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Subresiduated Nelson Algebras

Noemı́ Lubomirsky, Paula Menchón, Hernán San Mart́ın

Abstract

In this paper we generalize the well known relation between Heyting

algebras and Nelson algebras in the framework of subresiduated lattices.

In order to make it possible, we introduce the variety of subresiduated

Nelson algebras. The main tool for its study is the construction provided

by Vakarelov. Using it, we characterize the lattice of congruences of a

subresiduated Nelson algebra through some of its implicative filters. We

use this characterization to describe simple and subdirectly irreducible

algebras, as well as principal congruences. Moreover, we prove that the

variety of subresiduated Nelson algebras has equationally definable princi-

pal congruences and also the congruence extension property. Additionally,

we present an equational base for the variety generated by the totally or-

dered subresiduated Nelson algebras. Finally, we show that there exists

an equivalence between the algebraic category of subresiduated lattices

and the algebraic category of centedred subresiduated Nelson algebras.

Keywords: Subresiduated lattices, Nelson algebras, twist construction,

Kleene algebras.

1 Introduction

In this paper we study the convergence of ideas arising from different varieties of
algebras related to intuitionistic logics: Heyting algebras, subresiduated lattices
and Nelson algebras.

Subresiduated lattices, which are a generalization of Heyting algebras, were
introduced during the decade of 1970 by Epstein and Horn [7] as an algebraic
counterpart of some logics with strong implication previously studied by Lewy
and Hacking [8]. These logics are examples of subintuitionistic logics, i.e., logics
in the language of intuitionistic logic that are defined semantically by using
Kripke models, in the same way as intuitionistic logic is defined but without
requiring from the models some of the properties required in the intuitionistic
case. Also in relation with the study of subintuitionistic logics, Celani and
Jansana [4] got these algebras as the elements of a subvariety of the variety
of weak Heyting algebras (see also [3, 5]). It is known that the variety S4,
whose members are the S4-algebras, is the algebraic semantics of the modal
logic S4. This means that φ is a theorem of S4 if and only if the variety S4

satisfies φ ≈ 1. The variety of subresiduated lattices corresponds to the variety
of algebras defined for all the equations φ ≈ 1 satisfied in the variety S4 where
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the only connectives that appear are conjunction ∧, disjunction ∨, bottom ⊥,
top ⊤ and a new connective of implication ⇒, called strict implication, defined
by ϕ⇒ ψ := �(ϕ→ ψ), where → denotes the classical implication.

Nelson’s constructive logic with strong negation, which was introduced in [14]
(see also [16, 18, 20]), is a well-known and by now fairly well-understood non-
classical logic that combines the constructive approach of positive intuitionistic
logic with a classical (i.e. De Morgan) negation. The algebraic models of this
logic, forming a variety whose members are called Nelson algebras, have been
studied since at least the late 1950’s (firstly by Rasiowa; see [16] and references
therein) and are also by now a fairly well-understood class of algebras. One
of the main algebraic insights on this variety came, towards the end of the
1970’s, with the realisation (independently due to Fidel and Vakarelov) that
every Nelson algebra can be represented as a special binary product (here called
a twist structure) of a Heyting algebra.

The main goal of this manuscript is to extend the twist construction in
the framework of subresiduated lattices, thus obtaining a new variety, whose
members will be called subresiduated Nelson algebras. More precisely, we will
show that every subresiduated Nelson algebra can be represented as a twist
structure of a subresiduated lattice. Another central objective of this paper is
to study the subvariety of its totally ordered members.

The paper is organized as follows. In Section 2 we recall the definition of
Nelson algebra and also sketch the main constructions linking Heyting algebras
with Nelson algebras. Moreover, we recall the definition of a subresiduated lat-
tice and some of its properties. In Section 3 we introduce subresiduated Nelson
algebras, proving that the class of subresiduated Nelson algebras (which is a
variety) properly contains the variety of Nelson algebras. We also show that
every subresiduated Nelson algebra can be represented as a twist structure of a
subresiduated lattice. In Section 4 we prove that given an arbitrary subresid-
uated Nelson algebra, there exists an order isomorphism between the lattice of
its congruences and the lattice of its open implicative filters (which are a kind
of implicative filters). We use it in order to give a characterization of the princi-
pal congruences. In particular, the mentioned characterization proves that the
variety of subresiduated Nelson algebras has equationally definable principal
congruences (EDPC). We also give a description of the simple and subdirectly
irreducible algebras, and we prove that the variety of subresiduated Nelson al-
gebras has the congruence extention property (CEP). In Section 5 we study
the class of totally ordered subresiduated Nelson algebras in order to give an
equational base for the class generated by this variety. Finally, in Section 6
we characterize the subresiduated Nelson algebras that can be represented as
a twist structure of a subresiduated lattice and we also prove that there exists
an equivalence between the algebraic category of subresiduated lattices and the
algebraic category of centered subresiduated Nelson algebras, where a centered
subresiduated Nelson algebra is a subresiduated Nelson algebra endowed with
a center, i.e., a fixed element with respect to the involution (this element is
necessarily unique).
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2 Basic results

In this section we recall the definition of Nelson algebra [1, 6, 21] and some links
between Heyting algebras and Nelson algebras [20], as well as the definition of
subresiduated lattice and some of its properties [7].

A Kleene algebra [1, 6, 11] is a bounded distributive lattice endowed with a
unary operation ∼ which satisfies the following identities:

Ne1) ∼∼ x = x,

Ne2) ∼ (x ∧ y) =∼ x∨ ∼ y,

Ne3) (x∧ ∼ x) ∧ (y∨ ∼ y) = x∧ ∼ x.

Definition 2.1. An algebra 〈T,∧,∨,→,∼, 0, 1〉 of type (2, 2, 2, 1, 0, 0) is called a
Nelson algebra if 〈T,∧,∨,∼, 0, 1〉 is a Kleene algebra and the following identities
are satisfied:

Ne4) x→ x = 1,

Ne5) x→ (y → z) = (x ∧ y) → z,

Ne6) x ∧ (x→ y) = x ∧ (∼ x ∨ y),

Ne7) x→ y ≤∼ x ∨ y,

Ne8) x→ (y ∧ z) = (x→ y) ∧ (x→ z).

If 〈T,∧,∨,→,∼, 0, 1〉 is an algebra of type (2, 2, 2, 1, 0, 0) where 〈T,∧,∨, 0, 1〉
is a bounded distributive lattice and the condition Ne6) is satisfied, then con-
ditions Ne7) and Ne8) are also satisfied [12, 13]. We write NA for the variety of
Nelson algebras.

There are two key constructions that relate Heyting algebras and Nelson
algebras. Given a Heyting algebra A, we define the set

K(A) = {(a, b) ∈ A×A : a ∧ b = 0} (1)

and then endow it with the following operations:

• (a, b) ∧ (c, d) = (a ∧ c, b ∨ d),

• (a, b) ∨ (c, d) = (a ∨ c, b ∧ d),

• ∼ (a, b) = (b, a),

• (a, b) ⇒ (c, d) = (a→ c, a ∧ d),

• ⊥= (0, 1),

• ⊤ = (1, 0).
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Then 〈K(A),∧,∨,⇒,⊥,⊤〉 ∈ NA [20]. In the same manuscript, Vakarelov
proves that if T ∈ NA, then the relation θ defined by

xθy if and only if x→ y = 1 and y → x = 1 (2)

is an equivalence relation such that 〈T/θ,∧,∨,→, 0, 1〉 is a Heyting algebra with
the operations defined by

• x/θ ∧ y/θ := x ∧ y/θ,

• x/θ ∨ y/θ := x ∨ y/θ,

• x/θ → y/θ := x→ y/θ,

• 0 := 0/θ,

• 1 := 1/θ.

It is a natural question whether these constructions can be extended to
subresiduated lattices.

Definition 2.2. A subresiduated lattice (sr-lattice for short) is a pair (A,D),
where A is a bounded distributive lattice and D is a bounded sublattice of A such
that for each a, b ∈ A there exists the maximum of the set {d ∈ D : a ∧ d ≤ b}.
This element is denoted by a→ b.

Let (A,D) be a subresiduated lattice. This pair can be regarded as an
algebra 〈A,∧,∨,→, 0, 1〉 of type (2, 2, 2, 0, 0) where D = {a ∈ A : 1 → a =
a} = {1 → a : a ∈ A}. Moreover, an algebra 〈A,∧,∨,→, 0, 1〉 is an sr-lattice
if and only if (A,∧,∨, 0, 1) is a bounded distributive lattice and the following
conditions are satisfied for every a, b, c ∈ A:

1) (a ∨ b) → c = (a→ c) ∧ (b→ c),

2) c→ (a ∧ b) = (c→ a) ∧ (c→ b),

3) (a→ b) ∧ (b→ c) ≤ a→ c,

4) a→ a = 1,

5) a ∧ (a→ b) ≤ b,

6) a→ b ≤ c→ (a → b).

We write SRL to denote the variety whose members are sr-lattices. In every
sr-lattice the following cuasi-identity is satisfied: if a ≤ b→ c then a ∧ b ≤ c.

The following example of sr-lattice will be used throughout the paper.

