Andrzej Pietruszczak

SEMANTICAL INVESTIGATIONS ON SOME WEAK MODAL LOGICS. Part II*

Abstract

In both parts of this paper ${ }^{1}$ we examine weak logics similar to $\mathbf{S 0 . 5}[\square \Phi]$, where $\Phi \subseteq \mathbf{S 0 . 5}$. We also examine their versions (one of which is $\mathbf{S 0 . 5} \mathbf{5}_{\mathrm{rte}}[\square \Phi]$) that are closed under replacement of tautological equivalents (rte). We have that: $\mathbf{S} 0 . \mathbf{5}_{\mathrm{rte}}[\square(\mathrm{K}), \square(\mathrm{T})] \subsetneq \mathbf{S 0 . 9}, \mathbf{S} 0 . \mathbf{5}_{\mathrm{rte}}[\square(\mathrm{X}), \square(\mathrm{T})] \subsetneq \mathbf{S} \mathbf{1}$, and in general, if $\Phi \subseteq \mathbf{E} 1$, then $\mathbf{S 0} \mathbf{0} \mathbf{5}_{\mathrm{rte}}[\square \Phi] \subsetneq \mathbf{S} \mathbf{2}$.

In the present part we give simplified semantics for these logics, formulated by means of some Kripke-style models. We prove that the logics in question are determined by some classes of these models.

Key words: Very weak modal logics, simplified Kripke-style semantics.

3. Simplified Kripke-style semantics for weak t-normal and t-regular systems

3.1. Models for the logics $\mathrm{S} 0.5^{\circ}, \mathrm{S} 0.5^{\circ}[\mathrm{D}], \mathrm{S} 0.5^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$ and S 0.5

For very weak t-normal modal systems (e.g. for the logics $\mathbf{S 0 . 5}$, $\mathbf{S 0}^{\mathbf{5}} \mathbf{5}^{\circ}[\mathrm{D}]$, $\mathbf{S 0 . 5} \mathbf{5}^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$ and $\mathbf{S 0 . 5}$) in [3] are used the following semantics, which consists of "t-normal models". A model for very weak t-normal systems (or t-normal model) is any triple $\langle w, A, V\rangle$ in which

[^0]1. w is a «distinguished» (normal) world,
2. A is a set of worlds which are alternatives to the world w,
3. V is a valuation from For $\times(\{w\} \cup A)$ to $\{0,1\}$ such that:
(i) for any world $x \in A \cup\{w\}$, the function $V(\cdot, x)$ belongs to $\mathrm{Val}^{\mathrm{cl}}$;
(ii) for the world w and any $\varphi \in$ For

$$
\left(V_{w}^{\square}\right) \quad V(\square \varphi, w)=1 \text { iff } \forall_{x \in A} V(\varphi, x)=1
$$

Besides for any world from $A \backslash\{w\}$ and any $\varphi \in$ For, the formula $\ulcorner\square \varphi\urcorner$ may have an arbitrary value.
A formula φ is true in a t-normal model $\langle w, A, V\rangle \operatorname{iff} V(\varphi, w)=1$. We say that a formula is t-normal valid iff it is true in all t-normal models. Of course, the set of all formulae which are true in a t-model (resp. t-normal valid) is closed under (MP).

Notice that all formulae from the sets $\mathbf{P L}, \square \mathbf{P L}, \mathrm{M}_{\mathrm{PL}} \mathrm{R}_{\mathrm{PL}}$ and E_{PL} are tnormal valid. Moreover, for any t-normal model $\langle w, A, V\rangle$, for any $\tau \in \mathbf{P L}$ and any $x \in\{w\} \cup A$ we have that $V(\tau, x)=1$. Besides we have the following obvious fact.

FACT 3.1. Let w be any object and A be any set. Then:

1. $w \in A$ iff for any $V:$ For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ such that $\langle w, A, V\rangle$ is a t-model we have that $V((\mathrm{~T}), w)=1$.
2. If $A \neq \emptyset$, then for any V : For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ such that $\langle w, A, V\rangle$ is a t-model we have that $V((\mathrm{D}), w)=1$.
3. If $A=\emptyset$, then for any $V:$ For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ such that $\langle w, A, V\rangle$ is a t-model we have that $V((\mathrm{D}), w)=0$.
4. Ether $w \in A$ or $A=\emptyset$ iff for any $V:$ For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ such that $\langle w, A, V\rangle$ is a t-model we have that $V\left(\left(\mathrm{~T}_{\mathrm{q}}\right), w\right)=1$.

Proof: 1. " \Rightarrow " Obvious. " \Leftarrow " If $w \notin A$, let v_{w} be any assignment such that $v_{w}(p)=0$ and for any $x \in A$ let v_{x} be any assignment such that $v_{x}(p)=1$. Let V : For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ be the unique extension of v_{w} and v_{x}, for $x \in A$, as in Lemma 3.2(2). Then $\langle w, A, V\rangle$ is a t-normal model such that $V(\square p, w)=1$. So $V((T), w)=0$.

2 and 3. Obvious.
4. " \Rightarrow " Obvious (see 1 and 3). " \Leftarrow " If $w \notin A \neq \emptyset$, then as in 1 , wskazujemy t-model such that $V((\mathrm{~T}), w)=0$. Moreover, $V(\diamond(q \supset q), w)=1$, since $A \neq \emptyset$.

The lemma below shows that the notion of a t-normal model can be defined in a different, but equivalent, way.

Lemma 3.2. 1. Let $\left\langle w, A, v_{w},\left\{V_{x}\right\}_{x \in A \backslash\{w\}}\right\rangle$ be a structure in which w and A are such as in t-normal models, $v_{w}:$ At $\rightarrow\{0,1\}$, and for any x in $A \backslash\{w\}, V_{x} \in \mathrm{Val}^{\mathrm{cl}}$. Then there is the unique $V:$ For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ such that:

- $\forall_{\alpha \in \mathrm{At}}: V(\alpha, w)=v_{w}(\alpha)$ and $\forall_{\varphi \in \mathrm{For}} \forall_{x \in A \backslash\{w\}}: V(\varphi, x)=V_{x}(\varphi)$,
- V satisfies conditions (i) and (ii) from definition of t-normal models.

Thus, $\langle w, A, V\rangle$ is a t-normal model. Moreover, if $w \in A$, then this model is self-associate.
2. Let $\left\langle w, A, v_{w},\left\{v_{x}\right\}_{x \in A \backslash\{w\}}\right\rangle$ be a structure in which w and A are such as in t-normal models, v_{w} : At $\rightarrow\{0,1\}$, and for any $x \in A \backslash\{w\}$, $v_{x}:$ PAt $\rightarrow\{0,1\}$. Then there is the unique $V:$ For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ such that:

- $\forall_{\alpha \in \mathrm{At}}: V(\alpha, w)=v_{w}(\alpha)$ and $\forall_{\varphi \in \mathrm{PAt}} \forall_{x \in A \backslash\{w\}}: V(\varphi, x)=v_{x}(\varphi)$,
- V satisfies conditions (i) and (ii) from definition of t-normal models.

Thus, $\langle w, A, V\rangle$ is a t-normal model. Moreover, if $w \in A$, then this model is self-associate.

Proof: 1. Obvious.
2. By Lemma 1.1(1), from the first part [4], for every $x \in A \backslash\{w\}$ there is the unique extension V_{x} : For $\rightarrow\{0,1\}$ of v_{x} by classical truth conditions for truth-value operators (i.e. e.g. $V_{x} \in \mathrm{Val}^{\mathrm{cl}}$ and $\forall_{\chi \in \mathrm{For}}: V_{x}(\square \chi)=$ $\left.v_{x}(\square \chi)\right)$. The rest as by 1 .

Remark 3.1. 1. We can see then that structures $\left\langle w, A, v_{w},\left\{v_{x}\right\}_{x \in A \backslash\{w\}}\right\rangle$ satisfying the conditions from the above lemma can be taken as t-normal models. Again we say that in such model a formula φ is true iff $V(\varphi, w)=1$.
2. However, the latter approach is not general enough while considering week t-normal logics with a set $\square \Phi$ of additional axioms, where $\Phi \subseteq \mathbf{S} 0.5$ (see the condition (iii) in Section 3.3). In these not always can we use Lemma 3.2 while constructing t-normal models.

FACT 3.3. Let $\ulcorner\varphi \equiv \psi\urcorner \in \mathbf{P L}$. Then for any classical formula χ (i.e. without the modal operator) for any world x from $A \cup\{w\}$ in any t-normal model $\langle w, A, V\rangle$ we have that $V(\chi, x)=V(\chi[\varphi / \psi], x)$.

However, when we analyze t-normal rte-logics we need to have such a notion of model, for which an analogous fact will hold for any formula χ from For.

