), (†), and (‡).

To the complete axiomatisations of ȧi-tautologies, we can add the following definition
of the functor ‘a’:

SaP ↔ (¬ SȧS ∨ SȧP) (df a)

This gives us
SaP ↔ (¬ SiS ∨ SȧP)

Having ‘a’, we can introduce (df o) and definitions of other functors given in Section 5.1.
In [18], the definitional equivalence of Sh with the four equivalent systems for ȧieo-

tautologies was demonstrated. So, these systems are complete. In [19], Henkin’s method
proved this.
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6. The Modern Syllogistic with Leśniewski’s Copula
6.1. On Leśniewski’s Copula and Related Functors

Leśniewski’s singular sentences and sentences about the identity. The copula ‘is’ is
the only primitive of Leśniewski’s Ontology. This theory can be classified as a quantifier
calculus of names. In this work, however, we deal only with the quantifier-free calculus
of names.

Leśniewski applied his Ontology to all names without dividing them into proper
names and explicit or implicit descriptions and without distinguishing whether they are
general or singular. Moreover, his theory is applicable to all names: empty, monoreferential,
and polyreferential. He had one type of variable for all names. Since, in this paper, we are
interested in Ontology only in the context of the (quantifier-free) logic of names, we will
use schematic letters instead of variables. Leśniewski understood affirmative sentences
with the copula ‘is’ as follows:

• ‘S is a P’ is true if and only if the name S has exactly one referent, which is a referent
of the name P.

Leśniewski’s copula ‘is’ will be standardly symbolized by the Greek letter ‘ε’ (which
refers to the Latin ‘est’). So, Leśniewski’s sentences have the symbolic notation ‘SεP’.

Leśniewski also used singular denial sentences of the form ‘S is not a P’ (in short,
‘Sε̄P’) and sentences about the identity of objects (in short, ‘S=P’). His denial sentences
are not equivalent to their affirmative counterparts. Leśniewski understood these two
sentences as follows:

• ‘Sε̄P’ is true if and only if the name S has exactly one referent which is not a referent
of the name P.

• ‘S=P’ is true if and only if the names S and P have the same (one) referent.

For ‘ε̄’ and ‘=’, Leśniewski used the following definition:

Sε̄P ↔ (SεS ∧ ¬ SεP) (df ε̄)

S=P ↔ (SεP ∧ PεS) (df =)

He also used (df⊜) to definite the identity of the extensions of names.

Remark 5. Leśniewski’s sentences ‘SεP’, ‘Sε̄P’ and ‘S=P’ should be distinguished from traditional
singular sentences and standard identities that of one of the following forms: ‘a is a P’, ‘a is not a P’,
and ‘a is identical to b’, where their only singular names with exactly one referent can be inserted
for ‘a’ and ‘b’, and for the letter ‘P’, we can use any general name (cf. the point in Section 8.1).

Moreover, Leśniewski’s sentences ‘SεP’ and ‘Sε̄P’ should be distinguished from singular
sentences that of one of the following forms: ‘This S is a P’ and ‘This S is not a P’, where, as in [26],
only non-empty general names can be inserted for the letters, and ‘this S’ denotes a selected object
from the extension of S. Other solutions are also possible, but they give rise to various difficulties of
interpretation (cf. the point in Section 8.2).

Set-theoretic semantics for Leśniewski’s functors. For any model M = ⟨U, D⟩, we extend
the notion of being a true formula for Leśniewski’s use of functors. So, for all name letters S
and P, we accept the following:

• SεP is true in M iff D(S) is a singleton whose only element belongs to D(P).
• Sε̄P is true in M iff D(S) is a singleton whose only element does not belong to D(P).
• S=P is true in M iff D(S) and D(P) are identical singletons.

Thus, (df ε̄) and (df =) are tautologies.



Axioms 2025, 14, 160 20 of 32

6.2. The Quantifier-Free Fragment of Ontology

Ishimoto [12] (Theorem 3.4) showed that the quantifier-free fragment of Ontology (in
short: quantifier-free Ontology) is axiomatisable with the following three theses:

SεP → SεS (Ish1)

(MεP ∧ SεM) → SεP (Ish2)

(PεS ∧ SεM) → SεP (Ish3)

and all substitutions of CPL tautologies with formulas of the form SεP plus detachment
and substitution rules. Of course, by (Ish1), instead of (Ish3), we can take

(PεS ∧ SεS) → SεP (Ish3′)

It is easy to check that (Ish1)–(Ish3) and (Ish3′) are ε-tautologies. Furthermore, Mitio Takano
[27] showed that (Ish1)–(Ish3) are a complete axiomatisation of the set of ε-tautologies.

6.3. The Fusion of Shepherdson’s System with the Quantifier-Free Ontology

The copula ‘ε’ is not definable by the pair of the functors ‘a’ and ‘i’. Therefore, ‘ε’ must
be added to them as a primitive functor. In [19,21], four complete axiomatisations of the
set of aiε-tautologies are given. They all extend the axioms of Sh. In each of them, we add
some aiε-tautologies.