Example 2.1. Let A be the Boolean algebra of four elements, where a and b
are the atoms. This algebra can be seen as a bounded distributive lattice. Define
D = {0, 1}. We have that (A,D) is an sr-lattice. With an abuse of notation
we write A for this sr-lattice. Note that since a → 0 = 0 6= b then A is not a
Heyting algebra.

In this work, we attempt to find a more general definition than the one of a
Nelson algebra in order to take the first steps toward exploiting its relation to
sr-lattices.
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3 Subresiduated Nelson algebras

In this section we define subresiduated Nelson algebras and we show that the
class of subresiduated Nelson algebras, which is a variety, properly contains
the variety of Nelson algebras. We also prove that every subresiduated Nelson
algebra can be represented as a twist structure of a subresiduated lattice.

Let A ∈ SRL. We define K(A) as in (1). Then 〈K(A),∧,∨,∼, (0, 1), (1, 0)〉
is a Kleene algebra [6, 11]. On K(A) we also define the binary operation ⇒ as
in Section 2. Note that this is a well defined map because if (a, b) and (c, d) are
elements of K(A) then (a→ c)∧a∧d ≤ c∧d = 0, i.e., (a→ c)∧a∧d = 0. Thus,
the structure 〈K(A),∧,∨,⇒,∼, (0, 1), (1, 0)〉 is an algebra of type (2, 2, 2, 1, 0, 0).

Remark 3.1. Let A ∈ SRL and (a, b), (c, d) in K(A). Then (a, b) ⇒ (c, d) =
(1, 0) if and only if a ≤ c.

Definition 3.1. An algebra 〈T,∧,∨,→,∼, 0, 1〉 of type (2, 2, 2, 1, 0, 0) is said to
be a subresiduated Nelson algebra if 〈T,∧,∨,∼, 0, 1〉 is a Kleene algebra and the
following conditions are satisfied for every a, b, c ∈ T :

1) (x ∨ y) → z = (x→ z) ∧ (y → z),

2) z → (x ∧ y) = (z → x) ∧ (z → y),

3) ((x→ y) ∧ (y → z)) → (x→ z) = 1,

4) x→ x = 1,

5) x ∧ (x→ y) ≤ x ∧ (∼ x ∨ y),

6) x→ y ≤ z → (x→ y),

7) ∼ (x→ y) → (x∧ ∼ y) = 1,

8) (x∧ ∼ y) →∼ (x→ y) = 1.

We write SNA to denote the variety whose members are subresiduated Nelson
algebras.

Proposition 3.1. The variety NA is a subvariety of SNA.

Proof. Let T ∈ NA and x, y, z ∈ T . Condition 1) of Definition 3.1 is condition
(1.9) of [21], 2) is Ne8), 4) is Ne4), 5) is a direct consequence of Ne6), 7) is
(1.24) of [21] and 8) is (1.23) of [21].

Now we will see 3), i.e, we will show that

((x→ y) ∧ (y → z)) → (x→ z) = 1. (3)

It follows from (1.17) of [21] that (3) holds if and only if (y → z) → ((x→ y) →
(x→ z)) = 1. But it follows from (1.11) of [21] and Ne5) that

(x→ y) → (x→ z) = x→ (y → z) = (x ∧ y) → z.
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Hence, (3) holds if and only if (y → z) → ((x ∧ y) → z) = 1. Since x ∧ y ≤ y
then it follows from (1.7) of [21] that y → z ≤ (x ∧ y) → z. Thus, (1.3) of [21]
shows that (y → z) → ((x ∧ y) → z) = 1, so 3) is satisfied.

Finally we will show 6). Note that it follows from Ne5) that

z → (x→ y) = (z ∧ x) → y. (4)

Besides, since z ∧ x ≤ x then it follows from (1.7) of [21] that

x→ y ≤ (z ∧ x) → y. (5)

Thus, from (4) and (5) we get x→ y ≤ z → (x→ y), which is 6).

Proposition 3.2. If A ∈ SRL then K(A) ∈ SNA.

Proof. Let A ∈ SRL. We will show that K(A) satisfies the conditions of Defini-
tion 3.1. In order to prove it, let x = (a, b), y = (c, d) and z = (e, f) be elements
of K(A).

A direct computation shows that

(x ∨ y) → z = ((a ∨ c) → e, (a ∨ c) ∧ f),

(x→ z) ∧ (y → z) = ((a→ e) ∧ (c→ e), (a ∧ f) ∨ (c ∧ f)).

Since (a ∨ c) → e = (a → e) ∧ (c → e) and (a ∨ c) ∧ f = (a ∧ f) ∨ (c ∧ f)
then (x ∨ y) → z = (x → z) ∧ (y → z), so 1) is satisfied. The fact that
z → (x∧ y) = (z → x)∧ (z → y) can be proved following a similar reasoning, so
2) is also satisfied. In order to show 3), note that it follows from Remark 3.1 that
((x→ y)∧(y → z)) → (x→ z) = (1, 0) if and only if (a → c)∧(c → e) ≤ a→ e,
and the last inequality holds in sr-lattices. Hence, condition 3) holds. Taking
into account that a → a = 1 we get x → x = (1, 0), so 4) is verified too. In
order to see 5), note that a straightforward computation shows that

x ∧ (x→ y) = (a ∧ (a→ c), b ∨ (a ∧ d)),

x ∧ (∼ x ∨ y) = (a ∧ (b ∨ c), b ∨ (a ∧ d)).

Since a ∧ (a → c) ≤ a ∧ c = (a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c) then it follows from
Remark 3.1 that ((x ∧ (x → y)) → (x ∧ (∼ x ∨ y)) = (1, 0). Hence, we have
proved 5). Now we will show 6). Note that

x→ y = (a → c, a ∧ d)

z → (x→ y) = (e→ (a→ c), e ∧ (a ∧ d)).

Since a → c ≤ e → (a → c) and e ∧ a ∧ d ≤ a ∧ d then x → y ≤ z → (x → y).
Hence, 6) is satisfied. In order to prove 7) and 8), note that

∼ (x→ y) = (a ∧ d, a → c),

x∧ ∼ y = (a ∧ d, b ∨ c).

Since a ∧ d = a ∧ d then it follows from Remark 3.1 that ∼ (x → y) → (x∧ ∼
y) = (1, 0) and (x∧ ∼ y) →∼ (x→ y) = (1, 0). Thus, we have proved 8).

Therefore, K(A) ∈ SNA.
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It is important to note that the variety NA is a proper subvariety of SNA.
Indeed, let A be the subresiduated lattice given in Example 2.1. In particular,
K(A) ∈ SNA. Take x = (1, 0) and y = (a, b), which are elements of K(A). A
direct computation shows that x∧ (x → y) = (0, b) 6= x∧ (∼ x∨y), so condition
N8) is not satisfied. Therefore, K(A) /∈ NA.

Proposition 3.3. Let T ∈ SNA. The following conditions are satisfied for
every x, y, z ∈ T :

1. 1 → x ≤ x,

2. if x ≤ y then z → x ≤ z → y and y → z ≤ x→ z,

3. if x ≤ y then x→ y = 1,

4. (x ∧ (x→ y)) → y = 1,

5. if x→ y = 1 then x = x ∧ (∼ x ∨ y),

6. if x→ y = 1 and ∼ y →∼ x = 1 then x ≤ y,

7. if x→ y = 1 and y → z = 1 then x→ z = 1,

8. if x→ y = 1 then (x ∧ z) → (y ∧ z) = 1 and (x ∨ z) → (y ∨ z) = 1,

9. if x→ y = 1 then (y → z) → (x→ z) = 1 and (z → x) → (z → y) = 1.

Proof. 1. By 5) of Definition 3.1,

(1 → x) = 1 ∧ (1 → x) ≤ 1 ∧ (∼ 1 ∨ x) = x.

2. Suppose that x ≤ y. Then x = x ∧ y, so it follows from 2) of Definition
3.1 that

z → x = z → (x ∧ y) = (z → x) ∧ (z → y) ≤ z → y.

Using 1) of Definition 3.1, the proof of the other inequality is analogous.
3. It follows from the previous item and 4) of Definition 3.1.
4. It follows from 5) that x ∧ (x→ y) ≤ x ∧ (∼ x ∨ y), so

(x ∧ (∼ x ∨ y)) → y ≤ ((x ∧ (x→ y)) → y. (6)

Also note that (x∧ ∼ x) → y = 1. Indeed, since 0 ≤ y then (x∧ ∼ x) → 0 ≤
(x∧ ∼ x) → y. But it follows from 8) that

(x∧ ∼ x) → 0 = (x∧ ∼ x) →∼ (x→ x) = 1,

so
(x∧ ∼ x) → y = 1. (7)

Thus, (x∧(∼ x∨y)) → y = ((x∧ ∼ x)∨(x∧y)) → y. It follows from (7) and the
previous item that ((x∧ ∼ x)∨(x∧y)) → y = ((x∧ ∼ x) → y)∧((x∧y) → y) = 1.
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Hence, it follows from (6) that 1 ≤ (x ∧ (x→ y)) → y, i.e., (x ∧ (x→ y)) →
y = 1.