We say that a t-normal model $\langle w, A, V\rangle$ is self-associate (resp. empty, non-empty) iff $w \in A$ (resp. $A=\emptyset, A \neq \emptyset$). Let nM be the class of all t-normal models. Moreover, let $\mathbf{n M} \mathbf{M}^{\text {sa }}$ (resp. $\mathbf{n M}^{\varnothing}, \mathbf{n M} \mathbf{M}^{+}$) be the class of t-normal models which are self-associate (resp. empty, non-empty). Of course, $\mathbf{n M}^{\text {sa }} \subsetneq \mathbf{n} \mathbf{M}^{+}$and $\mathbf{n} \mathbf{M}^{\varnothing} \cap \mathbf{n M}^{+}=\emptyset$.

Let \boldsymbol{C} be any class of considered models. We say that a formula φ is \boldsymbol{C}-valid (written $\models \boldsymbol{C} \varphi$) iff φ is true in all models from \boldsymbol{C}.

Let $\boldsymbol{\Sigma}$ be an arbitrary modal system. We say that $\boldsymbol{\Sigma}$ is sound with respect to \boldsymbol{C} iff $\boldsymbol{\Sigma} \subseteq\{\varphi \in$ For : $\models \boldsymbol{c} \varphi\}$. We say that $\boldsymbol{\Sigma}$ is complete with respect to \boldsymbol{C} iff $\boldsymbol{\Sigma} \supseteq\{\varphi \in$ For : $\models \boldsymbol{c} \varphi\}$. We say that $\boldsymbol{\Sigma}$ is determined by \boldsymbol{C} iff $\boldsymbol{\Sigma}=\{\varphi \in$ For : $\models \boldsymbol{c} \varphi\}$, i.e., $\boldsymbol{\Sigma}$ is sound and complete with respect to \boldsymbol{C}.

In [3] we proved the following determination theorems for the logics $\mathbf{S 0 . 5} \mathbf{5}^{\circ}, \mathbf{S} 0.5^{\circ}[\mathrm{D}], \mathbf{S} 0.5^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$ and $\mathbf{S 0 . 5}$:

Theorem 3.4 ([3]). 1. S0.5 ${ }^{\circ}$ is determined by the class $\mathbf{n M}$.
2. $\mathbf{S 0 . 5} \mathbf{5}^{\circ}[\mathrm{D}]$ is determined by the class $\mathbf{n M} \mathbf{M}^{+}$.
3. $\mathbf{S 0 . 5}{ }^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$ is determined by the class $\mathbf{n} \mathbf{M}^{\mathbf{s a}} \cup \mathbf{n} \mathbf{M}^{\varnothing}$.
4. $\mathbf{S 0 . 5}$ is determined by the class $\mathbf{n M}{ }^{\text {sa }} .^{2}$

From the above theorem and Fact 3.1(1) we obtain:
Corollary 3.5. (T) $\notin \mathbf{S 0 . 5}{ }^{\circ}$. Hence $\mathbf{S 0 . 5}{ }^{\circ} \subsetneq \mathbf{S 0 . 5}$.
From Theorem 3.4 (or from Fact 3.1 likewise), we obtain:
Fact 3.6 ([3]). The formulae (\dagger) from the first part do not belong to $\mathbf{S 0 . 5}$. Consequently, $\mathbf{P L}_{\mathrm{rte}} \nsubseteq \mathbf{S 0 . 5}$ and $\mathbf{S 0 . 5}$ is not an rte-system.

[^1]Proof: For $\left(\dagger_{\mathrm{a}}\right)$: For $w \neq a$ and $A:=\{w, a\}$, let v_{w} and v_{a} be assignments such that $v_{w}(p)=v_{a}(p)=v_{a}(\square p)=1, v_{a}(\square \neg \neg p)=0$. Let, as in Lemma 3.2(2), V : For $\times A \rightarrow\{0,1\}$ be the unique extension of v_{w} and v_{a}. Thus, $\langle w, A, V\rangle$ is a self-associate t-normal model such that $V(\square \square p, w)=1$ and $V(\square \square \neg \neg p, w)=0$. So $V\left(\left(\dagger_{\mathrm{a}}\right), w\right)=0$. Similarly for $\left(\dagger_{\mathrm{b}}\right)$: let $v_{a}(\square p)=0$ and $v_{a}(\square \neg \neg p)=1$.

FACT 3.7. \diamond For $\cap \mathbf{S 0 . 5}{ }^{\circ}=\emptyset=\diamond$ For $\cap \mathbf{S 0 . 5} \mathbf{5}^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$.
Proof: For any empty t-normal model $\langle w, \emptyset, V\rangle$, we have $V(\diamond \varphi, w)=0$, for any $\varphi \in$ For. Hence $\ulcorner\diamond \varphi\urcorner \notin \mathbf{S 0 . 5}{ }^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$, by Theorem 3.4(3).

FACT 3.8. For any $\varphi \in$ For:

$$
\ulcorner\square \varphi\urcorner \in \mathbf{S 0 . 5}{ }^{\circ} \text { iff } \varphi \in \mathbf{P L} \text { iff }\ulcorner\square \varphi\urcorner \in \mathbf{S 0 . 5} .
$$

So $\mathbf{S 0 . 5} \mathbf{5}^{\circ}$, $\mathbf{S 0 . 5} 5^{\circ}[\mathrm{D}], \mathbf{S 0 . 5}{ }^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$ and $\mathbf{S 0 . 5}$ are closed under (RN_{*}) and (SMP).
Proof: Firstly, $\square \mathbf{P L} \subseteq \mathbf{S 0 . 5} \subseteq \mathbf{S 0 . 5}$.
Secondly, let $\varphi \notin \mathbf{P L}, w \neq a, A:=\{w, a\}$. Then, by Lemma 1.1, for some $V_{a} \in \mathrm{Val}^{\mathrm{cl}}$ we have that $V_{a}(\varphi)=0$. By Lemma 3.2(1), for V_{a} and any assignment $v_{w}:$ At $\rightarrow\{0,1\}$ there is a self-associate t-normal model $\langle w,\{w, a\}, V\rangle$, for which $V(\square \varphi, w)=0$. Hence $\ulcorner\square \varphi\urcorner \notin \mathbf{S} \mathbf{0} \mathbf{5}_{\text {rte }}$, by Theorem 3.4(4).

Fact 3.9. For any $n>0$ and $\varphi_{1}, \ldots, \varphi_{n}, \psi \in$ For:

$$
\begin{aligned}
\left\ulcorner\left(\square \varphi_{1} \wedge \cdots \wedge \square \varphi_{n}\right) \supset\right. & \square \psi\urcorner \in \mathbf{S 0 . 5} \text { iff }\left\ulcorner\left(\varphi_{1} \wedge \cdots \wedge \varphi_{n}\right) \supset \psi\right\urcorner \in \mathbf{P L} \\
& i f f\left\ulcorner\left(\square \varphi_{1} \wedge \cdots \wedge \square \varphi_{n}\right) \supset \square \psi\right\urcorner \in \mathbf{S 0 . 5}{ }^{\circ}[\mathrm{D}] .
\end{aligned}
$$

Proof: Firstly, $\mathrm{R}_{\mathrm{PL}} \subseteq \mathbf{S} \mathbf{0 . 5} \mathbf{5}^{\circ} \subseteq \mathbf{S} \mathbf{0 . 5} \mathbf{5}^{\circ}[\mathrm{D}]$.
Let $\left\ulcorner\left(\varphi_{1} \wedge \cdots \wedge \varphi_{n}\right) \supset \psi\right\urcorner \notin \mathbf{P L}, w \neq a$. Then, by Lemma 1.1, for some $V_{a} \in \mathrm{Val}^{\mathrm{c}}$ we have that $V_{a}\left(\varphi_{1}\right)=\cdots=V_{a}\left(\varphi_{n}\right)=1$ and $V_{a}(\psi)=0$. By Lemma 3.2(1), for any assignment $v_{w}: \mathrm{At} \rightarrow\{0,1\}$ and V_{a} there is a nonempty t-normal model $\langle w,\{a\}, V\rangle$, for which $V\left(\square \varphi_{1}, w\right)=V\left(\square \varphi_{n}, w\right)=1$ and $V(\square \psi, w)=0$. Hence $\left\ulcorner\left(\square \varphi_{1} \wedge \cdots \wedge \square \varphi_{n}\right) \supset \square \psi\right\urcorner \notin \mathbf{S} 0.5^{\circ}[\mathrm{D}]$, by Theorem 3.4(2). ${ }^{3}$

[^2]
3.2. Models for $\mathrm{C} 1, \mathrm{D} 1, \mathrm{C} 1\left[\mathrm{~T}_{\mathrm{q}}\right]$ and E 1

In the case of very weak t-regular systems we broaden the class of t-normal models by the class of queer models of the form $\langle w, V\rangle$ with only one (queer) world w and a valuation $V:$ For $\times\{w\} \rightarrow\{0,1\}$ which satisfies classical conditions for truth-value operators, i.e. $V(\cdot, w) \in \mathrm{Val}^{\mathrm{cl}}$, and
(ii') for any $\varphi \in$ For, $V(\square \varphi, w)=0$.
Lemma 3.10. Let $\left\langle w, v_{w}\right\rangle$ be a structure, where v_{w} is an assignment from At to $\{0,1\}$. Then there is the unique function $V: \operatorname{For} \times\{w\} \rightarrow\{0,1\}$ such that:

- $\forall_{\alpha \in \mathrm{At}}: V(\alpha, w)=v_{w}(\alpha)$,
- V satisfies conditions (i) and (ii') from definition of queer models.

