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DERIVATION OF THE MASTER EQUATION

The dissipative dynamics of the dressed atom is determined by the atom-radiation interaction Hamiltonian

VAR = ℏ
∫

dω

√
Γ(ω)

2π

(
S+a(ω) + S−a

†(ω)
)
, (S1)

where Γ(ω) vanishes if ω ≤ 0. Due to the structure of the atom-laser Hamiltonian

HAL =
∑
j=1,2

∑
N

Ej(N)|j(N)⟩⟨j(N)|, with Ej(N) = ℏ
(
NωL − (−1)j

Ω

2

)
, (S2)

the atom-radiation dynamics can yield on-shell decay of the dressed eigenstates at the frequencies qωL and qωL ± Ω.
Using the assumption that, for all practical purposes, the composition of the dressed eigenstates |j(N)⟩ in terms of

the bare states |e,N ′⟩ and |g,N ′⟩ only depends on N−N ′, the atomic transition operators S+ = |e⟩⟨g| and S− = |g⟩⟨e|
can be conveniently expressed as

S+ =
∑

i,j∈{1,2}

∑
q

A
(q)
ij S

ij(q)
+ , S− =

∑
i,j∈{1,2}

∑
q

(
A

(q)
ij

)∗
S
ij(q)
− (S3)

with the coefficients

A
(q)
ij =

∑
p

⟨i(N + p + q)|e,N⟩⟨g,N |j(N + p)⟩ (S4)

actually independent of N , and

S
ij(q)
+ =

∑
N

|i(N)⟩⟨j(N − q)|, S
ij(q)
− =

∑
N

|j(N − q)⟩⟨i(N)|. (S5)

The Lindblad operators associated to the allowed transitions can thus be expressed as

L
(q)
+ =

∑
N

√
Γ

(
E1(N) − E2(N − q)

ℏ

)(
A

(q)
12

)∗|2(N − q)⟩⟨1(N)| =
√

Γ(qωL + Ω)
(
A

(q)
12

)∗
S
12(q)
− , (S6)

L
(q)
− =

∑
N

√
Γ

(
E2(N) − E1(N − q)

ℏ

)(
A

(q)
21

)∗|1(N − q)⟩⟨2(N)| =
√

Γ(qωL − Ω)
(
A

(q)
21

)∗
S
21(q)
− , (S7)

L(q)
c =

∑
jN

√
Γ

(
Ej(N) − Ej(N − q)

ℏ

)(
A

(q)
jj

)∗|j(N − q)⟩⟨j(N)| =
√

Γ(qωL)
[(
A

(q)
11

)∗
S
11(q)
− +

(
A

(q)
22

)∗
S
22(q)
−

]
. (S8)

Therefore, the dissipative part of the GKLS master equation, applied to the atom-laser density matrix σ, reads

Ldiss(σ) =
∑

n∈{+,−,c}

∑
q

[
L(q)
n σ

(
L(q)
n

)† − 1

2

{(
L(q)
n

)†
L(q)
n , σ

}]

=
∑
q

 ∑
i,j∈{1,2}

Γ
(q)
ij

(
S
ij(q)
− σS

ij(q)
+ − 1

2

{
S
ij(q)
+ S

ij(q)
− , σ

})
+ K

(q)
12 S

11(q)
− σS

22(q)
+ +

(
K

(q)
12

)∗
S
22(q)
− σS

11(q)
+

 ,

(S9)
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where

Γ
(q)
11 = Γ(qωL)

∣∣A(q)
11

∣∣2, Γ
(q)
22 = Γ(qωL)

∣∣A(q)
22

∣∣2, Γ
(q)
12 = Γ(qωL + Ω)

∣∣A(q)
12

∣∣2, Γ
(q)
21 = Γ(qωL − Ω)

∣∣A(q)
21

∣∣2, (S10)

and

K
(q)
12 = Γ(qωL)

∣∣A(q)
11 A

(q)
22

∣∣eiφ(q) =

√
Γ
(q)
11 Γ

(q)
22 eiφ(q), (S11)

with φ(q) the relative phase between A
(q)
22 and

(
A

(q)
11

)∗
and {A,B} = AB +BA the anticommutator in the atom-laser

Hilbert space. Expanding the expression (S9) in terms of the transition operators S
(q)
± provides