5. It follows from 5) of Definition 3.1.
6. Suppose that x → y = 1 and ∼ y →∼ x = 1. It follows from 5. of this

proposition that

x = x ∧ (∼ x ∨ y) = (x∧ ∼ x) ∨ (x ∧ y),

∼ y =∼ y ∧ (y∨ ∼ x) = (∼ y ∧ y) ∨ (∼ y∧ ∼ x),

so
y = (y∨ ∼ y) ∧ (x ∨ y).

In particular,

x = (x∧ ∼ x) ∨ (x ∧ y) ≤ (y∨ ∼ y) ∨ (x ∧ y) = y∨ ∼ y,

so
x = x ∧ (x ∨ y) ≤ (y∨ ∼ y) ∧ (x ∨ y) = y.

Therefore, x ≤ y.
7. Suppose that x→ y = 1 and y → z = 1. By 3),

1 → (x→ z) = ((x→ y) ∧ (y → z)) → (x→ z) = 1.

Thus, it follows from 1. of this proposition that 1 = 1 → (x → z) ≤ x → z.
Then x→ z = 1.

8. Suppose that x→ y = 1. Thus, it follows from 2) that

(x ∧ z) → (y ∧ z) = ((x ∧ z) → y) ∧ ((x ∧ z) → z)) = (x ∧ z) → y.

From x ∧ z ≤ x we get 1 = x → y ≤ (x ∧ z) → y and therefore (x ∧ z) →
(y ∧ z) = 1. The other implication is analogous using 1).

9. Suppose that x→ y = 1. Then by 3),

1 = ((x→ y) ∧ (y → z)) → (x→ z) = (y → z) → (x→ z).

Also by 3),

1 = ((z → x) ∧ (x→ y)) → (z → y) = (z → x) → (z → y).

Let A ∈ SNA. We define the binary relation θ as in (2) of Section 2.

Lemma 3.4. Let T ∈ SNA. Then θ is an equivalence relation compatible with
∧, ∨ and →.
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Proof. The reflexivity and symmetry of θ are immediate. The transitivity of the
relation follows from 7. of Proposition 3.3. Thus, θ is an equivalence relation.
In order to show that θ is compatible with ∧, ∨ and →, let x, y, z ∈ T such
that xθy. It follows from 8. of Proposition 3.3 that (x ∧ z, y ∧ z) ∈ θ and
(x ∨ z, y ∨ z) ∈ θ, so θ is compatible with ∧ and ∨. Finally, it follows from 9.
of the previous proposition that (x → z, y → z) ∈ θ and (z → x, z → y) ∈ θ,
which implies that θ is compatible with respect to →.

Let 〈T,∧,∨,→,∼, 0, 1〉 be a subresiduated Nelson algebra. Then it follows
from Lemma 3.4 that we can define on T/θ the operations ∧, ∨, →, 0 and 1
as in Section 2. In particular, 〈T/θ,∧,∨, 0, 1〉 is a bounded distributive lattice.
We denote by � to the order relation of this lattice.

Lemma 3.5. Let T ∈ SNA and x, y ∈ A. Then x/θ � y/θ if and only if
x→ y = 1. Moreover, x→ y = 1 if and only if x→ y/θ = 1/θ.

Proof. Suppose that x/θ � y/θ, i.e., x/θ = x ∧ y/θ, so x → (x ∧ y) = 1. But
x → (x ∧ y) = (x → y) ∧ (x → x) = (x → y) ∧ 1 = x → y, so x → y = 1.
Conversely, suppose that x → y = 1. Thus, it follows from 8. of Proposition
3.3 that (x ∧ x) → (x ∧ y) = 1, i.e., x → (x ∧ y) = 1. Since we also have that
(x ∧ y) → x = 1, we conclude that x/θ = x ∧ y/θ, i.e., x/θ � y/θ.

Finally suppose that x → y/θ = 1/θ, so 1 → (x → y) = 1. Therefore, it
follows from 1. of Proposition 3.3 that x→ y = 1.

Proposition 3.6. If T ∈ SNA then T/θ ∈ SRL.

Proof. Let T ∈ SNA and x, y, z ∈ T . We only need to show that the inequalities
x∧(x → y)/θ � y/θ and (x→ y)∧(y → z)/θ � x→ z/θ are satisfied. It follows
from Lemma 3.4 that x∧ (x→ y)/θ � y/θ if and only if (x∧ (x → y)) → y = 1.
Since by 4. of Proposition 3.3 we have that the previous equality holds, so
x ∧ (x → y)/θ � y/θ. Finally, also note that (x → y) ∧ (y → z)/θ � x → z/θ
if and only if ((x → y) ∧ (y → z)) → (x → z) = 1. But the equality ((x →
y)∧(y → z)) → (x→ z) = 1 is satisfied, so (x→ y)∧(y → z)/θ � x→ z/θ.

Theorem 3.7. Let T ∈ SNA. Then the map ρT : T → K(T/θ) given by
ρT (x) = (x/θ,∼ x/θ) is a monomorphism.

Proof. We write ρ in place of ρT . First we will show that ρ is a well defined
map. Let x ∈ T . Note that x/θ∧ ∼ x/θ = 0/θ if and only if (x∧ ∼ x) → 0 = 1.
It follows from 8) of Definition 3.1 that (x∧ ∼ x) → 0 = (x∧ ∼ x) →∼
(x → x) = 1. Thus, ρ is well defined. The fact that ρ is a bounded lattice
homomorphism is immediate. It is also immediate that ρ preserves ∼. Moreover,
7) and 8) of Definition 3.1 show that h preserves the implication. Hence, ρ is a
homomorphism. Finally, a direct computation based in item 6. of Proposition
3.3 proves that ρ is an injective map. Therefore, ρ is a monomorphism.
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4 Congruence relations on subresiduated Nel-

son algebras

We start this section by giving some elemental definitions.

Definition 4.1. Let T ∈ SNA and F ⊆ T .

1) We say that F is a filter of T if 1 ∈ F , F is an upset (i.e., for every x, y ∈ T ,
if x ≤ y and x ∈ F then y ∈ F ) and x∧y ∈ F , for all x, y ∈ F . If in addition
1 → x ∈ F for every x ∈ F , we say that F is an open filter of T .

2) We say that F is an implicative filter of T if 1 ∈ F and for every x, y ∈ F ,
if x ∈ F and x → y ∈ F then y ∈ F . If in addition 1 → x ∈ F for every
x ∈ F , we say that F is an open implicative filter of T .

In this section we prove that for every T ∈ SNA there exists an order isomor-
phism between the lattice of congruences of A and the lattice of open implica-
tive filters of T . We use it in order to give a characterization of the principal
congruences of T . In particular, the mentioned characterization proves that the
variety SNA has EDPC. We also give a description of the simple and subdirectly
irreducible algebras of SNA, and we prove that the variety SNA has CEP.

We start by giving some elemental properties of sr-lattices, which will then
be used to transfer them into the framework of subresiduated Nelson algebras.

Let A ∈ SRL and a ∈ A. We define �a := 1 → a. In the same way, given
T ∈ SNA and x ∈ T , we define �x := 1 → x.

Lemma 4.1. Let A ∈ SRL and a, b, c ∈ A. Then the following conditions are
satisfied:

1) a→ (b→ c) ≤ (a→ b) → (a → c),

2) �a→ (�b→ c) = �b→ (�a→ c),

3) �b ≤ a→ (a ∧ b).

Proof. Conditions 1) and 2) follow from results of [3]. Condition 3) follows from
a direct computation.

Lemma 4.2. Let T ∈ SNA and v, w, x, y, z ∈ T . Then for every x, y, z ∈ T the
following conditions are satisfied:

1) x→ (y → z) ≤ (x→ y) → (x→ z),

2) (x→ v) → ((y → w) → z) = (y → w) → ((x→ v) → z),

3) �(x→ y) = x→ y,

4) �y ≤ x→ (x ∧ y),

5) �x ≤∼ x→ 0.
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Proof. By Theorem 3.7 we can assume that T is a subalgebra of K(A) for some
A ∈ SRL. Conditions 1) and 2) follows from a direct computation based in
Lemma 4.1. Condition 3) and 4) follows from a direct computation. In order to
show 4), let x = (a, b) ∈ T . We will see that �x ≤∼ x → 0, i.e., �a ≤ b → 0.
Since �a ∧ b ≤ a ∧ b = 0 then �a ≤ b→ 0, and hence our result is proved.

Let T ∈ SNA. We write Con(T ) to indicate the set of congruences of T .
Given θ ∈ Con(T ) and x ∈ T , we write x/θ for the equivalence class of x
associated to the congruence θ.

Lemma 4.3. Let T ∈ SNA, θ ∈ Con(T ) and x, y ∈ T . Then (x, y) ∈ θ if and
only if x→ y, ∼ y →∼ x, y → x, ∼ x→∼ y ∈ 1/θ.