Thus, $\langle w, V\rangle$ is queer model.
Let $\mathbf{q M}$ be the class of all queer models and we put $\mathbf{r M}:=\mathbf{n M} \cup \mathbf{q M}$, i.e. $\mathbf{r M}$ is the class of models for very weak t-regular systems.

A formula φ is true in a queer model $\langle w, V\rangle$ iff $V(\varphi, w)=1$. We say that a formula is t-regular valid iff it is true in all models from $\mathbf{r M}$. Notice that all formulae from the sets $\mathbf{P L}, \mathrm{M}_{\mathrm{PL}} \mathrm{R}_{\mathrm{PL}}$ and E_{PL} are t-regular valid.

In [3] we proved the following determination theorems for the logics $\mathbf{C 1}, \mathrm{D} 1, \mathbf{C 1}\left[\mathrm{~T}_{\mathrm{q}}\right]$ and $\mathbf{E 1}$:

Theorem 3.11 ([3]). 1. C1 is determined by the class $\mathbf{r M}$.
2. $\mathbf{D} 1$ is determined by the class $\mathbf{n M} \mathbf{M}^{+} \cup \mathbf{q M}$.
3. $\mathbf{C} \mathbf{1}\left[\mathrm{T}_{\mathrm{q}}\right]$ is determined by the class $\mathbf{n} \mathbf{M}^{\mathbf{s a}} \cup \mathbf{n} \mathbf{M}^{\varnothing} \cup \mathbf{q} \mathbf{M}$.
4. $\mathbf{E 1}$ is determined by the class $\mathbf{n M} \mathbf{M}^{\text {sa }} \cup \mathbf{q M}$.

We will now give a semantical proof of facts (2.1)-(2.3), about which we wrote in the first part [4]:

FACT $3.12 . \mathbf{C} 1=\mathbf{C} \mathbf{2} \cap \mathbf{S 0 . 5}{ }^{\circ}, \mathbf{C} 1 \subsetneq \mathbf{C} 2 \cap \mathbf{S 0 . 5} \nsubseteq \mathbf{S} 0.5^{\circ}$ and $\mathbf{E} 1=\mathbf{E} 2 \cap \mathbf{S 0 . 5}$.

Proof: For " \subseteq ": See the first part [4].
For "C2 $\cap \mathbf{S 0 . 5} \subseteq \mathbf{C 1}$ " (resp. "E2 $\cap \mathbf{S 0 . 5} \subseteq \mathbf{E 1 ") : ~ L e t ~} \varphi \in \mathbf{C} 2 \cap \mathbf{S 0 . 5}{ }^{\circ}$ (resp. $\varphi \in \mathbf{E} \mathbf{2} \cap \mathbf{S 0 . 5}$) and $\mathscr{M} \in \mathbf{r M}$ (resp. $\mathscr{M} \in \mathbf{n M}^{\text {sa }} \cup \mathbf{q M}$). If $\mathscr{M} \in \mathbf{n M}$ (resp. $\left.\mathscr{M} \in \mathbf{n M}^{\text {sa }}\right)$, then since $\varphi \in \mathbf{S 0 . 5 ^ { \circ }}$ (resp. $\varphi \in \mathbf{S 0 . 5}$), φ is true in
\mathscr{M}, by Theorem 3.4. If $\mathscr{M}=\langle w, V\rangle \in \mathbf{q M}$, then we can identify it with the following relational model $\left\langle\left\{w_{0}\right\}, \emptyset, \emptyset, V_{0}\right\rangle$ used for (strictly) regular logics. ${ }^{4}$ Since $\varphi \in \mathbf{C}$ 2, so from soundness of $\mathbf{C} 2$ with Kripke relational model semantics we obtain that $V(\varphi, w)=1$. Hence φ is also true in \mathscr{M}. Them, by Theorem 3.11, we obtain that $\varphi \in \mathbf{C} 1$ (resp. $\varphi \in \mathbf{E 1}$).

For "C1 $\subsetneq \mathbf{C} \mathbf{2} \cap \mathbf{S 0 . 5} \nsubseteq \mathbf{S 0 . 5}$ "): Since ${ }^{\bullet} \square r \supset \square(\mathrm{~K})^{\prime} \in \mathbf{C} \mathbf{2}$ ', so '(T) $\vee(\square r \supset$ $\square(\mathrm{K}))^{\prime}$ belongs to $\mathbf{C} \mathbf{2} \cap \mathbf{S 0 . 5}$. But the latest formula does belong to $\mathbf{S 0 . 5} \mathbf{5}^{\circ}$ (and so it does not belong to C1). Indeed, for $w \neq a$, let v_{w} and v_{a} be assignments such that $v_{w}(p)=0, v_{a}(p)=v_{a}(r)=1=v_{a}(\square p)=v_{a}(\square(p)$ $q)$ and $v_{a}(\square q)=0$. V : For $\times\{w, a\} \rightarrow\{0,1\}$ be the unique extension of v_{w} and v_{a}, as in Lemma 3.2(2). Then $\langle w,\{a\}, V\rangle$ is a t-normal model such that $V(\square p, w)=1$. So we have that $V((\mathrm{~T}), w)=0=V(\square(\mathrm{~K}), w)$ and $V(\square r, w)=1$.

3.3. Models for weak t-normal systems with additional axioms of the form $\ulcorner\square \varphi\urcorner$

While considering very week t-normal systems with an additional axiom of the form $\ulcorner\square \varphi\urcorner$, where $\varphi \in \mathbf{S O} \mathbf{0 . 5}$, we will take into account such t -normal models $\mathscr{M}=\langle w, A, V\rangle$ which satisfy the following additional condition: (iii ${ }_{\varphi}$) for all $x \in A \backslash\{w\}$ and uniform substitution $s, V(s(\varphi), x)=1$.
A model of this kind will be called at-normal model for $\square \varphi$.
Let $\Phi \subseteq \mathbf{S 0 . 5}$. If for every $\varphi \in \Phi, \mathscr{M}$ is a t-normal model for $\square \varphi$, then we say that \mathscr{M} is a t-normal model for $\square \Phi$. Thus such models satisfy the following additional condition:
(iii) for any $x \in A \backslash\{w\}$ and any ψ which is an instance of some formula from $\Phi, V(\psi, x)=1$.

Remark 3.2. For any $\Phi \subseteq \mathbf{S} \mathbf{0} \mathbf{5}$ we put $\Phi^{\star}:=\{\psi: \psi$ is an instance of some formula from $\Phi\}$. Of course, $\Phi^{\star} \subseteq \mathbf{S 0 . 5}$. The logic $\mathbf{S} 0.5$ is consistent, so S0.5 is PL-consistent; i.e. S0.5 $\forall_{\mathbf{P L}} p \wedge \neg p$. Therefore, Φ^{\star} is also PLconsistent, i.e. $\Phi^{\star} \not \vDash_{\text {PL }} p \wedge \neg p$. Hence there is a valuation $V \in \mathrm{Val}^{\mathrm{cl}}$ such that $V\left(\Phi^{\star}\right)=\{1\}$.

[^3]Let $\mathbf{n M}[\square \Phi]$ be the class of all t-normal models for $\square \Phi$. Moreover, let $\mathbf{n M}{ }^{\text {sa }}[\square \Phi]$ (resp. $\mathbf{n M} \mathbf{M}^{\phi}[\square \Phi], \mathbf{n M}^{+}[\square \Phi]$) be the class of t-normal models which are self-associate (resp. empty, non-empty) for $\square \Phi$. Of course, $\mathbf{n M}^{\text {sa }}[\square \Phi] \subsetneq$ $\mathbf{n M}^{+}[\square \Phi]$ and $\mathbf{n M}^{\varnothing}[\square \Phi] \cap \mathbf{n} \mathbf{M}^{+}[\square \Phi]=\emptyset$.

FACT 3.13. For any $\Phi \subseteq \mathbf{S 0 . 5}$:

1. $\mathbf{S} 0.5^{\circ}[\square \Phi]$ is sound with respect to the class $\mathbf{n M}[\square \Phi]$.
2. $\mathbf{S} 0.5^{\circ}[\mathrm{D}, \square \Phi]$ is sound with respect to the class $\mathbf{n M}^{+}[\square \Phi]$.
3. $\mathbf{S 0} .5^{\circ}\left[\mathrm{T}_{\mathrm{q}}, \square \Phi\right]$ is sound with respect to the class $\mathbf{n} \mathbf{M}^{\varnothing}[\square \Phi] \cup \mathbf{n} \mathbf{M}^{\mathbf{s a}}[\square \Phi]$.
4. $\mathbf{S 0 . 5}[\square \Phi]$ is sound with respect to the class of $\mathbf{n} \mathbf{M}^{\mathbf{s a}}[\square \Phi]$.