I. (Ish1) and

SεP → SaP (1)

SεS → SiS (2)

(SaM ∧ MεM ∧ SiP) → SεP (3)

II. (Ish1), (1), (2) and

(SεS ∧ SaP) → SεP (4)

(SεS ∧ SiP) → SaP (5)

(SaP ∧ SiS ∧ PεP) → SεS (6)

III. (Ish1), (1), (2), (6) and
(SiP ∧ SεS) → SεP (7)

IV. (Ish1), (1), (2), (7) and
(SaP ∧ PεS) → SεS

Notice that we do not need to take (Ish2) and (Ish3) as axioms. Indeed, firstly, from (1)
and (Barbara), we have (SεM ∧ MεP) → SaP and SεM → SaM. From (Ish1) and (2), we
get SεM → SiS and MεP → MεM. From (Datisi), we get (SaP ∧ SiS) → SiP. Thus, using
(3), we get (Ish2). Secondly, by (Ia) and (3), we get (PεP ∧ PiS) → PεS. By (Ish1), (1), and
(2), we get SεP → SaP and SεP → SiS. Hence, by (1) and (Datisi), we get SεP → SiP. Now,
by (Ia) and (Datisi), we get SiP → PiS. So, we get (Ish3′) and (Ish3) by (Ish1).

From (Ish1), (1), (Barbara), and (4), we obtain

(SεM ∧ MaP) → SεP (8)

Moreover, by (Ish1), (2), (6), (Barbara), and (4), we get

(SiS ∧ SaM ∧ MεP) → SεP (9)
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We also add two definitions (df e) and (df o), and all substitutions of all CPL tautologies
with aieoε-formulas are also accepted as axioms. By Shε, we denote the system that has
Shepherdson’s axioms, the axiom of group I, definitions (df e) and (df o), and two rules for
deriving theses: detachment and substitution.

Remark 6. We can also consider another version of Shε, which we obtain by rejecting the rule of
uniform substitution and accepting all substitution instances of the axioms of Shε as its specific
axioms. We can show that both versions have the same theses.

Set-theoretic semantics. In the semantic study of Shε, we can use set-theoretic semantics
for Sh, additionally using the interpretation for ‘ε’. As can be easily seen, Shε is sound
regarding set-theoretic semantics. Indeed, all of its axioms are tautologies, and substitution
and detachment preserve the validity of formulas. In Section 7, we show different ways of
proving the completeness of Shε.

Remark 7. From the completeness of Sh and Shε, we obtain that Shε is a conservative extension
of Sh, i.e., every formula of Sh being a thesis of Shε is a thesis of Sh.

6.4. Systems for ȧiε-Tautologies

The copula ‘ε’ is also not definable by the pair of functors ‘ȧ’ and ‘i’. In [19], complete
axiomatisations of ȧiε-tautologies are given by adding to any of four complete axiomatisa-
tions of ȧi-tautologies from the point in Section 5.2 counterparts of formulas from set I of
aiε-tautologies from the point in Section 6.3, i.e., formulas (Ish1) and

SεP → SȧP (1̇)

(SȧM ∧ MεM ∧ SiP) → SεP (3̇)

Formula (2) is redundant according to (1̇) and (ȧSi). Having the definitional equivalence of
Shepherdson’s system for ai-tautologies with the four equivalent systems for ȧi-tautologies,
one can show the definitional equivalence of each of the given aiε-systems with each of the
given ȧiε-systems (see [19]).

The completeness of axiomatisations of ȧiε-tautologies. The presented axiomatisations
of ȧiε-systems are complete since they are definitionally equivalent to given complete
aiε-systems.

7. Methods for the Completeness of Calculi of Names with Respect to
Set-Theoretic Semantics

In this section, we present methods for obtaining the completeness of the considered
calculi with respect to set-theoretic semantics. The first one comes from [9]. The second
method consists of the appropriate direct application of Henkin’s method to calculi of
names. In it, we use canonical models built for maximal consistent sets in a given calculus.
We give two ways of doing this.

7.1. Proofs of the Completeness of Calculi Using Shepherdson’s Approach

For Sh. Shepherdson [9] takes the following open first-order conditions, which correspond
to the axioms (Ia), (Barbara), (Datisi), (⋆), and (⋆⋆):

B1. Aaa
B2. (Aab ∧ Abc) → Aac
B3. (Aab ∧ Iac) → Icb
B4. Iab → Iaa
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B5. Iaa ∨ Aab

A B1-algebra is a relational structure ⟨S, A, I⟩, where S is a non-empty set and A and
I are binary relations such that (B1)–(B5) are satisfied for all a, b, c of S. A B1-algebra is
called a special B1-algebra when S consists of a set of subsets of some set V, and Aab and
Iab are, respectively, the relations a ⊆ b, a ∩ b ̸= ∅ of the inclusion and intersection of sets.
Shepherdson [9] (Theorem 8) proved the following.

(Th8) Every B1-algebra is epimorphic (briefly speaking, an epimorphism, in other words, quasi-
isomorphism or onto-homeomorphism, is an isomorphism without injection; all epimorphic
relational structures give the same true formulas) to a special B1-algebra.

The sketch of the proof. Let B = ⟨S, A, I⟩ be a B1-algebra. Let us call a non-empty subset
F of S an I-set when it satisfies the following (for all a, b ∈ S):

• if a ∈ F and Aab, then b ∈ F;
• if a, b ∈ F, then Iab.