Proof. Let θ ∈ Con(T ) and x, y ∈ T . It is immediate that if (x, y) ∈ θ then
x → y, ∼ y →∼ x, y → x, ∼ x →∼ y ∈ 1/θ. Conversely, assume that
x → y, ∼ y →∼ x, y → x, ∼ x →∼ y ∈ 1/θ. Following a similar reasoning
than the one employed in item 6. of Proposition 3.3 it can be proved that
(x, (x∧ ∼ x) ∨ (x ∧ y)) ∈ θ and (y, (y∨ ∼ y) ∧ (x ∨ y)) ∈ θ. Taking into account
the inequality x∧ ∼ x ≤ y∨ ∼ y and the distributivity of the underlying lattice
of A we get (x ∧ y, x) ∈ θ. Similarly it can be showed that (y ∧ x, y) ∈ θ.
Therefore, (x, y) ∈ θ.

Lemma 4.4. Let T ∈ SNA and θ, ψ ∈ Con(T ). Then θ ⊆ ψ if and only if
1/θ ⊆ 1/ψ. In particular, θ = ψ if and only if 1/θ = 1/ψ.

Proof. Let θ, ψ ∈ Con(T ). It is immediate that if θ ⊆ ψ then 1/θ ⊆ 1/ψ. The
converse follows from a direct computation based in Lemma 4.3.

Lemma 4.5. Let T ∈ SNA and F ⊆ T . If F is an open implicative filter then
F is an open filter.

Proof. Let F be an open implicative filter. In order to show that F is an upset,
let x, y ∈ T be such that x ∈ F and x ≤ y. Then x → y = 1 ∈ F , so y ∈ F .
Hence, F is an upset. Finally, let x, y ∈ F . We will see that x ∧ y ∈ F . Since
F is open then 1 → y ∈ F . From 4.2, we get that 1 → y ≤ x → (x ∧ y), so
x → (x ∧ y) ∈ F . Using that x ∈ F we obtain that x ∧ y ∈ F . Therefore, F is
an open filter.

Let T ∈ SNA and F an implicative filter of T . For every x, y ∈ T we define
s(x, y) = (x→ y)∧ (y → x)∧ (∼ x→∼ y)∧ (∼ y →∼ x). We also define the set

Θ(F ) = {(x, y) ∈ T × T : s(x, y) ∈ F}.

Note that s(x, y) ∈ F if and only if x→ y, y → x,∼ x→∼ y,∼ y →∼ x ∈ F .

Lemma 4.6. Let T ∈ SNA and F be an open implicative filter. Then Θ(F ) ∈
Con(T ).
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Proof. It is immediate that Θ(F ) is reflexive and symmetric. In order to show
that it is transitive, let (x, y), (y, z) ∈ Θ(F ). Since it follows from Lemma 4.5
that F is a filter and x → y, y → z ∈ F then (x → y) ∧ (y → z) ∈ F . But
((x→ y) ∧ (y → z)) → (x→ z) = 1 ∈ F , so x→ z ∈ F . In a similar way it can
be proved that z → x,∼ z →∼ x,∼ x→∼ z ∈ F . Thus, (x, z) ∈ Θ(F ). Hence,
Θ(F ) is an equivalence relation.

Now we will show that Θ(F ) is a congruence. Let x, y, z ∈ T be such that
(x, y) ∈ Θ(F ). First we will show that (x ∨ z, y ∨ z) ∈ Θ(F ). Note that
(x∨ z) → (y ∨ z) = (x→ (y ∨ z))∧ (z → (y ∨ z)) = x→ (y ∨ z) ≥ x→ y. Since
x→ y ∈ F and F is an upset we get (x ∨ z) → (y ∨ z) ∈ F . In a similar way it
can be proved that (y ∨ z) → (x ∨ z) ∈ F . Besides, note that since

∼ (x ∨ z) →∼ (y ∨ z) = (∼ x∧ ∼ z) → (∼ y∧ ∼ z) = (∼ x∧ ∼ z) →∼ y,

and (∼ x∧ ∼ z) →∼ y ≥∼ x→∼ y then ∼ x→∼ y ≤∼ (x∨z) →∼ (y∨z). But
∼ x →∼ y ∈ F , so ∼ (x ∨ z) →∼ (y ∨ z) ∈ F . Analogously it can be showed
that ∼ (y∨ z) →∼ (x∨ z) ∈ F . Thus, (x∨ z, y∨ z) ∈ Θ(F ). A similar argument
proves that (x ∧ z, y ∧ z) ∈ Θ(F ). It is also immediate that (∼ x,∼ y) ∈ Θ(F ).
We have proved that Θ(F ) preserves the operations ∨, ∧ and ∼.

Following this, we will see that Θ(F ) preserves →. In order to show it, let
x, y, z ∈ T such that (x, y) ∈ Θ(F ). First we will prove that (z → x, z → y) ∈
Θ(F ). Since x → y ≤ z → (x → y) and x → y ∈ F then z → (x → y) ∈ F .
It follows from Lemma 4.2 that z → (x → y) ≤ (z → x) → (z → y), so
(z → x) → (z → y) ∈ F . In a similar way we can show that (z → y) →
(z → x) ∈ F . Now we will prove that ∼ (x → z) →∼ (y → z) ∈ F . First
note that since ∼ y →∼ x ≤ (∼ y ∧ z) → (∼ x ∧ z) and ∼ y →∼ x ∈ F then
(∼ y ∧ z) → (∼ x ∧ z) ∈ F . We also have that (z∧ ∼ x) →∼ (z → x) = 1.
Taking into account that

(((∼ y∧z) → (∼ x∧z))∧((∼ x∧z) →∼ (z → x))) → ((∼ y∧z) →∼ (z → x)) = 1

we get
((∼ y ∧ z) → (∼ x ∧ z)) → ((∼ y ∧ z) →∼ (z → x)) = 1.

But (∼ y ∧ z) → (∼ x ∧ z) ∈ F and 1 ∈ F , so

(∼ y ∧ z) →∼ (z → x) ∈ F. (8)

Besides, since

((∼ (z → y) → (∼ y ∧ z)) ∧ ((∼ y ∧ z) →∼ (z → x))) →

(∼ (z → y) →∼ (z → x)) = 1

and ∼ (z → y) → (∼ y ∧ z) = 1, so

((∼ y ∧ z) →∼ (z → x)) → (∼ (z → y) →∼ (z → x)) = 1 ∈ F.

Then it follows from (8) that ∼ (z → y) →∼ (z → x) ∈ F . In a similar way
we can see that ∼ (z → x) →∼ (z → y) ∈ F . Hence, (z → x, z → y) ∈ Θ(F ).
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Finally we will show that (x → z, y → z) ∈ Θ(F ). It follows from Lemma 4.2
that

(y → z) → ((x → z) → (y → z)) = (x→ z) → ((y → z) → (y → z)) = 1 ∈ F.

Thus, since y → z ∈ F then (x → z) → (y → z) ∈ F . Analogously, (y → z) →
(x→ z) ∈ F . Now we will see that ∼ (x→ z) →∼ (y → z) ∈ F . Note that

((∼ (x→ z) → (∼ z ∧ x)) ∧ ((∼ z ∧ x) →∼ (y → z))) →

(∼ (x→ z) →∼ (y → z)) = 1.

But ∼ (x→ z) → (∼ z ∧ x) = 1, so

((∼ z ∧ x) →∼ (y → z)) → (∼ (x→ z) →∼ (y → z)) = 1.

Since 1 ∈ F and F is a filter, in order to show that ∼ (x→ z) →∼ (y → z) ∈ F
it is enough to see that (∼ z ∧ x) →∼ (y → z) ∈ F . Since x→ y ≤ (x∧ ∼ z) →
(y∧ ∼ z) and x→ y ∈ F then

(x∧ ∼ z) → (y∧ ∼ z) ∈ F. (9)

Besides, since (((∼ z ∧ x) → (y∧ ∼ z)) ∧ ((y∧ ∼ z) →∼ (y → z))) → ((∼
z ∧ x) →∼ (y → z)) = 1 and (y∧ ∼ z) →∼ (y → z) = 1 then

((∼ z ∧ x) → (y∧ ∼ z))) → ((∼ z ∧ x) →∼ (y → z)) = 1.

Since 1 ∈ F then it follows from (9) that (∼ z ∧x) →∼ (y → z) ∈ F , which was
our aim. Then ∼ (x→ z) →∼ (y → z) ∈ F . Analogously, ∼ (y → z) →∼ (x→
z) ∈ F . Hence, Θ(F ) preserves →.

For T ∈ SNA we write IFo(T ) to denote the set of open implicative filters of
T .

Theorem 4.7. Let T ∈ SNA. The assignments θ 7→ 1/θ and F 7→ Θ(F )
establish an order isomorphism between Con(T ) and IFo(T ).