Proof: 1. Let $\mathscr{M}=\langle w, A, V\rangle$ be any t-normal model for $\square \Phi$. All members of the sets $\mathbf{P L}, \square \mathbf{P L}$ and $\operatorname{sub}(\mathrm{K})$ are true in \mathscr{M}. Moreover, suppose that $\varphi \in \operatorname{sub}(\Phi)$. Then for any x from $A \backslash\{w\}$ we have that $V(\varphi, x)=1$, by the condition (iii). Now we consider two cases.
(a) $w \notin A$: Then $V(\square \varphi, w)=1$, by the conditions (ii) and (iii).
(b) $w \in A$: Since $\varphi \in \mathbf{S 0 . 5}$, so $V(\varphi, w)=1$, by Theorem 3.4(4). Thus, $V(\square \varphi, w)=1$, by the conditions (ii) and (iii).
2. Let $\mathscr{M}=\langle w, A, V\rangle$ be any non-empty t-normal model for $\square \Phi$. All instances of (D) are true in \mathscr{M}. The rest as in 1 .
3. Let $\mathscr{M}=\langle w, A, V\rangle$ be any self-associate t-normal model for $\square \Phi$. All instances of $\left(\mathrm{T}_{\mathrm{q}}\right)$ are true in \mathscr{M}. The rest as in the case (b) of 1.

Let $\mathscr{M}=\langle w, \emptyset, V\rangle$ be any empty t-normal model for $\square \Phi$. All instances of $\left(\mathrm{T}_{\mathrm{q}}\right)$ and all formulae of the form $\ulcorner\square \psi\urcorner$ are true in \mathscr{M}.
4. Let $\mathscr{M}=\langle w, A, V\rangle$ be any self-associate t-normal model for $\square \Phi$. All instances of (T) are true in \mathscr{M}. The rest as in the case (b) of 1.

4. Simplified Kripke-style semantics for weak t-normal rte-systems

4.1. Models for very weak t-normal rte-systems

For very weak t-normal systems which are closed under (rte) in [3] we use t-normal rte-models which are t-normal models $\langle w, A, V\rangle$ satisfing the following condition:
(iv) $\quad \forall_{\varphi, \psi, \chi \in \text { For }}$: if $\ulcorner\varphi \equiv \psi\urcorner \in \mathbf{P L}$, then $V(\chi, w)=V(\chi[\varphi / \psi], w)$.

Theorem 4.1 gives other equivalent ways of expressing the condition (iv). The most interesting of them is the one that follows:
(iv') $\quad \forall_{\varphi, \psi, \chi \in \text { For }}:$ if $\ulcorner\varphi \equiv \psi\urcorner \in \mathbf{P L}$, then

$$
\forall_{x \in A \backslash\{w\}}: V(\square \chi, x)=V(\square \chi[\varphi / \psi], x) .
$$

Thus, the conditions (i) and (iv) in definition of t-normal rte-models say that for any such model $\langle w, A, V\rangle$, the function $V(\cdot, w)$ belongs to $\mathrm{Val}_{\text {rte }}^{\mathrm{cl}}$.

Theorem 4.1. Suppose that $\ulcorner\varphi \equiv \psi\urcorner \in \mathbf{P L}$. Then for any t-normal model $\langle w, A, V\rangle$ the following conditions are equivalent:
(a) $\forall \chi \in$ For: $: V(\chi, w)=V\left(\chi\left[{ }^{\varphi} / \psi\right], w\right)$,
(b) $\forall \chi \in$ For $: V(\square \chi, w)=V\left(\square \chi\left[{ }^{\varphi} / \psi\right], w\right)$,
(c) $\forall_{\chi \in \text { For }}: \forall_{x \in A} V(\chi, x)=1$ iff $\forall_{x \in A} V(\chi[\varphi / \psi], x)=1$,
(d) $\forall_{\chi \in \text { For }} \forall_{x \in A}: V(\chi, x)=V\left(\chi\left[{ }^{\varphi} / \psi\right], x\right)$,
(e) $\forall_{\chi \in \text { For }} \forall_{x \in A}: V(\square \chi, x)=V(\square \chi[\varphi / \psi], x)$,
(f) $\forall_{\chi \in \text { For }} \forall_{x \in A \backslash\{w\}}: V(\chi, x)=V(\chi[\varphi / \psi], x)$,
(g) $\forall_{\chi \in \text { For }} \forall_{x \in A \backslash\{w\}}: V(\square \chi, x)=V(\square \chi[\varphi / \psi], x)$.

Proof: Let $\langle w, A, V\rangle$ be a t-normal model and suppose (throughout the proof) that $\ulcorner\varphi \equiv \psi\urcorner \in \mathbf{P L}$.

$$
"(\mathrm{a}) \Rightarrow(\mathrm{b}) ", "(\mathrm{~d}) \Rightarrow(\mathrm{c}) ", "(\mathrm{~d}) \Rightarrow(\mathrm{e}) ", "(\mathrm{~d}) \Rightarrow(\mathrm{f}) " \text { and } "(\mathrm{f}) \Rightarrow(\mathrm{g}) ":
$$

Obvious.
"(b) $\Leftrightarrow(\mathrm{c})$ " By the condition $\left(V_{w}^{\square}\right)$.
"(b) $\Rightarrow(\mathrm{d})$ " Since $V(\square(\chi \equiv \chi), w)=1$, so $\left.V\left(\square\left(\chi \equiv \chi^{[\varphi} / \psi\right]\right), w\right)=1$, by (b). Hence for any $\left.x \in A: V(\chi, x)=V\left(\chi{ }^{\varphi} / \psi\right], x\right)$, by $\left(V_{w}^{\square}\right)$.
"(b) $\Rightarrow(\mathrm{a})$ " As the proof of the part " \Leftarrow " of Lemma 1.21(1), for the valuations $V:=V(\cdot, w)$ and $v:=\left.V(\cdot, w)\right|_{\mathrm{PAt}}$; so (a) is (\star) and (b) is $\left(\star_{\mathrm{PAt}}\right)$.
"(e) $\Rightarrow(\mathrm{d})$ " and " $(\mathrm{g}) \Rightarrow(\mathrm{f}) "$: Similarly as in "(b) $\Rightarrow(\mathrm{a})$ ". The difference is in taking a world x from A (resp. from $A \backslash\{w\}$) instead of w.
"(f) $\Rightarrow(\mathrm{b})$ " We consider two cases.
Firstly, $w \notin A$: By (f) we obtain (c); so we have also (b).
Secondly, $w \in A$: We show that $V(\chi, w)=V(\chi[\varphi / \psi], w)$, i.e. we prove (a), hence we also obtain (b).

First we consider the possibility that $\chi=\varphi$, as for " $(\mathrm{b}) \Rightarrow(\mathrm{a})$ ", i.e. as in the proof of the part " \Leftarrow " of Lemma $1.21(1)$. Thus, we may assume henceforth that $\chi \neq \varphi$. The proof proceeds now by induction on the complexity of χ. We give it for the cases in which χ is ($*$) atomic; ($* *$) $\left\ulcorner\neg \chi_{1}\right\urcorner$ or $\left\ulcorner\chi_{1} \circ \chi_{2}\right\urcorner$, for $\circ=\vee, \wedge, \supset, \equiv$; and $(* * *)$ a necessitation, $\left\ulcorner\square \chi_{1}\right\urcorner$.

For $(*)$ and $(* *)$: As for " $(\mathrm{b}) \Rightarrow(\mathrm{a})$ ", i.e. as in the proof of the part " \Leftarrow " of Lemma 1.21(1).

For (***): We make the inductive hypothesis that the result holds for all sentences shorter than χ. So $V\left(\chi_{1}, w\right)=V\left(\chi_{1}\left[{ }^{\varphi} / \psi\right], w\right)$. Moreover, by the assumption (f) we have that $V\left(\chi_{1}, x\right)=V\left(\chi_{1}[\varphi / \psi], x\right)$, for any $x \in$ $A \backslash\{w\}$. Thus, by $\left(V_{w}^{\square}\right)$, we obtain that $V\left(\square \chi_{1}, w\right)=V\left(\square \chi_{1}[\varphi / \psi], w\right)$, which ends the inductive proof.

The lemma below - analogous to Lemma 3.2 - shows that the notion of a t-normal rte-model could be defined in different albeit equivalent way.

Lemma 4.2. 1. Let $\left\langle w, A, v_{w},\left\{V_{x}\right\}_{x \in A \backslash\{w\}}\right\rangle$ be a structure in which w and A are such as in t-normal models, v_{w} : At $\rightarrow\{0,1\}$, and for any x in $A \backslash\{w\}, V_{x} \in \mathrm{Val}_{\mathrm{rte}}^{\mathrm{cl}}$. Then there is the unique $V:$ For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ such that:

- $\forall_{\alpha \in \mathrm{At}}: V(\alpha, w)=v_{w}(\alpha)$ and $\forall_{\varphi \in \mathrm{For}} \forall_{x \in A \backslash\{w\}}: V(\varphi, x)=V_{x}(\varphi)$,
- V satisfies conditions (i), (ii) and (iv) from definition of t-normal rte-models.