Let V be the family of all I-sets, e(a) := {F ∈ V : a ∈ F}, and S′ := {e(a) : a ∈ S}.
In the proof, Shepherdson [9] appealed to an analogous theorem for certain richer A1-

algebras, for which V had to consist of maximal I-sets. So, Shepherdson used Zorn’s lemma.
In [22], it was shown that this is not necessary for B1-algebras. Namely, it suffices to note
that, by (Barbara), (Datisi+), (Darapti+), (⋆), and (Ci), for all a, b ∈ S, we get the following:

($) If Iab holds, then [a, b] := {c ∈ S : Aac or Abc} is an I-set of e(a) and e(b).
($$) Iaa holds iff [a, a] is an I-set of e(a) iff e(a) ̸= ∅.

Using the definitions of B1-algebras, I-sets, and the function e, we obtain the following:

• Aab holds iff e(a) ⊆ e(b),
• Iab holds iff e(a) ∩ e(b) ̸= ∅.

So, e : S → S′ is an epimorphism.

By the free-variable calculus B1, Shepherdson understands the formal theory “obtained
by incorporating axioms” (B1)–(B5) “into the propositional calculus.” This system contains
(free) individual variables, atomic formulas Auv and Iuv (where u and v are variables),
and formulas built up from atomic formulas by means of the propositional connectives.
The axioms are all substitution instances of (B1)–(B5) and of the axioms of propositional
calculus. The rule of inference is detachment. Shepherdson writes that the completeness
for the free-variable calculus B1 is obtained using Henkin’s method:

• A formula is a theorem of B1 if and only if it is true in all B1-algebras.

From the above and (Th8), Shepherdson [9] (Theorem 10) proved the following:

(Th10) A formula is a theorem of B1 if and only if it is true in all special B1-algebras.

We can definitionally extend B1 to the free-variable calculus Bd
1 by adding atomic

formulas Euv and Ouv (where u and v are variables), with axioms being all substitution
instances of (B1)–(B5) and

D1. Eab ↔ ¬Iab
D2. Oab ↔ ¬Aab

For this extension, we create special Bd
1 -algebras assuming that Eab and Oab are,

respectively, the relations a ∩ b = ∅, a ⊈ b. Since (D1) and (D2) are true in every special Bd
1 -

algebra, we obtain a counterpart of (Th8). Moreover, as for B1, we obtain the completeness
for Bd

1 . Hence, we obtain the following counterpart of (Th10):

(Th10′) A formula is a theorem of Bd
1 if and only if it is true in all special Bd

1 -algebras.

The free-variable calculus Bd
1 can, of course, be identified with the version of the

calculus Sh in which we accept all substitution instances of the axioms of Sh as its specific
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axioms and use only the rule of detachment (cf. Remark 2). For every formula α of Sh, let
α⋆ be its counterpart in the language of Bd

1 . So, we get the following:

• α is a thesis of Sh iff α⋆ is a theorem of Bd
1 .

• α is a tautology iff α⋆ is true in all special Bd
1 -algebras.

• α is a thesis of Sh iff α is a tautology.

For Ł. Shepherdson [9] creates the free-variable calculus B3 by replacing (B4) and (B5) with
one axiom that is a counterpart of (Ii):

B4′. Iaa

For B3, Shepherdson created special B3-algebras that differ from special B1-algebras only in
that their universes consist of non-empty sets since they have to meet (B4′). He obtains the
following theorem:

(Th11) Every B3-algebra is epimorphic to a special B3-algebra. A formula of B3 is a theorem if
and only if it is true in all special B3.

Indeed, in the second variant of the proof of (Th8), one can notice that by (B4′) and
($$), for each a ∈ S, we have e(a) ̸= ∅.

Remark 8. To Theorem 11, Shepherdson adds Footnote 9, which says that a similar theorem can be
obtained for Słupecki’s system with [10], which we discussed in Section 5.2. However, as we showed
there, this system is not complete. (Shepherdson stated that Słupecki’s works “were not available to
the author”; he knew them only from their reviews.)

The rest is as for Sh, but the tautologies are changed into traditional tautologies, and
the special B1-algebras are changed into special B3-algebras. So, we obtain the following:

• α is a thesis of Ł iff α is a traditional tautology.

For Shε. For conditions (B1)–(B5), we add the following, which corresponds to axioms
(Ish1) and (1)–(3):

C0. εab → εaa
C1. εab → Aab
C2. εaa → Iaa
C3. (Aac ∧ εcc ∧ Iab) → εab

Analogously to [9], a C-algebra is a relational structure ⟨S, A, I, ε⟩, where S is a non-
empty set, and A, I, and ε are binary relations such that (B1)–(B5) and (C0)–(C4) are satisfied
for all a, b, c of S. A C-algebra is called a special C-algebra when S consists of a set of subsets
of some set V, Aab, Iab, and εab are, respectively, the relations a ⊆ b and a ∩ b ̸= ∅, and a
is a singleton and a ⊆ b. We get (cf. [22]):

(Th1ε) Every C-algebra is epimorphic to a special C-algebra.

The sketch of the proof. Let C = ⟨S, A, I, ε⟩ be a C-algebra. As for B1-algebras, we define
I-sets and I-sets of the form [a, b]. Let V be the sum of the family of all I-sets and the set S.
Moreover, for every a ∈ S, we put the following:

e(a) :=

{F ∈ V : a ∈ F} if εaa,

{F ∈ V : a ∈ F} ∪ {c ∈ S : Icc and Aca} otherwise.