Proof. Let H : Con(T ) → IFo(T ) be the function given by H(θ) = 1/θ. In order
to show that H is a well defined map, let θ ∈ Con(T ). In particular, 1 ∈ 1/θ.
Let x, x → y ∈ 1/θ, so x ∧ (x → y) ∈ 1/θ. Since (x ∧ (x → y)) → y = 1 then
1 → y ∈ 1/θ. But 1 → y ≤ y, and (y ∧ (1 → y), y) ∈ θ, so (1 → y, y) ∈ θ.
Thus, y ∈ 1/θ. Hence, 1/θ is an implicative filter. The fact that 1/θ is open is
immediate, so 1/θ ∈ IFo(A). Hence, H is a well defined map. The injectivity
of H follows from Lemma 4.3. In order to show that H is suryective, let F ∈
IFo(T ). Then it follows from Lemma 4.6 that Θ(F ) ∈ Con(A). We will show
that H(Θ(F )) = F , i.e., 1/Θ(F ) = F . In order to prove it, let x ∈ 1/Θ(F ),
i.e., (x, 1) ∈ Θ(F ). In particular, 1 → x ∈ F . But 1 → x ≤ x, so x ∈ F .
Conversely, let x ∈ F . In particular, x → 1 = 1 ∈ F . Besides, since F is open
then 1 → x ∈ F . We also have that ∼ 1 →∼ x = 1 ∈ F . Finally, it follows
from Lemma 4.2 that 1 → x ≤∼ x → 0 =∼ x →∼ 1, so ∼ x →∼ 1 ∈ F . Then
x ∈ 1/Θ(F ). Thus, 1/Θ(F ) = F . We have proved that H is a suryective map.
Hence, H is a bijective function. Therefore, it follows from Lemma 4.3 that H
is an order isomorphism.
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Let T ∈ SNA and X ⊆ T . We write 〈X〉 in order to indicate the open
implicative filter generated by X , i.e., the least open implicative filter (with
respect to the inclusion) which contains the set X . In other words, 〈X〉 is the
intersection of all the open implicative filters that contain X .

Lemma 4.8. Let T ∈ SNA and X a non empty subset of T . Then

〈X〉 = {x ∈ T : �(x1 ∧ · · · ∧ xn) → x = 1 for some x1, . . . , xn ∈ X}.

Proof. Let S = {x ∈ T : �(x1 ∧ · · · ∧ xn) → x = 1 for some x1, . . . , xn ∈
X}. We will show that S is an open implicative filter. It is immediate that
1 ∈ S. Let now x, y ∈ T be such that x, x → y ∈ S. Then there exist
x1, . . . , xn, y1, . . . , ym ∈ X such that �(x1 ∧ · · · ∧ xn) → x = 1 and �(y1 ∧
· · · ∧ ym) → (x → y) = 1. Let z = x1 ∧ · · · ∧ xn ∧ y1 ∧ · · · ym. Since �(z) ≤
�(x1 ∧ · · · ∧ xn),�(y1 ∧ · · · ym) then �(z) → x = 1 and �(z) → (x → y) = 1.
Thus, it follows from Lemma 4.2 that

1 = �(z) → (x→ y) ≤ (�(z) → x) → (�(z) → y) = 1 → (�(z) → y)

so �(z) → y = 1 → (�(z) → y) = 1. Hence, y ∈ S. We have proved
that S is an implicative filter. In order to see that S is open, let x ∈ S so
�(x1 ∧ · · · ∧ xn) → x = 1 for some x1, . . . , xn ∈ X . Then

1 = �(1) = �(�(x1 ∧ · · · ∧ xn) → x) ≤ �(x1 ∧ · · · ∧ xn) → �(x),

so �(x1 ∧ · · · ∧ xn) → �(x) = 1. Hence, S is an open implicative filter. Finally,
let F be an open implicative filter such that X ⊆ F . A direct computation
based in the fact that every open implicative filter is an open filter shows that
S ⊆ F . Therefore, 〈X〉 = S, which was our aim.

A straightforward computation based in Lemma 4.8 proves the following
result.

Corollary 4.9. Let T ∈ SNA, F ∈ IFo(T ) and x ∈ T . Then

〈F ∪ {x}〉 = {y ∈ T : (f ∧�(x)) → y = 1 for some f ∈ F}.

Let T ∈ SNA and x ∈ X . We write 〈x〉 instead of 〈{x}〉.

Corollary 4.10. Let T ∈ SNA and x ∈ T . Then 〈x〉 = {y ∈ T : �(x) → y = 1}.

Let T ∈ SNA and x, y ∈ T . For every θ ∈ Con(T ), it follows from Theorem
4.7 that (x, y) ∈ θ if and only if (s(x, y), 1) ∈ θ. Thus, SNA is a term variety
where (s(x, y), 1) is a pair associated to SNA.

Let T ∈ SNA and x, y ∈ T . We write θ(x, y) for the congruence generated
by the pair (x, y), i.e., the least congruence which contains the pair (x, y) [17].

Proposition 4.11. Let T ∈ SNA and x, y, z, w ∈ T . Then (z, w) ∈ θ(x, y) if
and only if s(x, y) → s(z, w) = 1.
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Proof. It follows from Theorem 3.7 and [17, Theorem 2.4] that (z, w) ∈ θ(x, y)
if and only if s(z, w) ∈ 〈s(x, y)〉. That is, (z, w) ∈ θ(x, y) if and only if
�(s(x, y)) → s(z, w) = 1. But �(s(x, y)) = s(x, y), so (z, w) ∈ θ(x, y) if and
only if s(x, y) → s(z, w) = 1.

Corollary 4.12. The variety SNA has EDPC.

Other application of Theorem 4.7 are the following two propositions, where
we give a description of the simple and subdirectily irreducible algebras of the
variety SNA respectively.

Proposition 4.13. Let T ∈ SNA. The following conditions are equivalent:

1) T is simple.

2) For every x ∈ T , if x 6= 1 then �(x) → 0 = 1.

Proof. Suppose that T is simple, so IFo(T ) = {{1}, T }. Let x ∈ T such that
x 6= 1. Then 〈x〉 6= {1}, so 〈x〉 = T . Since 0 ∈ T then �(x) → 0 = 1.
Conversely, let F ∈ IFo(T ) be such that F 6= {1}, so there exists x ∈ T such
that x 6= 1. It follows from hypothesis that �(x) → 0 = 1 ∈ F . Since x ∈ F
then �(x) ∈ F , so 0 ∈ F , i.e., F = T . Therefore, T is simple.

Proposition 4.14. Let T ∈ SNA and suppose that T is not trivial. The follow-
ing conditions are equivalent:

1) T is subdirectly irreducible.

2) There exists x ∈ T − {1} such that for every y ∈ T − {1}, �(y) → x = 1.

Proof. Let T be a non trivial subresiduated Nelson algebra. Suppose that T
is subdirectly irreducible. Thus, there exists F ∈ IFo(T ) such that F 6= {1}
and for every open implicative filter G 6= {1}, F ⊆ G. Since F 6= {1} there
exists x ∈ F such that x 6= 1. Let y ∈ T be such that y 6= 1, i.e., 〈y〉 6= {1}.
Thus, x ∈ F ⊆ 〈y〉, i.e., �(y) → x = 1. Conversely, suppose that 2) is satisfied.
Let x 6= 1 be an element which satisfies 2). Let F = 〈x〉, so F 6= {1}. Let
G ∈ IFo(T ) be such that G 6= {1}. Note that F ⊆ G if and only if x ∈ G. In
order to see that x ∈ G, note that since G 6= {1} then there exists y ∈ G such
that y 6= 1. Thus, it follows from hypothesis that �(y) → x = 1 ∈ G. But
y ∈ G, so �(y) ∈ G. Hence, x ∈ G. Therefore, T is subdirectly irreducible.

Finally, we use Theorem 4.7 in order to show that SNA has the congruence
extension property.

Proposition 4.15. The variety SNA has the congruence extension property.

Proof. Let T, U ∈ SNA be such that U is a subalgebra of T and θ ∈ Con(U).

We will show that there exists θ̂ ∈ Con(T ) such that θ = θ̂ ∩ U2. We define θ̂
as the congruence of T generated by θ. Thus, it follows from Lemma 4.4 and
Theorem 4.7 that 1/θ̂ is the open implicative filter of T generated by the set
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1/θ. In order to see that θ = θ̂ ∩ U2, let (x, y) ∈ θ̂ ∩ U2, so x, y ∈ U and

s(x, y) ∈ 1/θ̂. In particular, s(x, y) ∈ U and it follows from Lemma 4.8 that
there exist x1, . . . , xn ∈ 1/θ such that �(x1 ∧ · · · ∧ xn) → s(x, y) = 1. Since
�(x1 ∧ · · · ∧ xn) and 1 are elements of 1/θ then s(x, y) ∈ 1/θ, i.e., (x, y) ∈ θ.

Therefore, θ = θ̂ ∩ U2.

5 The variety generated by the class of totally

ordered subresiduated Nelson algebras

The aim of this final section is to give an equational base for the variety gener-
ated by the totally ordered subresiduated Nelson algebras.

Let T ∈ SNA. A proper implicative filter P of T is called prime if for every
x, y ∈ T we have that if x ∨ y ∈ P then x ∈ P or y ∈ P . We write Xo(T ) to
denote the set of open prime implicative filters of T .

Lemma 5.1. Let T ∈ SNA such that

T � ((x→ y) ∧ (∼ y →∼ x)) ∨ ((y → x) ∧ (∼ x→∼ y)) = 1.

Let P ∈ Xo(T ). Then T/P is a chain.