Thus, $\langle w, A, V\rangle$ is a t-normal rte-model. Moreover, if $w \in A$, then this model is self- associate.
2. Let $\left\langle w, A, v_{w},\left\{v_{x}\right\}_{x \in A \backslash\{w\}}\right\rangle$ be a structure in which w and A are such as in t-normal models, v_{w} is an assignment from At to $\{0,1\}$, and for any $x \in A \backslash\{w\}, v_{x}$ is an assignment from PAt to $\{0,1\}$ such that:
(iv ${ }_{\text {PAt }}$) $\quad \forall_{\chi, \varphi, \psi \in \text { For }}$: if $\ulcorner\varphi \equiv \psi\urcorner \in \mathbf{P L}$, then $v_{x}(\square \chi)=v_{x}(\square \chi[\varphi / \psi])$.
Then there is the unique function $V:$ For $\times(\{w\} \cup A) \rightarrow\{0,1\}$ such that:

- $\forall_{\alpha \in \mathrm{At}} V(\alpha, w)=v_{w}(\alpha)$ and $\forall_{\varphi \in \operatorname{PAt}} \forall_{x \in A \backslash\{w\}}: V(\varphi, x)=v_{x}(\varphi)$,
- V satisfies conditions (i), (ii) and (iv) from definition of t-normal rte-models.
Thus, $\langle w, A, V\rangle$ is a t-normal rte-model. Moreover, if $w \in A$, then this model is self-associate.

Proof: 1. By Theorem 4.1.
2. By Lemma $1.21(1)$, for every $x \in A \backslash\{w\}$ there is the unique extension V_{x} : For $\rightarrow\{0,1\}$ of v_{x} by classical truth conditions for truthvalue operators (i.e. e.g. $V_{x} \in \mathrm{Val}_{\text {rte }}^{\mathrm{cl}}$ and $\left.\forall_{\chi \in \mathrm{For}}: V_{x}(\square \chi)=v_{x}(\square \chi)\right)$. The rest as in 1.

REMARK 4.1. In the light of the above results the structures of the form $\left\langle w, A, v_{w},\left\{v_{x}\right\}_{x \in A \backslash\{w\}}\right\rangle$ which satisfy the conditions from Lemma 4.2 can serve as t-normal rte-models. In a similar way, we assume that in such a model a formula φ is true iff $V(\varphi, w)=1$.

Let $\mathbf{n} \mathbf{M}_{\text {ree }}$ be the class of all t -normal rte-models. Moreover, let $\mathbf{n M} \mathbf{r r t e}_{\text {sa }}^{\text {sa }}$ (resp. $\mathbf{n} \mathbf{M}_{\text {ree }}^{\varnothing}, \mathbf{n M}_{\text {rte }}^{+}$) be the class of t-normal rte-models which are selfassociate (resp. empty, non-empty).

We have the following facts.
FACT 4.3. 1. All members of $\mathbf{P L}_{\mathbf{r t e}}$ are true in all models from $\mathbf{n} \mathbf{M}_{\mathbf{r t e}} \cup \mathbf{q M}$. 2. All members of $\square \mathbf{P} \mathbf{L}_{\text {rte }}$ are true in all models from $\mathbf{n} \mathbf{M}_{\mathbf{r t e}}$.

Proof: 1. For any $\tau \in \mathbf{P L}$, we have that $V(\tau, w)=1$, for any model from $\mathbf{n} \mathbf{M}_{\mathbf{r t e}} \cup \mathbf{q M}$. Thus we use the conditions (iv), (ii') and induction.
2. For any $\tau \in \mathbf{P L}$, we have that $V(\square \tau, w)=1$, for any model from $\mathbf{n} \mathbf{M}_{\mathbf{r t e}}$. Therefore it is enough to use the condition (iv).

In [3] we proved the following determination theorems for the logics $\mathbf{S 0 . 5}{ }_{\text {rte }}^{\circ}, \mathbf{S} 0.5_{\text {rte }}^{\circ}[\mathrm{D}], \mathbf{S} 0.5_{\text {rte }}^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$ and $\mathbf{S 0 . 5}$ rte :

Theorem 4.4 ([3]). 1. S0.5 $\mathbf{5}_{\text {rte }}^{\circ}$ is determined by the class $\mathbf{n M}_{\text {rte }}$.
2. $\mathbf{S 0} . \mathbf{5}_{\mathrm{rte}}^{\circ}[\mathrm{D}]$ is determined by the class $\mathbf{n} \mathbf{M}_{\mathrm{rte}}^{+}$.
3. $\mathbf{S 0} .5_{\mathrm{rte}}^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right]$ is determined by the class $\mathbf{n} \mathbf{M}_{\mathrm{rte}}^{\mathrm{sa}} \cup \mathbf{n} \mathbf{M}_{\mathrm{rte}}^{\varnothing}$.
4. $\mathbf{S 0} . \mathbf{5}_{\mathrm{rte}}$ is determined by the class $\mathbf{n} \mathbf{M}_{\mathrm{rte}}^{\mathrm{sa}}$.

For logic $\mathbf{S 0 . 5} \mathbf{5}_{\text {rte }}^{\circ}$ and $\mathbf{S 0 . 5}$ rte there holds a fact which is analogous to Fact 3.8 for logics $\mathbf{S 0 . 5}$ and $\mathbf{S 0 . 5}$.

FACt 4.5. For any $\varphi \in$ For:

$$
\ulcorner\square \varphi\urcorner \in \mathbf{S 0} . \mathbf{5}_{\mathbf{r t e}}^{\circ} \text { iff } \varphi \in \mathbf{P L}_{\mathrm{rte}} \text { iff }\ulcorner\square \varphi\urcorner \in \mathbf{S} \mathbf{0} . \mathbf{5}_{\mathrm{rte}} .
$$

So $\mathbf{S 0} . \mathbf{5}_{\mathrm{rte}}^{\circ}$ and $\mathbf{S 0} \mathbf{5} \mathbf{5}_{\mathrm{rte}}$ are closed under $\left(\mathrm{RN}_{*}\right)$ and (SMP).
Proof: Firstly, by Corollary 1.19, $\square \mathbf{P L}_{\mathrm{rte}} \subseteq \mathbf{S} 0 . \mathbf{5}_{\mathrm{rte}}^{\circ} \subseteq \mathbf{S} 0 . \mathbf{5}_{\mathrm{rte}}$.
Secondly, let $\varphi \notin \mathbf{P L}_{\mathrm{rte}}, w \neq a, A:=\{w, a\}$. Then, by Lemma 1.21, for some $V_{a} \in \mathrm{Val}_{\text {rte }}^{c l}$ we have that $V_{a}(\varphi)=0$. As in Lemma 4.2(1), for any assignment $v_{w}: \operatorname{At} \rightarrow\{0,1\}$ and V_{a}, we construct a self-associate t-normal
rte-model $\langle w,\{w, a\}, V\rangle$ such that $V(\square \varphi, w)=0$. Hence $\ulcorner\square \varphi\urcorner \notin \mathbf{S} 0 . \mathbf{5}_{\text {rte }}$, by Theorem 4.4(4).

4.2. Models for weak t-normal rte-systems with additional axioms of the form $\ulcorner\square \varphi\urcorner$

While considering week t-normal rte-systems with an additional axiom of the form $\ulcorner\square \varphi\urcorner$, where $\varphi \in \mathbf{S 0 . 5}$, we will take t-normal rte-models for $\ulcorner\square \varphi\urcorner$, that is these that satisfy (iii $_{\varphi}$). More generally, for systems with additional axioms from a set $\square \Phi$, where $\Phi \subseteq \mathbf{S 0 . 5}$, we will use t-normal rte-models for $\square \Phi$, that is such that satisfy (iii).

Let $\mathbf{n} \mathbf{M}_{\mathbf{r t e}}[\square \Phi]$ be the class of all t-normal rte-models for $\square \Phi$. Moreover, let $\mathbf{n} \mathbf{M}_{\text {rte }}^{\text {sa }}[\square \Phi]$ (resp. $\mathbf{n} \mathbf{M}_{\text {rte }}^{\varnothing}[\square \Phi], \mathbf{n M}_{\text {rte }}^{+}[\square \Phi]$) be the class of t-normal rtemodels which are self-associate (resp. empty, non-empty) for $\square \Phi$.