Ldiss(σ) =
∑
qNN ′

[∑
ij

Γ
(q)
ij

(
σi(N),i(N ′)|j(N − q)⟩⟨j(N ′ − q)| − δNN ′

2
{|i(N)⟩⟨i(N)|, σ}

)

+ K
(q)
12 σ1(N),2(N ′)|1(N − q)⟩⟨2(N ′ − q)| +

(
K

(q)
12

)∗
σ2(N),1(N ′)|2(N − q)⟩⟨1(N ′ − q)|

]
, (S12)

with

σi(N),j(N ′) = ⟨i(N)|σ|j(N ′)⟩. (S13)

FULL AND REDUCED ATOM-LASER DYNAMICS

The evolution of the atom-laser density matrix σ is determined by the combination of the Markovian dissipative
dynamics (S12) and the Hamiltonian dynamics yielded by HAL:

d

dt
σ(t) = − i

ℏ
[HAL, σ(t)] + Ldiss(σ(t)) =

i

ℏ
∑
j,N

Ej(N) [σ(t), |j(N)⟩⟨j(N)|] + Ldiss(σ(t)). (S14)

From the above expression and from (S12), one can obtain the coupled evolution equations for each element:

σ̇1(N),1(N ′) = i(N ′ −N)ωLσ1(N),1(N ′) +
∑
q

[
Γ
(q)
11 σ1(N+q),1(N ′+q) + Γ

(q)
21 σ2(N+q),2(N ′+q) −

(
Γ
(q)
11 + Γ

(q)
12

)
σ1(N),1(N ′)

]
,

(S15)

σ̇2(N),2(N ′) = i(N ′ −N)ωLσ2(N),2(N ′) +
∑
q

[
Γ
(q)
12 σ1(N+q),1(N ′+q) + Γ

(q)
22 σ2(N+q),2(N ′+q) −

(
Γ
(q)
21 + Γ

(q)
22

)
σ2(N),2(N ′)

]
,

(S16)

σ̇1(N),2(N ′) = i[(N −N ′)ωL − Ω]σ1(N),2(N ′) +
∑
q

[
−Γ

(q)
11 + Γ

(q)
12 + Γ

(q)
21 + Γ

(q)
22

2
σ1(N),2(N ′) + K

(q)
12 σ1(N+q),2(N ′+q)

]
,

(S17)

σ̇2(N),1(N ′) = i[(N −N ′)ωL + Ω]σ2(N),1(N ′) +
∑
q

[
−Γ

(q)
11 + Γ

(q)
12 + Γ

(q)
21 + Γ

(q)
22

2
σ2(N),1(N ′) +

(
K

(q)
12

)∗
σ2(N+q),1(N ′+q)

]
.

(S18)

After introducing the reduced density matrix elements

σ
(ℓ)
ij =

∑
N

σi(N),j(N+ℓ), (S19)

one can derive their dynamics by summing the above equations on N . For the elements with different indices, one
gets the decoupled equations

σ̇
(ℓ)
12 = [i(ℓωL − Ω) − Γcoh]σ

(ℓ)
12 , σ̇

(ℓ)
21 = [i(ℓωL + Ω) − Γcoh]σ

(ℓ)
21 (S20)
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with

Γcoh =
∑
q

[
Γ
(q)
11 + Γ

(q)
12 + Γ

(q)
21 + Γ

(q)
22

2
− Re

(
K

(q)
12

)]
, (S21)

which can be integrated as

σ
(ℓ)
12 (t + τ) = exp [i(ℓωL − Ω)τ − Γcohτ ]σ

(ℓ)
12 (t), σ

(ℓ)
21 (t + τ) = exp [i(ℓωL + Ω)τ − Γcohτ ]σ

(ℓ)
21 (t), (S22)

respectively. Notice that the imaginary parts of K
(q)
12 have been consistently neglected with respect to the O(ℓωL±Ω)

terms. It is also interesting to observe that, in the standard RWA evaluation, the real part of K
(1)
12 is negative, thus

providing an increase in the coherence decay rate. The reason will become clear in the last section.
The equal-index reduced density matrix elements satisfy the coupled equations