We obtain:

• if not Iaa, then e(a) = ∅;
• if not εaa and Iaa, then {a, [a, a]} ⊆ e(a);
• if εaa, then e(a) = {[a, a]}.
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Also as for B1-algebras, we put S′ := {e(a) : a ∈ S}. Using the definitions of C-
algebras, I-sets, and the function e, we obtain the following:

• Aab holds iff e(a) ⊆ e(b),
• Iab holds iff e(a) ∩ e(b) ̸= ∅.
• εab holds iff e(a) is a singleton and e(a) ⊆ e(b).

So, e : S → S′ is an epimorphism.

However, instead of considering free-variable calculus, we can consider the standard
open first-order theory C obtained by incorporating axioms (B1)–(B5) and (C0)–(C4). This
system contains atomic formulas Auv, Iuv, and εuv (where u and v are individual variables).
The specific axioms are substitution instances of (B1)–(B5) and (C0)–(C4) using a/x, b/y,
and c/x. Moreover, we use the standard axioms for first-order theories as logical axioms.

As for all first-order theories, as well as for C, we can use Gödel’s completeness
theorem. So, by (Th1ε), we have the following:

(Th2ε) A formula is a theorem of C if and only if it is true in all special C-algebras.

Moreover, since C is open, we consider the quantifier-free theory Co such that

(Co) a formula is a theorem of Co if and only if it is open and derivable from all open
axioms of C by detachment and substitution.

By the known fact (see, e.g., [28], p. 329), we have the following:

(Th3ε) For any open formula, it is a theorem of Co if and only if it is theorem of C.

From (Th2ε) and (Th3ε), we get the following:

(Th4ε) For any open formula, it is a theorem of Co if and only if it is true in all special C-algebras.

Next, we continue as for B1, creating the quantifier-free definitional extension Cod of
the theory Co. We obtain the following:

(Th4′ε) For any open formula, it is a theorem of Cod if and only if it is true in all special
Cd-algebras.

The quantifier-free theory Cod can be identified with the calculus Shε. For every
formula α of Shε, let α⋆ be its counterpart in the language of Cod. So, we get the following:

• α is a thesis of Shε iff α⋆ is a theorem of Cod.
• α is a tautology iff α⋆ is true in all special Cd-algebras.
• α is a thesis of Shε iff α is a tautology.

Remark 9. Defining V for B1-algebras and B3 as for C-algebras and defining an endomorphism
e for these first algebras using the second of the alternative conditions used for C-algebras gives a
family S′ without singletons. Hence, we get that for Sh and Ł, we can use non-monoreferential and
polyreferential semantics, respectively.

Non-monoreferential semantics cannot be applied to Shε since all formulas of the form SεP →
α are non-monoreferential tautologies, but not all of them are theses of Shε (e.g., SεS → MεM).

7.2. Proofs of the Completeness of Calculi with the Direct Use of Henkin’s Method

In [19,21], the completeness of the considered calculi is proved through the direct use
of Henkin’s method, in which we use canonical models built for maximal consistent sets
in a given calculus. For every maximal consistent set Γ of formulas in a given calculus, we
will construct an appropriate canonical model MΓ = ⟨UΓ, DΓ⟩ in which all formulas from
Γ are true. We have two ways of doing this: with and without filters.
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7.2.1. With Using Filters Designated by Maximal Consistent Sets in a Given Calculus

In [21], a universe UΓ of MΓ consists of filters built from name letters. These filters are
counterparts of the I-sets used by Shepherdson [9]. Namely, for each of the calculi Sh, Ł
and Shε, for an arbitrary maximal consistent set Γ of formulas, a filter designated by Γ is a
non-empty subset ∇ of GN satisfying the following conditions for all S,P ∈ GM:

• if S ∈ ∇ and SaP ∈ Γ, then P ∈ ∇;
• if S,P ∈ ∇, then SiP ∈ Γ.

Similarly to the proof of (Th8), using (Barbara), (Datisi+), (Darapti+), (⋆), and (Ci), we
obtain the counterparts of conditions ($) and ($$) for all S,P ∈ GN:

(f1) if SiP ∈ Γ, then [S,P] := {M : SaM ∈ Γ or PaM ∈ Γ} is a filter;
(f2) if SiS ∈ Γ, then [S] := [S,S] := {M : SaM ∈ Γ} is a filter.

After these changes, the set UΓ and the function DΓ are defined analogously to the set
V and the epimorphism e in the proofs of (Th8) and (Th1ε), respectively.

For Sh. For any maximal consistent set Γ in Sh, we use MΓ = ⟨UΓ, DΓ⟩, where

• UΓ consists of all filters designated by Γ (UΓ may be empty),
• DΓ(S) := {∇ ∈ UΓ : S ∈ ∇}.

For every name letter S, we obtain the following:

(a) SiS ∈ Γ iff S ∈ [S] ∈ DΓ(S) iff DΓ(S) ̸= ∅.

Indeed, by (f2) and (Ia), if SiS ∈ Γ, then [S] is a filter and S ∈ [S] ∈ DΓ(S). So,
DΓ(S) ̸= ∅. If DΓ(S) ̸= ∅, then for some ∇, we have S ∈ ∇. So, SiS ∈ Γ.