Similarly to Fact 3.13 we prove the following:
FACT 4.6. For any $\Phi \subseteq \mathbf{S 0 . 5}$:

1. $\mathbf{S 0} . \mathbf{5}_{\mathrm{rte}}^{\circ}[\square \Phi]$ is sound with respect to the class $\mathbf{n M}_{\mathbf{r t e}}[\square \Phi]$.
2. $\mathbf{S 0} . \mathbf{5}_{\mathbf{r t e}}^{\circ}[\mathrm{D}, \square \Phi]$ is sound with respect to the class $\mathbf{n} \mathbf{M}_{\mathrm{rte}}^{+}[\square \Phi]$.
3. $\mathbf{S 0 . 5} 5_{\mathrm{rte}}^{\circ}\left[\mathrm{T}_{\mathrm{q}}, \square \Phi\right]$ is sound with respect to the class $\mathbf{n M}_{\mathrm{rte}}^{\varnothing}[\square \Phi] \cup \mathbf{n} \mathbf{M}_{\mathrm{rte}}^{\mathrm{sa}}[\square \Phi]$.
4. $\mathbf{S 0} \mathbf{5}_{\mathrm{rte}}[\square \Phi]$ is sound with respect to the class $\mathbf{n} \mathbf{M}_{\mathrm{rte}}^{\mathrm{sa}}[\square \Phi]$.

5. Completeness and determination theorems

For completeness of considered weak t-normal and t-normal rte-logics we use the method of canonical models.

5.1. Notions and facts concerning maximal consistent sets

Let $\boldsymbol{\Sigma}$ be any modal system and $\Gamma \subseteq$ For. A set Γ is $\boldsymbol{\Sigma}$-consistent iff for some $\varphi \in$ For, $\Gamma \nvdash_{\boldsymbol{\Sigma}} \varphi$; equivalently in the light of $\mathbf{P L}$, iff $\Gamma \nvdash_{\boldsymbol{\Sigma}} p \wedge \neg p$. We have (see e.g. [1]):

- If Γ is $\boldsymbol{\Sigma}$-consistent, then $\boldsymbol{\Sigma}$ is consistent.
- $\boldsymbol{\Sigma}$ is consistent iff $\boldsymbol{\Sigma}$ is $\boldsymbol{\Sigma}$-consistent.
- If Γ is $\boldsymbol{\Sigma}$-consistent and $\boldsymbol{\Sigma}^{\prime}$ is a modal system such that $\boldsymbol{\Sigma}^{\prime} \subseteq \boldsymbol{\Sigma}$, then Γ is $\boldsymbol{\Sigma}^{\prime}$-consistent; so, Γ is $\mathbf{P L}$-consistent.

We say that Γ is $\boldsymbol{\Sigma}$-maximal iff Γ is $\boldsymbol{\Sigma}$-consistent and Γ has only $\boldsymbol{\Sigma}$-inconsistent proper extensions. Let $\operatorname{Max}_{\boldsymbol{\Sigma}}$ be the set of all $\boldsymbol{\Sigma}$-maximal sets.

Lemma 5.1 ([1]). Let $\Gamma \in \operatorname{Max}_{\boldsymbol{\Sigma}}$. Then

1. $\boldsymbol{\Sigma} \subseteq \Gamma$ and Γ is a modal system.
2. $\Gamma \vdash_{\boldsymbol{\Sigma}} \varphi$ iff $\varphi \in \Gamma$.
3. $\ulcorner\neg \varphi\urcorner \in \Gamma$ iff $\varphi \notin \Gamma$.
4. $\ulcorner\varphi \wedge \psi\urcorner \in \Gamma$ iff both $\varphi \in \Gamma$ and $\psi \in \Gamma$.
5. $\ulcorner\varphi \vee \psi\urcorner \in \Gamma$ iff either $\varphi \in \Gamma$ or $\psi \in \Gamma$.
6. $\ulcorner\varphi \supset \psi\urcorner \in \Gamma$ iff either $\varphi \notin \Gamma$ or $\psi \in \Gamma$.
7. $\ulcorner\varphi \equiv \psi\urcorner \in \Gamma$ iff either $\varphi, \psi \in \Gamma$ or $\varphi, \psi \notin \Gamma$.

Lemma 5.2. If $\Gamma \in \operatorname{Max}_{\boldsymbol{\Sigma}}$, then $\Gamma \in \operatorname{Max}_{\mathbf{P L}}$.
Lemma 5.3 ([1]). 1. $\Gamma \vdash_{\boldsymbol{\Sigma}} \varphi$ iff $\varphi \in \Delta$, for any Δ such that $\Delta \in \operatorname{Max}_{\boldsymbol{\Sigma}}$ and $\Gamma \subseteq \Delta$.
2. $\varphi \in \boldsymbol{\Sigma}$ iff $\varphi \in \Delta$, for any $\Delta \in \operatorname{Max}_{\boldsymbol{\Sigma}}$.

We also need the following auxiliary lemma.
Lemma 5.4 ([3]). Let $\boldsymbol{\Sigma}$ be a t-normal consistent system and $\Gamma \in \operatorname{Max}_{\boldsymbol{\Sigma}}$. Then for every $\varphi \in$ For the following conditions are equivalent:
(a) $\ulcorner\square \varphi\urcorner \in \Gamma$.
(b) $\Gamma \vdash_{\boldsymbol{\Sigma}} \square \varphi$.
(c) $\{\psi:\ulcorner\square \psi\urcorner \in \Gamma\} \vdash{ }_{\mathbf{P L}} \varphi$.
(d) $\varphi \in \Delta$, for any PL-maximal set Δ such that $\{\psi:\ulcorner\square \psi\urcorner \in \Gamma\} \subseteq \Delta$.

5.2. Canonical models and completeness

Let $\boldsymbol{\Sigma}$ be a t-normal consistent system and $\Gamma \in \operatorname{Max}_{\boldsymbol{\Sigma}}$. We say that $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is a canonical model for $\boldsymbol{\Sigma}$ and Γ iff it satisfies the following conditions:

- $w_{\Gamma}:=\Gamma$,
- $A_{\Gamma}:=\left\{\Delta \in \operatorname{Max}_{\mathbf{P L}}: \forall_{\psi \in \operatorname{For}}(\ulcorner\square \psi\urcorner \in \Gamma \Rightarrow \psi \in \Delta)\right\}$,
- $V_{\Gamma}:$ For $\times\left(\left\{w_{\Gamma}\right\} \cup A_{\Gamma}\right) \rightarrow\{0,1\}$ is a valuation such that for all $\varphi \in$ For and $\Delta \in\left\{w_{\Gamma}\right\} \cup A_{\Gamma}$

$$
V_{\Gamma}(\varphi, \Delta):= \begin{cases}1 & \text { if } \varphi \in \Delta \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 5.5. For any t-normal system $\boldsymbol{\Sigma}$ and $\Gamma \in \operatorname{Max}_{\boldsymbol{\Sigma}}$ it holds that:

1. $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is a t-normal model.
2. For any set Φ, if $\Phi \subseteq \mathbf{S 0 . 5}$ and $\operatorname{sub}(\square \Phi) \subseteq \boldsymbol{\Sigma}$, then $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is a t-normal model for $\square \Phi$.
3. If $\operatorname{sub}(\mathrm{T}) \subseteq \boldsymbol{\Sigma}$, then $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is self-associate.
4. If $\operatorname{sub}(\mathrm{D}) \subseteq \boldsymbol{\Sigma}$, then $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is non-empty.
5. If $\operatorname{sub}\left(\mathrm{T}_{\mathrm{q}}\right) \subseteq \boldsymbol{\Sigma}$, then $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is either empty or self-associate.
6. If $\boldsymbol{\Sigma}$ is an rte-system, then $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is a t-normal rte-model.

Proof: Let $\Gamma \in \operatorname{Max}_{\boldsymbol{\Lambda}[\square \Phi]}$; hence $\boldsymbol{\Lambda}$ and $\boldsymbol{\Lambda}[\square \Phi]$ are consistent.