σ̇
(ℓ)
11 = [iℓωL − Γ12]σ

(ℓ)
11 + Γ21σ

(ℓ)
22 , σ̇

(ℓ)
22 = [iℓωL − Γ21]σ

(ℓ)
22 + Γ12σ

(ℓ)
11 . (S23)

A specific case is represented by the populations

Πj = σ
(0)
jj =

∑
N

⟨j(N)|σ|j(N)⟩ with j = 1, 2, (S24)

whose evolution, satisfying Π1(t) + Π2(t) = 1 at all times, converges to the steady-state values

Πst
1 =

Γ21

Γpop
, Πst

2 =
Γ12

Γpop
, with Γpop = Γ12 + Γ21, (S25)

while the coherences approach the steady-state behavior

σ
(ℓ)
jj,st(t) = eiℓωLtΠst

j . (S26)

In general, the coupled equations (S23) can be integrated into

σ
(ℓ)
11 (t + τ) = eiℓωLτ

[(
Πst

1 + Πst
2 e−Γpopτ

)
σ
(ℓ)
11 (t) + Πst

1

(
1 − e−Γpopτ

)
σ
(ℓ)
22 (t)

]
, (S27)

σ
(ℓ)
22 (t + τ) = eiℓωLτ

[
Πst

2

(
1 − e−Γpopτ

)
σ
(ℓ)
11 (t) +

(
Πst

2 + Πst
1 e−Γpopτ

)
σ
(ℓ)
22 (t)

]
. (S28)

Therefore, the quantity Γpop defined in Eq. (S25) plays the role of a relaxation rate towards the steady-state regime.

SPECTRAL DENSITY OF EMITTED PHOTONS

The spectral density of the emitted photons can be obtained starting from the Heisenberg evolution of the field
operators [1] entailed by the Hamiltonian

H = HAL + ℏ
∫

dω ωa†(ω)a(ω) + ℏ
∫

dω

√
Γ(ω)

2π

(
S+a(ω) + S−a

†(ω)
)
, (S29)

yielding

a(ω, t) = a(ω)e−iωt − i

√
Γ(ω)

2π

∫ t

0

dt′ S−(t′)e−iω(t−t′), (S30)

where the integration constants are set in such a way that at the initial time t = 0, when the state of the atom-laser-
radiation system is

ρ(0) = σ(0) ⊗ |vac⟩⟨vac| (S31)

with a(ω)|vac⟩ = 0, the Heisenberg operator a(ω, 0) coincides with the Schrödinger operator a(ω), acting only on the
radiation degrees of freedom.
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After an evolution time T , the probability density associated to photon frequency reads

Tr
[
a†(ω)a(ω)ρ(T )

]
= ⟨a†(ω, T )a(ω, T )⟩ =

Γ(ω)

2π

∫ T

0

dt

∫ T

0

dt′⟨S+(t′)S−(t)⟩e−iω(t′−t)

=
Γ(ω)

π
Re

∫ T

0

dt

∫ T−t

0

dτ⟨S+(t + τ)S−(t)⟩e−iωτ (S32)

with ⟨. . . ⟩ the average on the initial state ρ(0). The evolution towards a steady state entails the presence of constant
contributions in t, yielding diverging integrals, and oscillating ones, which are not integrable but provide comparatively
negligible contributions. Therefore, it is convenient to define the asymptotic spectral density as

J (ω) = lim
T→∞

⟨a†(ω, T )a(ω, T )⟩
T

= lim
T→∞

Γ(ω)

π
Re

∫ T

0

dt

T

∫ T−t

0

dτ⟨S+(t + τ)S−(t)⟩e−iωτ . (S33)

The correlator in the integral can be evaluated by using the quantum regression theorem (QRT) [1], which is consistent
with the applicability condition of the Markovian approximation, namely the fact that the time scale of vacuum
correlations (in this case, the width of the Fourier transform of Γ(ω)) is much smaller than any other scale of time
variation in the open system dynamics. Since S+ can be written as

S+ =
∑

i,j∈{1,2}

∑
q

Sij(q)
+ , with Sij(q)

+ = A
(q)
ij

∑
N

|i(N)⟩⟨j(N − q)|, (S34)

the spectral density can be accordingly decomposed in the following terms,

J (ω) =
∑
q

(
J (q)
+ (ω) + J (q)

− (ω) + J (q)
c (ω)

)
(S35)

which will be now derived separately.