By induction, for any formula α, we have the following:

(CSh) α is true in MΓ iff α ∈ Γ.

The sketch of the proof. Firstly, for ◦ ∈ {a, i, e, o} and all S,P ∈ GM, we have the following:

• S ◦P is true in MΓ iff S ◦P ∈ Γ.

Let SaP be true in MΓ, i.e., DΓ(S) ⊆ DΓ(P). Then, if DΓ(S) = ∅, then SiS /∈ Γ

by (a). Hence, SaP ∈ Γ by (⋆⋆). If DΓ(S) ̸= ∅, then SiS ∈ Γ and [S] ∈ DΓ(S) by (a). So,
[S] ∈ DΓ(P). Hence, SaP ∈ Γ. We have the converse implication from definitions of filters
and DΓ.

Let SiP be true in MΓ, i.e., some ∇ belongs to DΓ(S) and DΓ(P). Then, S,P ∈ ∇.
Hence, SiP ∈ Γ. Conversely, we assume that SiP ∈ Γ. Then, by (f1) and (Ia), [S,P] is a
filter to which S and P belong. So, [S,P] belongs to DΓ(S) and DΓ(P).

For ‘o’ and ‘e’, according to the above facts, we use (df o) and (df e), respectively.
Secondly, we can use standard properties of the connectives in maximal consistent

sets and find that a formula is true in MΓ iff it belongs to Γ.

Therefore, by (CSh), using the properties of maximal consistent sets, we obtain
the following:

• A formula is a thesis of Sh if and only if it is an aieo-tautology.

The sketch of the proof. Suppose that α is a aieo-tautology and Γ is an arbitrary maximal
consistent set of formulas. Then, by (CSh), α ∈ Γ since α is true in MΓ. So, α belongs to all
maximal consistent sets for Sh. Hence, α is a thesis of Sh.

For Ł. For any maximal consistent set Γ in Ł, we use MΓ = ⟨UΓ, DΓ⟩ as for Sh. Now,
by (Ii) and (a), MΓ is a traditional model since for each S ∈ GN, we have that [S] is a
filter belonging to DΓ. The rest of the proof is similar to that for Sh. Therefore, we get
the following:

• A formula is a thesis of Ł if and only if it is a traditional aieo-tautology.
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For Shε. For any maximal consistent set Γ in Shε, we use MΓ = ⟨UΓ, DΓ⟩, where

• UΓ consists of all filters designated by Γ and all name letters S such that SiS ∈ Γ,

• DΓ(S) :=

{∇ ∈ UΓ : S ∈ ∇} if SεS ∈ Γ

{∇ ∈ UΓ : S ∈ ∇} ∪ {M ∈ UΓ : MaS ∈ Γ} if SεS /∈ Γ

For all name letters S and M, we obtain the following:

(a) If M ∈ DΓ(S), then SεS /∈ Γ and SiS ∈ Γ.
(b) SiS ∈ Γ iff S ∈ [S] ∈ DΓ(S) iff DΓ(S) ̸= ∅.
(c) if SεS /∈ Γ and SiS ∈ Γ, then {S, [S]} ⊆ DΓ(S);
(d) SεS ∈ Γ iff DΓ(S) = {[S]} iff DΓ(S) is a singleton.

Proof. For (a): By (Darapti+) and the definition of DΓ. For (b): As for Sh using (a). For (c):
By (Ia) and (b).

For (d): Let SεS ∈ Γ. Then, by (1), (2), and (b), SaS ∈ Γ, SiS ∈ Γ, [S] is a filter, and
S ∈ [S]. We show that if ∇ ∈ DΓ(S), then ∇ = [S]. Let M ∈ ∇. Then, SiM ∈ Γ. Hence,
by (7), SaM ∈ Γ. So, M ∈ [S]. Conversely, if M ∈ [S], then SaM ∈ Γ. So, M ∈ ∇ since
S ∈ ∇. Finally, if DΓ(S) is a singleton, then SεS ∈ Γ by (b) and (c).

By induction, for any formula α, we obtain the following:

(CShε) α is true in MΓ iff α ∈ Γ.

The sketch of the proof. For ◦ ∈ {a, i, e, o, ε} and all S,P ∈ GM, we have the following:

• S ◦P is true in MΓ iff S ◦P ∈ Γ.

As for Sh, we obtain the following: if SaP is true in MΓ, then SaP ∈ Γ. Conversely,
we assume that SaP ∈ Γ. If ∇ ∈ DΓ(S), then ∇ ∈ DΓ(P) by the definitions of filters and
DΓ. If M ∈ DΓ(S), then M ∈ DΓ(P) by (Barbara).

Let SiP be true in MΓ, i.e., some M or ∇ belongs to DΓ(S) and DΓ(P). In the first
case, (MiM ∧MaS ∧MaP) ∈ Γ. So, SiP ∈ Γ by (Darapti+). In the second case, this is
the same as for Sh. The proof of the converse implication is the same as for Sh.