1. Thanks to properties of maximal sets (see Lemma 5.1), for every $\Delta \in\left\{w_{\Gamma}\right\} \cup A_{\Gamma}, V_{\Gamma}(\cdot, \Delta) \in \mathrm{Val}^{\mathrm{cl}}$. We prove that for w_{Γ} the assignment $V_{\Gamma}\left(\cdot, w_{\Gamma}\right)$ satisfies the condition $\left(V_{w_{\Gamma}}^{\square}\right)$ for any $\varphi \in$ For: $V_{\Gamma}\left(\square \varphi, w_{\Gamma}\right)=1$ iff $\ulcorner\square \varphi\urcorner \in \Gamma$ (by definition of V_{Γ}) iff $\varphi \in \Delta$, for every $\Delta \in$ Maxpl \quad such that $\{\psi \in$ For : $\ulcorner\square \psi\urcorner \in \Gamma\} \subseteq \Delta$ (by Lemma 5.4) iff $\varphi \in \Delta$, for every $\Delta \in A_{\Gamma}$ (by definition of A_{Γ}) iff $V_{\Gamma}(\varphi, \Delta)=1$, for every $\Delta \in A_{\Gamma}$ (by the definition of V_{Γ}).
2. Let $\Phi^{\star}:=\operatorname{sub}(\Phi)$. By definitions of A_{Γ} and V_{Γ}, for any world from $A_{\Gamma} \backslash\left\{w_{\Gamma}\right\}$, all formulae from Φ^{\star} have the value 1 , since $\square \Phi^{\star} \subseteq \Sigma \Sigma \Gamma$, by Lemma 5.1(1).
3. We show that $w_{\Gamma} \in A_{\Gamma}$. Firstly, by Lemma $5.2, \Gamma \in \operatorname{Max}_{\text {PL }}$. Secondly, by Lemma 5.1(1), for any $\psi \in$ For, $\ulcorner\square \psi \supset \psi\urcorner \in \Gamma$. So, by Lemma 5.1(6), if $\ulcorner\square \psi\urcorner \in \Gamma$, then $\psi \in \Gamma$, i.e. $\Gamma \in A_{\Gamma}$.
4. By Lemma 5.1, $\ulcorner\Delta \top\urcorner \in \Gamma$, i.e., $\ulcorner\neg \square \neg \top\urcorner \in \Gamma$; so and $\ulcorner\square \neg \top\urcorner \notin$ Γ. Therefore, by Lemma 5.4, $\ulcorner\neg \top\urcorner \notin \Delta_{0}$, for some Δ_{0} such that Δ_{0} is PL-maximal and $\{\psi:\ulcorner\square \psi\urcorner \in \Gamma\} \subseteq \Delta_{0}$. Hence $\Delta_{0} \in A_{\Gamma}$. Thus, $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle \in \mathbf{n M} \mathbf{M}^{+}$.
5. We show that $w_{\Gamma} \in A_{\Gamma}$ or $A_{\Gamma}=\emptyset$. Notice that, by Lemma 5.1, $\ulcorner\neg \square(p \wedge \neg p) \supset(\square \psi \supset \psi)\urcorner \in \Gamma$, for any formula ψ. Suppose that $A_{\Gamma} \neq \emptyset$. Then ${ }^{`} \square(p \wedge \neg p)^{\prime} \notin \Gamma$, by Lemma 5.4 , since ' $p \wedge \neg p$ ' $\notin \Delta$, for any Δ which is PL-consistent. So, ' $\neg \square(p \wedge \neg p)$ ' $\in \Gamma$. Therefore $\ulcorner\square \psi \supset \psi\urcorner \in \Gamma$. Hence $w_{\Gamma} \in A_{\Gamma}$, as in 3 .
6. Since $\operatorname{REP}_{\mathrm{PL}} \subseteq \boldsymbol{\Sigma}$, so if $\ulcorner\varphi \equiv \psi\urcorner \in \mathbf{P L}$, then $\ulcorner\chi \equiv \chi[\varphi / \psi]\urcorner \in \boldsymbol{\Sigma}$. Hence $\ulcorner\chi \equiv \chi[\varphi / \psi]\urcorner \in \Gamma$, by Lemma 5.1(1). Thus, by definitions of w_{Γ} and $V_{\Gamma}, V\left(\chi, w_{\Gamma}\right)=V\left(\chi\left[{ }^{\varphi} / \psi\right], w_{\Gamma}\right)$.

By lemmas 5.3 and 5.5 we obtain the completeness of considered logics.
Theorem 5.6. Let $\boldsymbol{\Lambda}$ be a t-normal consistent logic and $\Phi \subseteq \mathbf{S 0 . 5}$. Then

1. $\boldsymbol{\Lambda}[\square \Phi]$ is complete with respect to the class $\mathbf{n M}[\square \Phi]$.
2. If $(\mathrm{T}) \in \boldsymbol{\Lambda}$, then $\boldsymbol{\Lambda}[\square \Phi]$ is complete with respect to the class $\mathbf{n} \mathbf{M}^{\mathbf{s a}}[\square \Phi]$.
3. If $(\mathrm{D}) \in \boldsymbol{\Lambda}$, then $\boldsymbol{\Lambda}[\square \Phi]$ is complete with respect to the class $\mathbf{n M}^{+}[\square \Phi]$.
4. If $\left(\mathrm{T}_{\mathrm{q}}\right) \in \boldsymbol{\Lambda}$, then $\boldsymbol{\Lambda}[\square \Phi]$ is complete with respect to the class $\mathbf{n M}^{\varnothing}[\square \Phi] \cup$ $\mathbf{n M}{ }^{\text {sa }}[\square \Phi]$.
5. If $\boldsymbol{\Lambda}$ is an rte-logic, then $\boldsymbol{\Lambda}[\square \Phi]$ is complete with respect to the class $\mathbf{n M}_{\mathbf{r t e}}[\square \Phi]$.

Proof: All considered logics are consistent.

1. Let φ be an arbitrary formula which is true in all t-normal models for $\square \Phi$. Let Γ be an arbitrary $\boldsymbol{\Lambda}[\square \Phi]$-maximal set. By Lemma 5.5(1)(2), $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is a t-normal model for $\square \Phi$. So $V_{\Gamma}\left(\varphi, w_{\Gamma}\right)=1$. Hence $\varphi \in \Gamma$, by definitions of w_{Γ} and V_{Γ}. So, we have shown that φ belongs to all $\boldsymbol{\Lambda}[\square \Phi]$-maximal sets. Hence $\varphi \in \boldsymbol{\Lambda}[\square \Phi]$, by Lemma 5.3(2).
2. By Lemma $5.5(3),\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is self-associate. The rest as in 1.
3. By Lemma 5.5(4), $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is non-empty. The rest as in 1.
4. By Lemma $5.5(5),\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is self-associate or empty. The rest as in 1 .
5. If $\boldsymbol{\Lambda}$ is an rte-logic, then $\boldsymbol{\Lambda}[\square \Phi]$ is also an rte-logic. By Lemma 5.5(6), $\left\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma}\right\rangle$ is a t-normal rte-model. The rest as in 1 .

5.3. Determination theorems

By facts 3.13 and 4.6 , and Theorem 5.6 we obtain: ${ }^{5}$
Theorem 5.7. For any $\Phi \subseteq \mathbf{S 0 . 5}$:

1. $\mathbf{S 0 . 5}{ }^{\circ}[\square \Phi]$ is determined by the class $\mathbf{n M}[\square \Phi]$.
2. $\mathbf{S 0 . 5} \mathbf{5}^{\circ}[\mathrm{D}, \square \Phi]$ is determined by the class $\mathbf{n M} \mathbf{M}^{+}[\square \Phi]$.
3. $\mathbf{S 0 . 5} \mathbf{5}^{\circ}\left[\mathrm{T}_{\mathrm{q}}, \square \Phi\right]$ is determined by the class $\mathbf{n M}^{\varnothing}[\square \Phi] \cup \mathbf{n} \mathbf{M}^{\mathbf{s a}}[\square \Phi]$.

[^4]4. $\mathbf{S 0 . 5}[\square \Phi]$ is determined by the class $\mathbf{n M} \mathbf{M}^{\mathbf{s a}}[\square \Phi]$.
5. $\mathbf{S} 0.5_{\mathrm{rte}}^{\circ}[\square \Phi]$ is determined by the class $\mathbf{n M} \mathbf{M r e}[\square \Phi]$.
6. $\mathbf{S 0} .5_{\mathrm{rte}}^{\circ}[\mathrm{D}, \square \Phi]$ is determined by the class $\mathbf{n M}_{\mathrm{rte}}^{+}[\square \Phi]$.
7. $\mathbf{S} 0 . \mathbf{5}_{\mathbf{r t e}}^{\circ}\left[\mathrm{T}_{\mathrm{q}}, \square \Phi\right]$ is determined by the class $\mathbf{n} \mathbf{M}_{\mathbf{r t e}}^{\varnothing}[\square \Phi] \cup \mathbf{n} \mathbf{M}_{\mathbf{r t e}}^{\text {sa }}[\square \Phi]$.
8. S0.5 $\mathbf{5 r t e}[\square \Phi]$ is determined by the class of $\mathbf{n M} \mathbf{M}_{\text {ret }}^{\text {sa }}[\square \Phi]$.

6. Mutual dependencies among very weak t-normal logics. Very weak t-normal logics vs. S0.9 ${ }^{\circ}$, S0.9, S1 ${ }^{\circ}$ and S1

Firstly notice that the following lemma holds.
Lemma 6.1. Let a logic $\boldsymbol{\Lambda}$ be one from $\mathbf{S 0 . 9}^{\boldsymbol{}}$, $\mathbf{S 0 . 9}, \mathbf{S 1}{ }^{\circ}$, S1. Then for all $\varphi, \psi \in$ For, if $\ulcorner\square \varphi\urcorner$ and $\ulcorner\square \psi\urcorner \in \boldsymbol{\Lambda}$, then $\ulcorner\square(\square \varphi \equiv \square \psi)\urcorner \in \boldsymbol{\Lambda}$. Consequently, $\ulcorner\square(\square(\mathrm{K}) \equiv \square \top)\urcorner \in \mathbf{S} 0 . \mathbf{.}^{\circ}$.

Proof: Since $\mathrm{R}_{\mathrm{PL}} \subseteq \boldsymbol{\Lambda}$, so $\ulcorner(\square \varphi \wedge \square \psi) \supset \square(\varphi \equiv \psi)\urcorner \in \boldsymbol{\Lambda}$ and so $\ulcorner\square(\varphi \equiv$ $\psi)\urcorner \in \boldsymbol{\Lambda}$. Hence, by $\left(\operatorname{RRSE}_{\mathrm{T}}\right)$, $\square(\square$ $\square \varphi \equiv \square$ $\square \psi$ S0.9 ${ }^{\circ}$.