Sidebands

From the definitions (S34) and (S19), one can easily obtain that

⟨Sij(q)
+ ⟩ = A

(q)
ij σ

(q)
ji . (S36)

Therefore, the evolution (S22) of the unequal-index coherences determines

⟨S12(q)
+ (t + τ)⟩ = exp [i(qωL + Ω)τ − Γcohτ ] ⟨S12(q)

+ (t)⟩. (S37)

From QRT, ⟨Sij(q)
+ (t + τ)S−(t)⟩ follows the same evolution in τ as ⟨Sij(q)

+ (t + τ)⟩, and therefore

⟨S12(q)
+ (t + τ)S−(t)⟩ = exp [i(qωL + Ω)τ − Γcohτ ] ⟨S12(q)

+ (t)S−(t)⟩. (S38)

The expectation value of S12(q)
+ S− at time t can be evaluated by using the expression (S3), as

⟨S12(q)
+ (t)S−(t)⟩ = A

(q)
12

∑
j∈{1,2}

∑
ℓ

(
A

(ℓ)
j2

)∗
σ
(q−ℓ)
j1 (t) = A

(q)
12

∑
ℓ

(
A

(ℓ)
12

)∗
Πst

1 ei(q−ℓ)ωLt + f
(q)
12 (t), (S39)

where f
(q)
12 (t) contains transient contributions in t, which certainly do not contribute to the spectral density, as defined

in (S33). Combining the above results, one obtains the spectral density contribution

J (q)
+ (ω) = lim

T→∞

Γ(ω)

π
Re

∫ T

0

dt

∫ T−t

0

dτ⟨S12(q)
+ (t + τ)S−(t)⟩e−iωτ

=
Γ(ω)

π

∣∣A(q)
12

∣∣2Πst
1 Re

∫ ∞

0

dτ e−i(ω−qωL−Ω)τ−Γcohτ

= Γ
(q)
12 Πst

1

1

π

Γcoh

[ω − (qωL + Ω)]2 + Γ2
coh

(S40)
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with the last equality holding up to O(Γcoh) corrections, considering that Γ
(q)
12 = Γ(qωL +Ω)

∣∣A(q)
12

∣∣2. The computation
of the lower-energy sideband contribution

J (q)
− (ω) = lim

T→∞

Γ(ω)

π
Re

∫ T

0

dt

∫ T−t

0

dτ⟨S21(q)
+ (t + τ)S−(t)⟩e−iωτ = Γ

(q)
21 Πst

2

1

π

Γcoh

[ω − (qωL − Ω)]2 + Γ2
coh

(S41)

proceeds in an entirely analogous way, with the roles of indexes 1 and 2 exchanged, and the sign in front of Ω reversed.

Central lines

The evaluation of the central-line contributions

J (q)
c (ω) = lim

T→∞

Γ(ω)

π
Re

∫ T

0

dt

∫ T−t

0

dτ⟨
[
S11(q)
+ (t + τ) + S22(q)

+ (t + τ)
]
S−(t)⟩e−iωτ (S42)

is complicated by the fact that the evolutions of ⟨Sjj(q)
+ ⟩ = A

(q)
jj σ

(q)
jj for j = 1 and 2 are coupled to each other.

Actually, following the evolution (S27)-(S28) of the same-index reduced coherences, one obtains

⟨S11(q)
+ (t + τ) + S22(q)

+ (t + τ)⟩ = eiqωLτ
[(

C
(q)
1 + D

(q)
1 e−Γpopτ

)
⟨S11(q)

+ (t)⟩ +
(
C

(q)
2 + D

(q)
2 e−Γpopτ

)
⟨S22(q)

+ (t)⟩
]

(S43)

with

C
(q)
1 = Πst

1 +
A

(q)
22

A
(q)
11

Πst
2 , C

(q)
2 = Πst

2 +
A

(q)
11

A
(q)
22

Πst
1 , D

(q)
1 = Πst

1

(
1 − A

(q)
22

A
(q)
11

)
, D

(q)
2 = Πst

2

(
1 − A

(q)
11

A
(q)
22

)
. (S44)

Notice that in the standard dressed-atom approach, in which RWA is considered in the atom-laser interaction, such

a computation is oversimplified by the property A
(1)
22 = −A

(1)
11 [1] (with all the other coefficients for q ̸= 1 vanishing).