Let SεP be true in MΓ, i.e., let DΓ(S) be a singleton whose only element belongs
to DΓ(P). Then, DΓ(S ⊆ DΓ(P), and so SaP ∈ Γ. Moreover, SεS ∈ Γ by (d). Hence,
SεP ∈ Γ by (4). For the proof of the converse implication, let SεP ∈ Γ. Then, SεS ∈ Γ

by (Ish1), and so DΓ(S) = {[S]} by (d). Moreover, SaP ∈ Γ and SiS ∈ Γ by (1) and (2).
Hence, P ∈ [S] ∈ DΓ(P). So, SεP is true in MΓ.

The rest of the proof is similar to that for Sh.

Therefore, by (CShε), using the properties of maximal consistent sets, we get
the following:

• A formula is a thesis of Shε if and only if it is an aieoε-tautology.

Remark 10. Defining UΓ for Sh and Ł as for Shε and defining DΓ for these first calculi using the
second of the alternative conditions used for Shε gives DΓ with the set of values without singletons.
Hence, directly using Henkin’s method, we also get that for Sh, we can use non-monoreferential
semantics, and for Ł we can use polyreferential semantics.

7.2.2. Without Using Filters

In [19], the universes of models consist of simpler elements than filters designated by
maximal consistent sets in a given calculus. In the case of Sh and Ł, pairs and singletons of
name letters are sufficient. In the case of Shε, to pairs and singletons of name letters, we
add the name letters themselves and their equivalence classes.
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For Sh

For any maximal consistent set Γ in Sh, we use MΓ = ⟨UΓ, DΓ⟩, where

• UΓ consists of all pairs {M,Q} of name letters such that MiQ ∈ Γ (UΓ may be empty),
• DΓ(S) consists of all those and only those {M,Q}∈UΓ for which MaS∨QaS ∈ Γ.

Of course, all singletons {M} such that MiM ∈ Γ belong to UΓ, and if MaS ∈ Γ also
holds, then they belong to D(S) (if there are any).

By (Ia), (⋆), (Ci), and (Darapti+), for every name letter S, we obtain the following:

(o) SiS ∈ Γ iff {S} ∈ DΓ(S) iff DΓ(S) ̸= ∅.

By induction, for any formula α, we have the following:

(CSh) α is true in MΓ iff α ∈ Γ.

The sketch of the proof. For ◦ ∈ {a, i, e, o} and all S,P ∈ GM, we have the following:

• S ◦P is true in MΓ iff S ◦P ∈ Γ.

As for filters, by only changing [S] to {S}, we have the following: if SaP is true in MΓ,
then SaP ∈ Γ. For the proof of the converse implication, let SaP ∈ Γ and {M,Q} ∈ D(S).
Then, by (Barbara), {M,Q} ∈ D(P) also holds.

Let SiP be true in MΓ, i.e., some {M,Q} belongs to DΓ(S) and DΓ(P). Then, MiQ ∈ Γ,
(MaS ∨ QaS) ∈ Γ, and (MaP ∨ QaP) ∈ Γ. Hence, SiP ∈ Γ by (⋆), (Ci), (Datisi+), and
(Darapti+). For the proof of the converse implication, let SiP ∈ Γ. Then, by (Ia), {S,P}
belongs to DΓ(S) and DΓ(P).

The rest of the proof is similar to that of using filters.

Therefore, by (CSh), using the properties of maximal consistent sets, we get
the following:

• A formula is a thesis of Sh if and only if it is an aieo-tautology.

Remark 11. In Remark 4, we show that a formula is a tautology if and only if it is true in every
model with a non-empty universe. So,

• A formula is a thesis of Sh if and only if it is true in every model with a non-empty universe.

This can also be shown by taking canonical models with non-empty UΓ:

• UΓ consists of all pairs of name letters,
• DΓ(S) consists of all those and only those {M,Q} for which both MiQ ∈ Γ and

MaS ∨QaS ∈ Γ.

As for the previous model, we show that condition (CSh) holds.

For Ł

For any maximal consistent set Γ in Ł, we use MΓ = ⟨UΓ, DΓ⟩ as for Sh. Now, by (Ii)
and (o), MΓ is a traditional model. The rest of the proof is similar to that for Sh. Therefore,
we get the following:

• A formula is a thesis of Ł if and only if it is a traditional aieo-tautology.

For Shε

Let Γ be a maximal consistent set in Shε. We define the following binary relation
designated by Γ on the set GN:

• S ∼Γ P iff (SaP ∧PaS) ∈ Γ,

We have:

• ∼Γ is an equivalence relation that is a congruence with respect to all functors.
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The sketch of the proof. By (Barbara) and (Ia), ∼Γ is an equivalence relation, and for all
S,P ∈ GN, we obtain the following: S ∼Γ P if and only if for every M ∈ GN, we have
(SaM ∈ Γ ⇔ PaM ∈ Γ) and (MaS ∈ Γ ⇔ MaP ∈ Γ).

Moreover, by (Datisi) and (Ci), for all S,P ∈ GN, we obtain the following: if S ∼Γ P,
then for every M ∈ GN, we have (SiM ∈ Γ ⇔ PiM ∈ Γ) and (MiS ∈ Γ ⇔ MiP ∈ Γ).

Finally, by (Ish1), (2), (Datisi), (Ci), (⋆), (9), and (8), for all S,P ∈ GN, we obtain the
following: if S ∼Γ P, then for every M ∈ GN, we have: (SεM ∈ Γ ⇔ PεM ∈ Γ) and
(MεS ∈ Γ ⇔ MεP ∈ Γ).