Proof. Let P ∈ Xo(T ) and x, y ∈ T . Taking into account that

((x→ y) ∧ (∼ y →∼ x)) ∨ ((y → x) ∧ (∼ x→∼ y)) = 1 ∈ P

we get (x → y) ∧ (∼ y →∼ x) ∈ P or (y → x) ∧ (∼ x →∼ y) ∈ P . Thus,
(x, x ∧ y) ∈ Θ(P ) or (y, y ∧ x) ∈ Θ(P ), i.e., x/P ≤ y/P or y/P ≤ x/P . Hence,
T/P is a chain.

Lemma 5.2. Let T ∈ SNA such that T � �(x ∨ y) = �(x) ∨ �(y). Let
F ∈ IFo(A) and I an ideal such that F ∩ I = ∅. Then there exists a filter
P ∈ Xo(T ) such that F ⊆ P and P ∩ I = ∅.

Proof. Let Σ = {G ∈ IFo(T ) : F ⊆ G and G ∩ I = ∅}. Since F ∈ Σ then Σ 6= ∅.
A direct computation shows that Σ is under the hypothesis of Zorn’s lemma, so
there exists a maximal element P in Σ. In particular, F ⊆ P and P ∩ I = ∅.
Moreover, it is immediate that P is a proper open implicative filter. Suppose
that P is not prime, so there exist x, y ∈ T such that x ∨ y ∈ P and x, y /∈ P .
Let Px = 〈P ∪ {x}〉 and Py = 〈P ∪ {y}〉. The maximality of P in Σ implies
that Px ∩ I 6= ∅ and Py ∩ I 6= ∅, so there exist z, w ∈ I and p1, p2 ∈ P such that
(p1 ∧ �(x)) → z = 1 and (p2 ∧ �(y)) → w = 1. Let p = p1 ∧ p2 ∈ P . Thus,
(p ∧�(x)) → (z ∨ w) = 1 and (p ∧�(y)) → (z ∨w) = 1. Thus,

((p ∧�(x)) → (z ∨ w)) ∧ ((p ∧�(y)) → (z ∨ w)) = 1.

But

((p∧�(x)) → (z∨w))∧((p∧�(y)) → (z∨w)) = ((p∧�(x))∨(p∧�(y))) → (y∨z)

16



and

((p ∧�(x)) ∨ (p ∧�(y))) → (y ∨ z) = (p ∧�(x ∨ y)) → (y ∨ z).

Then
(p ∧�(x ∨ y)) → (y ∨ z) = 1 ∈ P

and p ∧ �(x ∨ y) ∈ P , so y ∨ z ∈ P . Besides, since y, z ∈ I then y ∨ z ∈ I, so
P ∩ I 6= ∅, which is a contradiction. Therefore, P ∈ Xo(T ).

Let T ∈ SNA be such that T � �(x∨y) = �(x)∨�(y). Suppose that T is not
trivial. Then Xo(T ) 6= ∅. Indeed, let x ∈ T such that x 6= 1. Then (x]∩{1} = ∅,
where (x] := {y ∈ T : y ≤ x}. Then there exists a filter P ∈ Xo(T ). Therefore,
Xo(T ) 6= ∅.

Corollary 5.3. Let T ∈ SNA be such that T � �(x∨y) = �(x)∨�(y). Suppose
that T is not trivial. Then the intersection of all open prime implicative filters
of T is equal to {1}.

Let T ∈ SNA and x, y ∈ T . We define

t(x, y) = ((x→ y) ∧ (∼ y →∼ x)) ∨ ((y → x) ∧ (∼ x→∼ y)).

We also define

SNAc = SNA + {�(x ∨ y) = �(x) ∨�(y)} + {t(x, y) = 1}.

Let C be the class of totally ordered members of SNA.

Theorem 5.4. V(C) = SNAc.

Proof. A straightforward computation shows that C ⊆ SNAc, so V(C) ⊆ SNAc.
In order to show the converse inclusion, let T ∈ SNAc. If T is trivial then
T ∈ V(C). Now suppose that T is not trivial. Let α : T →

∏
P∈Xo(T ) T/P

be the homomorphism defined by α(x) = (x/P )P∈Xo(T ). We will show that
the homomorphism α is injective. Let x, y ∈ T such that α(x) = α(y). Then
x/P = y/P for every P ∈ Xo(T ). Thus, s(x, y) ∈ P for every P ∈ Xo(T ). It
follows from Corollary 5.3 that s(x, y) = 1. Hence, x = y. We have proved that
α is a monomorphism. Besides, it follows from Lemma 5.1 that T/P is a chain
for every P ∈ Xo(T ). Therefore, T ∈ V(C). Then, SNAc ⊆ V(C). Therefore,
V(C) = SNAc.

Note that SNAc is a proper subvariety of SNA. Indeed, let A be the sub-
residuated lattice given in Example 2.1. We have that K(A) ∈ SNA. Consider
x = (a, 0) and y = (b, 0), which are elements of K(A). Then �x ∨ �y = (0, 0)
and �(x ∨ y) = (1, 0), so K(A) /∈ SNAc.
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6 Centered subresiduated Nelson algebras

A Kleene algebra (Nelson algebra) is called centered if there exists an element
which is a fixed point with respect to the involution, i.e., an element c such that
∼ c = c. This element is necessarily unique. If T = K(A) where A is a bounded
distributive lattice, the center is c = (0, 0). Let T be a centered Kleene algebra.
We define the following condition:

(CK) For every x, y ∈ T if x, y ≥ c and x ∧ y ≤ c then there exists z ∈ T such
that z ∨ c = x and ∼ z ∨ c = y.

The condition (CK) is not necessarily satisfied in every centered Kleene algebra,
see for instance Figure 1 of [2]. However, every centered Nelson algebra satisfies
the condition (CK) (see [6, Theorem 3.5] and [2, Proposition 6.1]).

The following two properties are well known:

• Let T be a Kleene algebra. Then T is isomorphic to K(A) for some
bounded distributive lattice A if and only if T is centered and satisfies the
condition (CK) (see [6, Theorem 2.3] and [2, Proposition 6.1]).

• Let T be a Nelson algebra. Then T is isomorphic to K(A) for some Heyting
algebra A if and only if T is centered (see [6, Theorem 3.7]).

An algebra 〈T,∧,∨,→,∼, 0, 1, c〉 is a centered subresiduated Nelson algebra
if 〈T,∧,∨,→,∼, 0, 1〉 is as a subresiduated Nelson algebra and c is a center. We
write SNAc for the variety whose members are centered subresiduated Nelson
algebras.

In this section we prove that given T ∈ SNA, T is isomorphic to K(A)
for some subresiduated lattice A if and only if T is centered and satisfies the
condition (CK) (we also show that the condition (CK) is not necessarily satisfied
in every centered subresiduated Nelson algebra). Finally we show that there
exists a categorical equivalence between SRL and the full subcategory of SNAc

whose objects satisfy the condition (CK) 1.
We start with some preliminary results.

Lemma 6.1. Let T ∈ SNAc and x, y ∈ T . Then the following conditions are
satisfied:

1) c → x = 1.

2) ((x ∧ y) ∨ c) → 0 = (x ∧ y) → 0.

3) (x ∧ y) → 0 = 1 if and only if x ∧ y ≤ c.

Proof. In order to show 1), first we will see that c → 0 = 1. Indeed, c → 0 =
(c∧ ∼ c) →∼ (c → c) = 1, so c → 0 = 1. Taking into account that c → 0 = 1
and 0 → x = 1, it follows from Proposition 3.3 that c → x = 1. The condition
2) is a direct consequence of 1).

1If V is a variety of algebras, with an abuse of notation we write it in this way to refer to

the algebraic category associated to this variety.
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In order to prove 3), suppose that that (x ∧ y) → 0 = 1, so

x ∧ y = (x ∧ y) ∧ ((x ∧ y) → 0) ≤ (x ∧ y)∧ ∼ (x ∧ y) ≤ c.

Hence, x ∧ y ≤ c. The converse follows from 1).

Let T ∈ SNAc. We define the following condition:

(C) For every x, y ∈ T , if (x ∧ y) → 0 = 1 then there exists z ∈ T such that
z ∨ c = x ∨ c and ∼ z ∨ c = y ∨ c.

Lemma 6.2. Let T ∈ SNAc. Then ρ is surjective if and only if T satisfies the
condition (C).

Proof. Suppose that ρ is surjective. Let x, y ∈ T such that (x∧y) → 0 = 1, i.e.,
x/θ∧y/θ = 0/θ. Since ρ is surjective, there exists z ∈ T such that z/θ = x/θ and
∼ z/θ = y/θ, i.e., z → x = 1, x → z = 1, ∼ z → y = 1, y →∼ z = 1. We will
show that x∨c ≤ z∨c. It follows from Proposition 3.3 that (x∨c) → (z∨c) = 1.
Thus,

x∨c = (x∨c)∧((x∨c) → (z∨c)) ≤ (x∨c)∧(∼ (x∨c)∨(z∨c)) = (x∨c)∧(z∨c),

so x ∨ c ≤ z ∨ c. The same argument shows that z ∨ c ≤ x ∨ c, so x ∨ c = z ∨ c.
Similarly, we get ∼ z ∨ c = y ∨ c. Hence, condition (C) is satisfied.