Using QRT, we obtain

⟨
[
S11(q)
+ (t + τ) + S22(q)

+ (t + τ)
]
S−(t)⟩

= eiqωLτ
[(

C
(q)
1 + D

(q)
1 e−Γpopτ

)
⟨S11(q)

+ (t)S−(t)⟩ +
(
C

(q)
2 + D

(q)
2 e−Γpopτ

)
⟨S22(q)

+ (t)S−(t)⟩
]
. (S45)

The expectation values appearing in the above expression can be evaluated as in the case of sidebands, using (S34)
and (S3),

⟨S11(q)
+ (t)S−(t)⟩ = A

(q)
11

∑
j∈{1,2}

∑
ℓ

(
A

(ℓ)
j1

)∗
σ
(q−ℓ)
j1 (t) = A

(q)
11

∑
ℓ

(
A

(ℓ)
11

)∗
Πst

1 ei(q−ℓ)ωLt + f
(q)
11 (t), (S46)

⟨S22(q)
+ (t)S−(t)⟩ = A

(q)
22

∑
j∈{1,2}

∑
ℓ

(
A

(ℓ)
j2

)∗
σ
(q−ℓ)
j2 (t) = A

(q)
22

∑
ℓ

(
A

(ℓ)
22

)∗
Πst

2 ei(q−ℓ)ωLt + f
(q)
22 (t), (S47)

where f
(q)
jj (t) contain transient contributions in t. Collecting the above results yields

J (q)
c (ω) =

Γ(ω)

π

[
A(q) Re

∫ ∞

0

dτ e−i(ω−qωL)τ + B(q) Re

∫ ∞

0

dτ e−i(ω−qωL)τ−Γpopτ

]
= Γ(qωL)A(q)δ(ω − qωL) + Γ(ω)B(q) 1

π

Γpop

[ω − (qωL + Ω)]2 + Γ2
pop

, (S48)

with

A(q) = Cq
1

∣∣A(q)
11

∣∣2Πst
1 + Cq

2

∣∣A(q)
22

∣∣2Πst
2 =

∣∣∣A(q)
11 Πst

1 + A
(q)
22 Πst

2

∣∣∣2 , (S49)

B(q) = Dq
1

∣∣A(q)
11

∣∣2Πst
1 + Dq

2

∣∣A(q)
22

∣∣2Πst
2 =

∣∣∣A(q)
11 −A

(q)
22

∣∣∣2 Πst
1 Πst

2 . (S50)
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After approximating Γ(ω) ≃ Γ(qωL), up to O(Γpop) corrections, one can express the spectral density of the q-th
central line as

J (q)
c (ω) =

[
Γ
(q)
11

(
Πst

1

)2
+ Γ

(q)
22

(
Πst

2

)2
+ 2 ReK

(q)
12 Πst

1 Πst
2

]
δ(ω − qωL)

+
(

Γ
(q)
11 + Γ

(q)
22 − 2 ReK

(q)
12

)
Πst

1 Πst
2

1

π

Γpop

(ω − qωL)2 + Γ2
pop

. (S51)

It is evident that frequency integration, useful to determine the line weight, cancels the contributions that depend on

K
(q)
12 .