Let ∥S∥ be the equivalence class of S with respect to ∼Γ. By (Datisi), (Ci), and (5),
for all S,M ∈ GN, we get the following:

• if SεS ∈ Γ, MiM ∈ Γ, and MaS ∈ Γ, then ∥M∥ = ∥S∥.

We use MΓ = ⟨UΓ, DΓ⟩, where

• UΓ consists of all pairs {M,Q} of name letters such that MiQ ∈ Γ and all equivalent
classes ∥M∥ and name letters M such that MiM ∈ Γ (UΓ may be empty),

• DΓ(S) :=


{∥M∥ ∈ UΓ : MaS ∈ Γ} = {∥S∥} if SεS ∈ Γ

{{M,Q} ∈ UΓ : (MaS ∨QaS) ∈ Γ} ∪
{∥M∥ ∈ UΓ : MaS ∈ Γ} ∪ {M ∈ UΓ : MaS ∈ Γ} if SεS /∈ Γ

In the case of SεS /∈ Γ, we added a third set since it is possible that for each M ∈ GN,
we have MaS /∈ Γ; then, ∥S∥ = {S} and {∥M∥ ∈ UΓ : MaS ∈ Γ} = {∥S∥} = {{S}} =

{{M,Q} ∈ UΓ : (MaS ∨QaS) ∈ Γ}.
For every name letter S, we obtain the following:

(i) if SεS /∈ Γ and SiS ∈ Γ, then {S, {S}, ∥S∥} ⊆ DΓ(S);
(ii) SiS ∈ Γ iff ∥S∥ ∈ DΓ(S) iff DΓ(S) ̸= ∅.
(iii) SεS ∈ Γ iff DΓ(S) = {∥S∥} iff DΓ(S) is a singleton.

Indeed, for (i): By (Ia). For (ii): By (i) and using (⋆), (Ci), and (Darapti+). For (iii): If
DΓ(S) is a singleton, then SεS ∈ Γ, by (i) and (ii).

By induction, for any formula α, we obtain the following:

(CShε) α is true in MΓ iff α ∈ Γ.

The sketch of the proof. For ◦ ∈ {a, i, e, o, ε}, and all S,P ∈ GM, we have:

• S ◦P is true in MΓ iff S ◦P ∈ Γ.

As for Sh, we obtain the following: if SaP is true in MΓ, then SaP ∈ Γ. For the
proof of the converse implication, we assume that SaP ∈ Γ. We will consider three cases.
The first one is SiS /∈ Γ. Then, by (ii), ∅ = DΓ(S) ⊆ DΓ(P). The second case is PεP /∈ Γ.
If M ∈ DΓ(S) (or ∥M∥ ∈ DΓ(S), {M,Q} ∈ DΓ(S)), then M ∈ DΓ(P) (or ∥M∥ ∈ DΓ(S),
{M,Q} ∈ DΓ(P)) by (Barbara). The third case is SiS ∈ Γ and PεP ∈ Γ. Then, by (6),
SεS ∈ Γ. Moreover, by (Datisi) and (Ci), SiP ∈ Γ and PiS ∈ Γ. Hence, and from (5),
PaS ∈ Γ. So, ∥S∥ = ∥P∥ and DΓ(S) = DΓ(P). So, in all three cases, DΓ(S) ⊆ DΓ(P).

Let SiP be true in MΓ, i.e., some M, ∥M∥, or {M,Q} belongs to DΓ(S) and DΓ(P).
In the first and second cases, (MiM ∧MaS ∧MaP) ∈ Γ. So, SiP ∈ Γ by (Darapti+).
In the third case, this is the same as for Sh. For the proof of the converse implication, we
assume that SiP ∈ Γ. Then, by (⋆) and (Ci), SiS ∈ Γ, PiS ∈ Γ, and PiP ∈ Γ. We will
consider three cases. The first one is SεS ∈ Γ. Then, by (5), SaP ∈ Γ. Hence, ∥S∥ ∈ DΓ(P)

and DΓ(S) = {∥S∥} ⊆ DΓ(P). The second case is SεS /∈ Γ and PεP ∈ Γ. Then, by (5),
PaS ∈ Γ. Hence, DΓ(P) = {∥P∥} ⊆ DΓ(S). The third case is SεS /∈ Γ and PεP /∈ Γ.
This is the same as for Sh. So, in all three cases, DΓ(S) ∩ DΓ(P) ̸= ∅.

Now, let SεP be true in MΓ, i.e., let DΓ(S) be a singleton whose only element belongs
to DΓ(P). Then, DΓ(S ⊆ DΓ(P), and so SaP ∈ Γ. Moreover, SεS ∈ Γ by (iii). Hence,
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SεP ∈ Γ by (4). For the proof of the converse implication, let SεP ∈ Γ. Then, SεS ∈ Γ

by (Ish1); so, DΓ(S) = {∥S∥}. Moreover, SaP ∈ Γ and SiS ∈ Γ by (1) and (2). Hence,
∥S∥ ∈ DΓ(P). So, SεP is true in MΓ.

The rest of the proof is similar to that for Sh.

Therefore, by (CShε), using the properties of maximal consistent sets, we get
the following:

• A formula is a thesis of Shε if and only if it is an aieoε-tautology.