Conversely, suppose that (C) is satisfied and let x, y ∈ T be such that x/θ ∧
y/θ = 0/θ, i.e., (x ∧ y) → 0 = 1. It follows from hypothesis that there exists
z ∈ T such that z∨c = x∨c and ∼ z∨c = y∨c. Then (x∨c) → x = (z∨c) → x,
i.e., (z ∨ c) → x = 1. Besides, (z ∨ c) → x = (z → x) ∧ (c → x), and it follows
from Lemma 6.1 that c → x = 1, so z → x = 1. The same argument shows that
x→ z = 1, so x/θ = z/θ. For the same reason, we get ∼ z/θ = y/θ. Therefore,
ρ is surjective.

Lemma 6.3. Let T ∈ SNAc. Conditions (C) and (CK) are equivalent.

Proof. Suppose that T satisfies (CK) and let x, y ∈ T such that (x∧y) → 0 = 1.
It follows from Lemma 6.1 that x ∧ y ≤ c. Let x̂ = x ∨ c and ŷ = y ∨ c. Then
x̂, ŷ ≥ c and x̂∧ ŷ ≤ c, so it follows from hypothesis that there exists z ∈ T such
that z ∨ c = x̂ and ∼ z ∨ c = ŷ, i.e., z ∨ c = x ∨ c and ∼ z ∨ c = y ∨ c.

Conversely, suppose that (C) is satisfied. Let x, y ∈ T be such that x, y ≥ c

and x ∧ y ≤ c It follows from Lemma 6.1 that (x ∧ y) → 0 = 1. Thus, it follows
from hypothesis that there exists z ∈ T such that z∨c = x∨c and ∼ z∨c = y∨c,
i.e., z ∨ c = x and ∼ z ∨ c = y.

Theorem 6.4. Let T ∈ SNA. Then T is isomorphic to K(A) for some sub-
residuated lattice A if and only if T has center and it satisfies the condition
(CK).
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Proof. Suppose that T ∼= K(A) for some A ∈ SRL. Let x, y ∈ K(A) such that
x, y ≥ c and x ∧ y ≤ c. Thus, there exists (a, b) ∈ K(A) such that x = (a, 0)
and y = (b, 0). The element z = (a, b) ∈ K(A) satisfies that z ∨ c = x and
∼ z ∨ c = y. Hence, K(A) satisfies (CK). Since this condition is preserved by
isomorphisms then T satisfies (CK). Furthermore, the fact that K(A) has got a
center, which is (0, 0), implies that T has a center. The converse follows from
Lemma 6.2, Lemma 6.3 and Theorem 3.7.

Let A be the subresiduated lattice given in Example 2.1. Then K(A) ∈ SNAc.
Let T be a subset of K(A) given by the following Hasse diagram, which is the
Hasse diagram of Figure 1 of [2]:

(1, 0)

(a, 0)

✇✇✇✇✇✇✇✇

(b, 0)

●●●●●●●●

(0, 0)

●●●●●●●●

✇✇✇✇✇✇✇✇

(0, b)

✇✇✇✇✇✇✇✇

(0, a)

●●●●●●●●

(0, 1)

●●●●●●●●

✇✇✇✇✇✇✇✇

Figure 1: A centered subresiduated Nelson algebra that does not meet Condition
(CK).

Since T is a subalgebra of K(A), we get T ∈ SNAc. Note that we have
(a, 0), (b, 0) ≥ (0, 0) and (a, 0) ∧ (b, 0) = (0, 0). However there is not z ∈ T such
that z ∨ (0, 0) = (a, 0) and ∼z ∨ (0, 0) = (b, 0). Therefore, T does not satisfy
(CK). It is also interesting to note that U = {(0, 1), (1, 0)} ∈ SNA but U does
not have a center.

If A ∈ SRL then K(A) ∈ SNA. Besides, if f : A → B is a morphism in SRL

then it follows from a direct computation that the map K(f) : K(A) → K(B)
given by K(f)(a, b) := (f(a), f(b)) is a morphism in SNA. Moreover, K can be
extended to a functor from SRL to SNA. Conversely, if T ∈ SNA then C(T ) =:
T/θ ∈ SRL. If f : T → U is a morphism in SNA then C(f) : T/θ → U/θ given
by C(f)(x/θ) = f(x)/θ is a morphism in SRL. Moreover, C can be extended to
a functor from SNA to SRL.

Lemma 6.5. Let A ∈ SRL. Then the map αA : A→ C(K(A)) given by αA(a) =
(a,¬a)/θ is an isomorphism.

20



Proof. We write α in place of αA. First we will show that α is a well defined
map. Let a ∈ A. Then a∧¬a = 0. Thus, (a,¬a)/θ ∈ K(A)/θ. Let a ∈ A. Then
(a,¬a)/θ = (a, 0)/θ. It is immediate that α is a homomorphism. The injectivity
of α is also immediate. In order to show that α is suryective, let y ∈ C(K(A)),
so y = (a, b)/θ for some a, b ∈ A such that a ∧ b = 0. Moreover, y = (a,¬a)/θ,
so y = α(a). Thus, α is suryective. Therefore, α is an isomorphism.

A direct computation shows that if f : A → B is a morphism in SRL and
a ∈ A then C(K(f))(ϕA(a)) = ϕB(f(a)), and that if f : T → U is a morphism
in SNA and x ∈ T then K(C(f))(ρT (x)) = ρU (f(x)).

Remark 6.1. Note that if T, U are Kleene algebras, T has center and f is
a morphism in SNA from T to U , then U has center and f(c) = c. Indeed,
f(c) = f(∼ c) =∼ f(c).

Therefore, the following result follows from the previous results of this sec-
tion, and Lemmas 6.2 and 6.3.

Theorem 6.6. There exists a categorical equivalence between SRL and SNAc.

7 Conclusions and two open problems

In this paper we extended, in the framework of sr-lattices, the well known twist
construction given for Heyting algebras. In order to make it possible, we intro-
duced and studied the variety SNA by showing that every subresiduated Nelson
algebra can be represented as a twist structure of an sr-lattice. We also char-
acterized the congruences of subresiduated Nelson algebras and we applied this
result in order to obtain some additional properties for these algebras. In partic-
ular, we described simple and subdirectly irreducible algebras, we proved that
SNA has EDPC and CEP, we presented an equational base for the variety of
SNA generated by the class of its totally ordered members and finally we proved
that there exists a categorical equivalence between SRL and SNAc.

We finish this paper by considering two (open) problems concerning the
matter of this paper.

Problem 1: Generalize the term equivalence between Nel-

son algebras and Nelson lattices

We assume the reader is familiar with commutative residuated lattices [9]. An
involutive residuated lattice is a bounded, integral and commutative residuated
lattice (T,∧,∨, ∗,→, 0, 1) such that for every x ∈ T it holds that ¬¬x = x, where
¬x := x → 0 and 0 is the first element of T [1]. In an involutive residuated
lattice it holds that x ∗ y = ¬(x → ¬y) and x → y = ¬(x ∗ ¬y). A Nelson
lattice [1] is an involutive residuated lattice (T,∧,∨, ∗,→, 0, 1) which satisfies
the additional inequality (x2 → y) ∧ ((¬y)2 → ¬x) ≤ x→ y, where x2 := x ∗ x.
See also [20].
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Remark 7.1. Let (T,∧,∨,⇒,∼, 0, 1) be a Nelson algebra. We define on T the
binary operations ∗ and → by x ∗ y :=∼ (x⇒ ∼y) ∨ ∼(y ⇒ ∼x) and x→ y :=
(x⇒ y)∧ (∼y ⇒ ∼x). Then [1, Theorem 3.1] says that (T,∧,∨,→, ∗, 0, 1) is a
Nelson lattice. Moreover, ∼x = ¬x = x→ 0.

Let (T,∧,∨, ∗,→, 0, 1) be a Nelson lattice. We define on T a binary operation
⇒ and a unary operation ∼ by x ⇒ y := x2 → y and ∼ x := ¬x, where
x2 = x ∗ x. Then Theorem 3.6 of [1] says that the (T,∧,∨,⇒,∼, 0, 1) is a
Nelson algebra. In [1, Theorem 3.11] it was also proved that the category of
Nelson algebras and the category of Nelson lattices are isomorphic. Taking into
account the construction of this isomorphism in that paper we have that the
variety of Nelson algebras and the variety of Nelson lattices are term equivalent
and the term equivalence is given by the operations we have defined before.

Remark 7.2. Let A be a Heyting algebra. Then (K(A),∧,∨,⇒,∼, c, 0, 1) is
a centered Nelson algebra. Thus, it follows from Remark 7.1 that K̂(A) :=
(K(A),∧,∨, ∗,→, c, 0, 1) is a centered Nelson lattice, where for (a, b) and (d, e)
in K(A) the operations ∗ and → are given by

(a, b) ∗ (c, d) = (a ∧ c, (a→ d) ∧ (c→ b)),

(a, b) → (c, d) = ((a → c) ∧ (d→ b), a ∧ d).

The following question naturally arises:

• Is it there a variety of algebras, in the language of Nelson lattices, which
is term equivalent to the variety of subresiduated Nelson lattices?