PERTURBATIVE CORRECTION OF RWA EIGENSTATES

If the composition of the dressed eigenstates {|1(N)⟩, |2(N)⟩} in terms of the bare states |e,N⟩ and |g,N⟩ is
expressed by the amplitudes

α
(p)
j = ⟨g,N + 1 − p|j(N)⟩, β

(p)
j = ⟨e,N − p|j(N)⟩, (S52)

then the coefficients in Eq. (S4), which are crucial to determine the features of a specific model, read

A
(q)
ij =

∑
p

(
β
(p+q−1)
i

)∗
α
(p)
j . (S53)

In the case of the standard RWA dressed atom, the eigenstates have the form

|1(N)0⟩ = sin θ|g,N + 1⟩ + cos θ|e,N⟩, |2(N)0⟩ = cos θ|g,N + 1⟩ − sin θ|e,N⟩, (S54)

implying that the only non-vanishing amplitudes (S52) are those with p = 0, and the only non-vanishing coefficients
in S+ are those with q = 1:

A
(1)
11 = cos θ sin θ, A

(1)
22 = − cos θ sin θ, A

(1)
12 = cos2 θ, A

(1)
21 = − sin2 θ. (S55)

Therefore, only the coefficients

A
(0)
ij =

(
β
(0)
i

)∗
α
(0)
j +

∑
p ̸=0

(
β
(p)
i

)∗
α
(p)
j (S56)

contain terms of O(1) in perturbations of the RWA Hamiltonian. Incidentally, notice that the quantity K
(1)
12 , as

defined in Eq. (S11), is negative, because A
(1)
11 and A

(1)
22 have opposite sign. This is ultimately due to the minus sign

appearing in the transformation (S54), that connects two orthonormal bases.
Let us consider the case in which the Hamiltonian

HAL = HRW + HAS + HCR (S57)

contains an “unperturbed” term

HRW = ℏω0|e⟩⟨e| ⊗ 11L + 11A
∑
N

NℏωL|N⟩⟨N | +
ℏΩR

2

∑
N

(|e,N⟩⟨g,N + 1| + |g,N + 1⟩⟨e,N |) , (S58)

whose eigenstates are of the form (S54), with

tan(2θ) =
ΩR

ω0 − ωL
, (S59)

and

HAS = ℏΩAS

∑
N

(|e,N⟩⟨e,N + 1| + |e,N + 1⟩⟨e,N |) , (S60)

HCR =
ℏΩR

2

∑
N

(|e,N + 1⟩⟨g,N | + |g,N⟩⟨e,N + 1|) , (S61)
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perturbation terms depending on a permanent dipole moment of the atomic state |e⟩ and on the relevance of counter-
rotating terms, respectively. Since HAS and HCR do not couple states inside the same doublet, the relevant conditions
of perturbation theory applicability are ΩAS ≪ ωL and ΩR ≪ ωL. Moreover, to ensure that RWA is a good zeroth-
order approximation, the condition

Ω =
√

Ω2
R + (ω0 − ωL)2 ≪ ωL, (S62)

stronger than ΩR ≪ ωL, must hold as well, and Ω/ωL will thus be treated as a small parameter.
Applying perturbation theory at the first order, the RWA eigenstates |j(N)⟩ hybridize with |j′(N + p)⟩ with

p = −1,+1, due to HAS, and p = −2,+2, due to HCR. The resulting eigenstates read

|1(N)⟩ = |1(N)0⟩ +
ΩASΩ

ωL(ωL + Ω)
cos2 θ sin θ|g,N⟩ +

ΩAS

ωL
cos θ

(
1 − Ω sin2 θ

ωL + Ω

)
|e,N − 1⟩

+
ΩASΩ

ωL(ωL − Ω)
cos2 θ sin θ|g,N + 2⟩ − ΩAS

ωL
cos θ

(
1 +

Ω sin2 θ

ωL − Ω

)
|e,N + 1⟩

+
ΩR

4ωL

Ω sin2 θ cos θ

2ωL − Ω
|g,N + 3⟩ − ΩR

4ωL
sin θ

(
1 +

Ω sin2 θ

2ωL − Ω

)
|e,N + 2⟩

+
ΩR

4ωL
cos θ

(
1 − Ω cos2 θ

2ωL + Ω

)
|g,N − 1⟩ +

ΩR

4ωL

Ω sin θ cos2 θ

2ωL + Ω
|e,N − 2⟩ (S63)