Remark 12. For Shε, as for Sh we can use only models with a non-empty universe. Indeed, this
can also be shown by taking canonical models with non-empty UΓ:

• UΓ consists of all pairs of name letters, all equivalent classes of name letters, and all name letters,

• DΓ(S) :=


{∥M∥ : MiM ∧MaS ∈ Γ} = {∥S∥} if SεS ∈ Γ

{{M,Q} : MiQ ∧ (MaS ∨QaS) ∈ Γ} ∪
{∥M∥ : MiM ∧MaS ∈ Γ}∪
{M : MiM ∧MaS ∈ Γ} if SεS /∈ Γ

As for the previous model, we show that condition (CShε) holds.

Remark 13. Once again, we see that defining UΓ for Sh and Ł as for Shε and defining DΓ for
these first calculi using the second of the alternative conditions used for Shε gives DΓ with the set
of values without singletons. In this condition, the set of equivalent classes can be omitted. We just
use the sum of two sets. Hence, we get that for Sh and Ł , we can use non-monoreferential and
polyreferential semantics, respectively.

8. Further Extensions of Calculi of Names
In this section, we briefly present other possible extensions of the systems considered

in this paper by adding new kinds of singular sentences and identities.

8.1. Calculi of Names Plus Traditional Singular Sentences and Identities

We can extend all of the calculi of names considered earlier to include traditional
singular sentences and identities, which we discussed in Remark 5. We remember that
these sentences have the following form: ‘a is a P’, ‘a is not a P’, and ‘a is identical to b’,
respectively. Symbolically, we will write them as ‘aϵP’, ‘aϵ̄P’, and ‘a=b’. We also remember
that only names with exactly one referent can be inserted for ‘a’ and ‘b’ (for ‘P’, we can use
any general name).

To the set GN of general name letters, we add the countably infinite set SN of singular
name letters (for which we use ‘a’, ‘b’, and ‘c’ with or without indices). We build the new
set of sentence formulas in the standard way.

Now, we have to use models with an additional denotation function for the singular
letters. So, these models will have the form ⟨U, D, d⟩, where U is a non-empty set and d

is a function that assigns to any singular name letter an element of U. Using the natural
interpretation of the functors ‘ϵ’, ‘ϵ̄’, and ‘=’, we extend the notions of being a true formula
in a model M = ⟨U, D, d⟩. For all a, b ∈ SN and P ∈ GN, we assume the following:

• aϵP is true in M iff d(a) ∈ D(P);
• aϵ̄P is true in M iff d(a) /∈ D(P);
• a=b is true in M iff d(a) = d(b).

Now, we extend all of the calculi of names considered earlier by adding the following
tautologies as their additional axioms:
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(aϵM ∧ MaP) → aϵ P

(aϵM ∧ aϵP) → Mi P

aϵ̄P ↔ ¬ aϵ P

a= a

a=b → b= a

(a=c ∧ c=b) → a= b

(a=b ∧ aϵP) → bϵP

The last four make ‘=’ an equivalence relation that is a congruence with respect to ‘ϵ’.
Using the above axioms and suitable definitions, we get the following:

(aϵM ∧ MeP) → aϵ̄P

(aϵM ∧ aϵ̄P) → MoP

In conclusion, by appropriately applying Henkin’s method, we can prove the com-
pleteness of the extended versions of the calculi of names studied.

8.2. Calculi of Names Plus Czeżowski’s Singular Sentences and Identities

Tadeusz Czeżowski [26] analysed singular sentences with a subject of the form ‘this
S’, where ‘S’ is to be replaced by a non-empty general name (Remark 5). He assumed the
following: “The name, ‘This S’, in the subject of a singular proposition I regard to be a
proper name denoting a given individual from the extension of the S term” [26] (p. 392).
Therefore, for Czeżowski, ‘This S is an S’ is a tautology; in symbolic notation,

tSϵS (It)

Tautologies are also all seven formulas that we obtain from the axioms from the previous
point through substitution: a/tS, b/tM, and c/tP.

We extend models used for Łukasiewicz’s calculus Ł, adding a choice function c,
which, for any general name letter, “indicates” one of its referents; i.e., c(S) ∈ D(S) for
every name letter S. Using the natural interpretation of the functors ‘ϵ’, ‘ϵ̄’, and ‘=’, we
extend the notions of being a true formula in a model M = ⟨U, D, c⟩. For all S,P ∈ GN,
we assume the following:

• SϵP is true in M iff c(S) ∈ D(P);
• tSϵ̄P is true in M iff c(S) /∈ D(P);
• tS=tP is true in M iff c(S) = c(P).

Using Henkin’s method, we can prove that by adding eight new axioms to Ł, i.e., (It)
and seven tautologies that we obtain from the axioms from Section 8.1 through substitution,
we obtain a complete calculus with respect to the above semantics.

One can ask the following question:

• What happens if we reject Czeżowski’s assumption that the object chosen as S is an S?

We may indicate a given object as one of the Ss, but it is not. When we allow this,
(It) ceases to be a tautology. In the described situation, however, the following additional
problem arises:

• Are ‘This S is a P’ and ‘This S is not a P’ without truth values or only false?

Depending on the answer, different logical systems (two-valued and three-valued)
can be created.
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Acta Univ. Nicolai Copernic. Log. 1991, I, 5–29.
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