We do not have an answer for this question.
In [2, Corollary 4.18] it was proved that there exists an equivalence between

SRL and an algebraic category whose objects are in the language of centered
Nelson lattices. We write KSRL for this algebraic category. In particular, if
A ∈ SRL then K̂(A) ∈ KSRL, where the binary operation → is defined as in
Remark 7.2. Moreover, for every T ∈ KSRL there exists A ∈ SRL such that T
and K̂(A) are isomorphic algebras.

The following result follows from Theorem 6.6 and [2, Corollary 4.18].

Proposition 7.1. The categories KSRL and SNAc are equivalent.

The following question also naturally arises:

• Is there a variety of algebras, in the language of centered Nelson lattices,
which is term equivalent to the variety of centered subresiduated Nelson
lattices?

We do not have an answer for this question. However, we know that the usual
construction (the one used to show the term equivalence between Nelson alge-
bras and Nelson lattices) does not work by considering centered subresiduated
Nelson algebras and the objects of the algebraic category KSRL. In order to show
it, assume that the construction works, which is equivalent to say that this works
for the centered subresiduated Nelson algebra (K(A),∧,∨,⇒,∼, c, 0, 1) and the
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algebra K̂(A) where A is an arbitrary sr-lattice. Then, for every A ∈ SRL and
a, b, c, d ∈ A such that a ∧ b = c ∧ d = 0 the equality (a, b) ⇒ (c, d) = (a, b)2 →
(c, d) is satisfied, i.e., the inequality a → c ≤ d → (a → b) is satisfied. Con-
sider the Boolean algebra of four elements, where a and b are the atoms, and
D = {0, a, 1}. We have that (A,D), or directly A, is an sr-lattice. Define c = a
and d = b. We have that a → c = 1 and d → (a → b) = d → 0 = a, so
a→ c � d→ (a→ b), which is a contradiction.

Problem 2: Generalize the equivalence between NA and a

category of enriched Heyting algebras

We know that every Nelson algebra can be represented as a special twist struc-
ture of a Heyting algebra. This correspondence was formulated as a categorical
equivalence (by Sendlewski in the early 1990’s, see [19] and also in [21]) be-
tween Nelson algebras and a category of enriched Heyting algebras, which made
it possible to transfer a number of fundamental results from the more widely
studied theory of intuitionistic algebras to the realm of Nelson algebras.

The objects of the category of enriched Heyting algebras above mentioned
are pairs (A,R), where A is a Heyting algebra and R is a Boolean congruence
of A (i.e., R is a congruence such that A/R is a Boolean algebra). Congruences
of any Heyting algebra can be represented by filters, and filters corresponding
to Boolean congruences are precisely those containing all dense elements, i.e.,
elements a such that ¬a = 0 [15]. This allows to replace the notion of a Boolean
congruence by the notion of a filter containing dense elements, which will be
called Boolean filter. Thus, we may consider pairs (A,F ) where A is a Heyting
algebra and F is a Boolean filter. The categorical equivalence for NA can be
presented as follows. We define Hey∗ as the category whose objects are pairs
(A,F ), where A is a Heyting algebra and F is a Boolean filter, and whose
morphisms f : (A,F ) → (B,G) are homomorphisms such that f(F ) ⊆ G. If
(A,F ) ∈ Hey∗ then

K(A,F ) := {(a, b) ∈ A×A : a ∧ b = 0 and a ∨ b ∈ F}

is a Nelson algebra with the operations mentioned in Section 3. If f : (A,F ) →
(B,G) is a morphism in Hey∗ then K(f) : K(A,F ) → K(B,G) defined by
K(f)(a, b) := (f(a), f(b)) is a morphism in NA. Moreover, K can be extended to
a functor from Hey∗ to NA. Conversely, if T ∈ NA then C(T ) := (T/θ, T+/θ) ∈
Hey∗, where T+ := {x ∈ T : x ≥∼ x}. If f : T → U is a morphism in NA

then C(f) : C(T ) → C(U) given by C(f)(x/θ) := f(x)/θ is a morphism in Hey∗.
Moreover, C can be extended to a functor from NA to Hey∗. Furthermore, if
(A,F ) ∈ Hey∗ then α : (A,F ) → C((K(A,F )), given as in Lemma 6.5, is an
isomorphism in Hey∗, and if T ∈ NA then ρ : T → K(C(T )), given as in Theorem
3.7, is an isomorphism in NA. The functors K and C establish a categorical
equivalence between Hey∗ and NA [20, 21]. Therefore, it is natural to think in
the following problem:
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• Is it possible to generalize the above mentioned categorical equivalence in
the framework of SNA?

Let A ∈ SRL. One might think that a possible solution is to consider filters
of an algebra A ∈ SRL that contain the set of dense elements De(A) := {a ∈
A : ¬a = 0} (as in the case of Heyting algebras). It is known that in Heyting
algebras the set of dense elements is a filter. However, in sr-lattices it is not
necessarily satisfied. Indeed, let A be the sr-lattice given in Example 2.1. Then
De(A) = {a, b, 1}, which is not a filter. In sr-lattices the congruences are given
by open filters, i.e., filters F such that 1 → a ∈ F whenever a ∈ F [7, 4]. In
order to try to generalize the equivalence between Hey∗ and NA, it seems natural
to work with pairs (A,F ), where A is a sr-lattice and F is an open filter such
that De(A) ⊆ F (these filters will be called subresiduated filters).

Lemma 7.2. Let A ∈ SRL. Then De(A) = {a ∨ ¬a : a ∈ A}.

Proof. Let a ∈ De(A). Then ¬a = 0, so a = a∨¬a. Hence a ∈ {b∨¬b : b ∈ A}.
Conversely, let a ∈ A. We shall see that ¬(a ∨ ¬a) = 0. Indeed, ¬(a ∨ ¬a) =
¬a ∧ ¬¬a = 0. Hence, a ∨ ¬a ∈ De(A).

We write SRL∗ for the set whose elements are pairs (A,F ), with A ∈ SRL

and F a subresiduated filter.

Let (A,F ) ∈ SRL∗. We define

K(A,F ) := {(a, b) ∈ A×A : a ∧ b = 0 and a ∨ b ∈ F}.

Note that K(A,A) = K(A). Let (a, b), (c, d) ∈ K(A,F ). Then, we have that
(a, b) ∧ (c, d), (a, b) ∨ (c, d) and ∼ (a, b) ∈ K(A,F ) (for details see for instance
[21]).

Lemma 7.3. Let (A,F ) ∈ SRL∗ and (a, b), (c, d) ∈ K(A,F ). Then (a, b) ⇒
(c, d) ∈ K(A,F ).

Proof. Let (a, b), (c, d) ∈ K(A,F ). We will prove that (a → c, a∧ d) ∈ K(A,F ).
First, note that since (a → c, a ∧ d) ∈ K(A), (a → c) ∧ a ∧ d = 0. We will
see that (a → c) ∨ (a ∧ d) ∈ F . By distributive law, (a → c) ∨ (a ∧ d) =
((a → c) ∨ a) ∧ ((a → c) ∨ d). It is immediate to see that ¬a ≤ a → c and
in consequence ¬a ∨ a ≤ (a → c) ∨ a. Since ¬a ∨ a ∈ De(A) ⊆ F , we get
(a → c) ∨ a ∈ F . We only need to check that (a → c) ∨ d ∈ F . To do so, we
know that (1 → (c ∨ d)) ∧ ((c ∨ d) → c) ≤ 1 → c. Since, (c ∨ d) → c = (c →
c) ∧ (d → c) = d → c, and d → c = (d → c) ∧ (d → d) = d → (c ∧ d) = d → 0,
we get (1 → (c∨d))∧¬d ≤ 1 → c. Then, ((1 → (c∨d))∧¬d)∨d ≤ (1 → c)∨d,
i.e.,

((1 → (c ∨ d)) ∨ d) ∧ (¬d ∨ d) ≤ (1 → c) ∨ d.

Since c∨d ∈ F and F is an open filter, it follows that 1 → (c∨d) ∈ F and thus,
(1 → (c ∨ d)) ∨ d ∈ F . From ¬d ∨ d ∈ F , we get (1 → c) ∨ d ∈ F . It is easy to
see that (1 → c)∨ d ≤ (a → c)∨ d, therefore we get (a→ c)∨ d ∈ F , which was
our aim.
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Thus, for (A,F ) ∈ SRL∗ we have that 〈K(A,F ),∧,∨,⇒,∼, (0, 1), (1, 0)〉 is a
subresiduated Nelson algebra because this is a subalgebra of the subresiduated
Nelson algebra 〈K(A),∧,∨,⇒,∼, (0, 1), (1, 0)〉. However, this construction can
not be extended to a categorical equivalence, unless following the construction
which shows the categorical equivalence for the category of enriched Heyting
algebras we have mentioned in this section. Indeed, let us consider T as the
subresiduated Nelson algebra whose Hasse diagram is given in Figure 1. Then
T/θ is isomorphic to the sr-lattice A given in the Example 2.1. Note that
De(A) = {a, b, 1}. So, the only open filter F that contains the set De(T/θ) is
F = T/θ and we know that T is not isomorphic to K(T/θ, T/θ) = K(T/θ).
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