and

|2(N)⟩ = |2(N)0⟩ −
ΩASΩ

ωL(ωL − Ω)
cos θ sin2 θ|g,N⟩ − ΩAS

ωL
sin θ

(
1 +

Ω cos2 θ

ωL − Ω

)
|e,N − 1⟩

− ΩASΩ

ωL(ωL + Ω)
cos θ sin2 θ|g,N + 2⟩ +

ΩAS

ωL
sin θ

(
1 − Ω cos2 θ

ωL + Ω

)
|e,N + 1⟩

+
ΩR

4ωL

Ω sin θ cos2 θ

2ωL + Ω
|g,N + 3⟩ − ΩR

4ωL
cos θ

(
1 − Ω cos2 θ

2ωL + Ω

)
|e,N + 2⟩

− ΩR

4ωL
cos θ

(
1 +

Ω cos2 θ

2ωL − Ω

)
|g,N − 1⟩ − ΩR

4ωL

Ω sin2 θ cos θ

2ωL − Ω
|e,N − 2⟩. (S64)

The lowest-order contribution to the coefficients (S4) comes from the terms

A
(q)
ij ≃

(
β
(q−1)
i

)∗
α
(0)
j +

(
β
(0)
i

)∗
α
(1−q)
j + O

(
ΩAS

ωL

)2

+ O

(
ΩR

ωL

)2

. (S65)

with corrections of order (ΩAS/ωL)2 and (ΩR/ωL)2. Therefore, the coefficient determining the low-frequency line
strength reads

A
(0)
12 = −ΩAS

ωL
cos2 θ

(
1 + 2

Ω sin2 θ

ωL − Ω

)
+ O

[(
ΩAS

ωL

)2
]

= −ΩAS

ωL
cos2 θ + O

(
ΩASΩ

ω2
L

)
, (S66)

while, within the same approximation order, the coefficients A
(2)
ij that determine the emission triplet around 2ωL read

A
(2)
11 ≃ ΩAS

ωL
cos θ sin θ, A

(2)
22 ≃ −ΩAS

ωL
cos θ sin θ, A

(2)
12 ≃ ΩAS

ωL
cos2 θ, A

(2)
21 ≃ −ΩAS

ωL
sin2 θ. (S67)

Notice the proportionality to the unperturbed coefficients A
(1)
ij in Eq. (S55), implying that the relative weight of the

low-energy transition with respect to the q = 1 and the q = 2 triplets differs only by a factor (ΩAS/ωL)2 and by the
different ratio of form factors. In the case of q = 3, one can verify that the dominant terms

A
(3)
ij ≃ ⟨i(N)|e,N − 2⟩⟨g,N + 1|j(N)⟩ + ⟨i(N)|e,N⟩⟨g,N + 3|j(N)⟩ = O

(
ΩRΩ

ω2
L

)
(S68)

are suppressed by an additional order Ω/ωL) besides ΩR/ωL, leading to the considerations reported in the main text.
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(a) ΩR = 0.1ωL (b) ΩR = 0.2ωL (c) ΩR = 0.3ωL

Figure S1. Relative weight of the low-frequency emission compared to the Mollow triplet, evaluated in resonance conditions
ω0 = ωL (solid red lines). The quadratic approximation determined by the behavior around ΩAS = 0 is reported for comparison
(dashed blue lines). The results are obtained under the assumption that the form factor Γ(ω) of the atomic transition behaves
like ω3 for the transition frequencies involved in the processes.

Figure S2. Comparison between the low-frequency gap Ω = [E1(N) − E2(N)]/ℏ obtained with varying ΩAS and the value Ω0

obtained for ΩAS = 0. The reported curves are referred to resonance cases (ω0 = ωL) with ΩR = 0.1ωL (red line), ΩR = 0.2ωL

(green line), and ΩR = 0.3ωL (brown line).

A non-perturbative numerical diagonalization of the full Hamiltonian HAL, truncated to 50 levels, provides the
results in Figure S1, which report the relative weight, in terms of photon number, of the low-frequency emission com-
pared to the Mollow triplet, as a function of ΩAS, in resonance conditions for ΩR = 0.1ωL, 0.2ωL, 0.3ωL. Interestingly,
as shown in Figure S2, increasing the permanent dipole while keeping ΩR fixed determines a further reduction of the
lowest transition frequency in the system.
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