FACT 6.2. For any $\varphi \notin \mathbf{P L}_{\text {rte }}$ and $\psi \in \mathbf{P L}_{\mathrm{rte}}$,

$$
\ulcorner\square(\square \varphi \equiv \square \psi)\urcorner \notin \mathbf{S 0 . 5} \mathbf{5}_{\text {rte }}[\square \mathbf{S 0 . 5] .}
$$

Consequently, $\ulcorner\square(\square(\mathrm{K}) \equiv \square \top)\urcorner \notin \mathbf{S 0 . 5} \mathbf{5}_{\text {re }}[\square \mathbf{S 0 . 5]}$.
Proof: Let $w \neq a, A:=\{w, a\}$. Let $v_{a}:$ PAt $\rightarrow\{0,1\}$ be any assignment such that for any $\chi \in$ For: $v_{a}(\square \chi)=1$ iff $\chi \in \mathbf{P L}_{\text {rte }}$. The assignment v_{a} satisfies the condition ($\star_{\text {PAt }}$) from Lemma 1.21. Indeed, for any $\chi, \chi_{1}, \chi_{2} \in$ For such that $\left\ulcorner\chi_{1} \equiv \chi_{2}\right\urcorner \in \mathbf{P L}: v_{a}(\square \chi)=1$ iff $\chi \in \mathbf{P L}_{\mathrm{rte}}$ iff $\chi\left[\chi_{1} / \chi_{2}\right] \in \mathbf{P L}_{\mathrm{rte}}$ iff $v_{a}\left(\square \chi^{\left[\chi_{1} / \chi_{2}\right]}\right)=1$. Let $V_{a}:$ For $\rightarrow\{0,1\}$ be the unique extension of v_{a} by classical truth conditions for truth- value operators. By Lemma 1.21(1), $V_{a} \in \mathrm{Val}_{\text {rte }}^{\mathrm{cl}}$.

Notice that $V_{a}(\operatorname{sub}(\mathrm{~T}))=\{1\}=V_{a}(\operatorname{sub}(\mathrm{~K}))$. Indeed, if $V_{a}(\square \chi)=1$, then $\chi \in \mathbf{P L}_{\text {rte }}$. So $V_{a}(\chi)=1$, by Lemma 1.21(2). Moreover, if $V_{a}\left(\square\left(\chi_{1}\right)\right.$ $\left.\left.\chi_{2}\right)\right)=1=V_{a}\left(\square \chi_{1}\right)$, then $\left\ulcorner\chi_{1} \supset \chi_{2}\right\urcorner \in \mathbf{P L}_{\mathrm{rte}}$ and $\chi_{1} \in \mathbf{P L}_{\mathrm{rte}}$. Hence, by Lemma $1.21(3)$, for any $V \in \mathrm{Val}_{\text {rte }}^{\mathrm{cl}}: V\left(\chi_{1} \supset \chi_{2}\right)=1=V\left(\chi_{1}\right)$, so also $V\left(\chi_{2}\right)=1$. Hence $\chi_{2} \in \mathbf{P L}_{\text {rte }}$ and consequently, $V_{a}\left(\square \chi_{2}\right)=1$.

Thus, $V_{a}(\mathbf{S 0 . 5})=\{1\}$, since all theses of $\mathbf{S 0 . 5}$ are derivable in $\mathbf{P L}, \square \mathbf{P L}$, $\operatorname{sub}(\mathrm{K})$ and $\operatorname{sub}(\mathrm{T})$ by (MP), and for all formulae derivable in this way the function V_{a} has the value 1.

Now, as in Lemma 4.2(1), for any assignment v_{w} : At $\rightarrow\{0,1\}$ and V_{a} we construct a self-associate t-normal rte-model $\langle w,\{w, a\}, V\rangle$ for $\square \mathbf{S 0 . 5}$. For any $\varphi \notin \mathbf{P L}_{\text {rte }}$ and $\psi \in \mathbf{P L}_{\text {rte }}$ we have that $V(\square(\square \varphi \equiv \square \psi), w)=0$, since $V(\square \varphi \equiv \square \psi), a)=0$. Thus, $\ulcorner\square(\square \varphi \equiv \square \psi)\urcorner \notin \mathbf{S 0 . 5} \mathbf{5 r t e}^{\square} \square \mathbf{S 0 . 5]}$, by Fact 4.6.

Finally notice that $(\mathrm{K}) \notin \mathbf{P L}_{\mathrm{rte}}$ and $\top \in \mathbf{P L}_{\mathrm{rte}}$.
By the above facts, Fact 2.2 and Corollary 2.6 we obtain:
Corollary 6.3. 1. $\mathbf{S 0 . 5} \mathbf{5}_{\text {rte }}^{\circ}[\square \mathrm{K}] \subsetneq \mathbf{S} \mathbf{0 . 9}{ }^{\circ}$.
2. $\left.\mathbf{S 0 . 5} \mathbf{5 r t e}^{\text {re }} \square \square \mathrm{T}, \square \mathrm{K}\right] \subsetneq \mathbf{S 0 . 9}$.
3. $\mathbf{S} 0.5_{\mathrm{rte}}^{\circ}[\square \mathrm{X}] \subsetneq \mathbf{S} 1^{\circ}$.
4. $\mathbf{S 0} . \mathbf{5}_{\mathrm{rte}}[\square \mathrm{T}, \square \mathrm{X}] \subsetneq \mathbf{S}$.
5. If $\Phi \subseteq \mathbf{C} \mathbf{2} \cap \mathbf{S 0 . 5}$, then $\mathbf{S 0 . 5} \mathbf{5 r t e}^{\circ}[\square \Phi] \subsetneq \mathbf{S} \mathbf{2}^{\circ}$.
6. If $\Phi \subseteq \mathbf{E 1}$, then $\mathbf{S 0} . \mathbf{5}_{\text {rte }}[\square \Phi] \subsetneq \mathbf{S 2}$.

FACT 6.4. The formulae $\square(\dagger)$ and (\ddagger) from the first part do not belong to $\mathbf{S 0 . 5}[\square \mathbf{S 0 . 5}]$. Consequently, $\mathbf{S 0 . 5}[\square \mathbf{S 0 . 5]}$ is not an rte-system.

Proof: Let $w \neq a$ and $A:=\{w, a\}$.
First way: ${ }^{6}$ Since $\left(\dagger_{\mathrm{a}}\right) \notin \mathbf{S 0 . 5}$, so $\mathbf{S 0 . 5} \forall_{\mathbf{P L}}\left(\dagger_{\mathrm{a}}\right)$. Hence there is $V_{a} \in \mathrm{Val}^{\mathrm{cl}}$ such that $V_{a}(\mathbf{S 0 . 5})=\{1\}$ and $V_{a}\left(\dagger_{\mathrm{a}}\right)=0$. So $V_{a}(\square \square p)=1$, $V_{a}(\square \square \neg \neg p)=0$ and $V_{a}(\operatorname{sub}(\mathrm{~T}))=\{1\}$. Consequently, $V_{a}(\square p)=1=$ $V_{a}(p)$.

Now, as in Lemma 3.2(1), for V_{a} and any assignment $v_{w}:$ At $\rightarrow\{0,1\}$ such that $v_{w}(p)=1$, we build a self-associate t-normal model $\langle w,\{w, a\}, V\rangle$ for $\square \mathbf{S 0 . 5}$. We have: $V(\square \square p, a)=1, V(\square \square \neg \neg p, a)=0, V(\square p, w)=$ $V(\square \square p, w)=V(\square \square \square p, w)=1$ and $V(\square \square \square \neg \neg p, w)=0$. So $V\left(\square\left(\dagger_{\mathrm{a}}\right), w\right)$ $=0$ and $V\left(\left(\ddagger_{\mathrm{a}}\right), w\right)=0$. Thus, by Fact 3.13(4), $\square\left(\dagger_{\mathrm{a}}\right)$ and $\left(\ddagger_{\mathrm{a}}\right)$ do not belong to $\mathbf{S 0 . 5 [} \square \mathbf{S 0 . 5]}$. Similarly for $\square\left(\dagger_{\mathrm{b}}\right)$ and $\left(\ddagger_{\mathrm{b}}\right)$.

Second way: Let $v_{a}:$ PAt $\rightarrow\{0,1\}$ be any assignment such that $v_{a}(p)=$ 1 and for any $\varphi \in$ For:

[^5]\[

v_{a}(\square \varphi)= $$
\begin{cases}1 & \text { if }\ulcorner p \supset \varphi\urcorner \in \mathbf{P L} \\ 1 & \text { if } \varphi=‘ \square p \\ 0 & \text { otherwise }\end{cases}
$$
\]

Let V_{a} : For $\rightarrow\{0,1\}$ be the unique extension of v_{a} by classical truth conditions for truth-value operators. Evidently $V_{a}(\square \square \neg \neg p)=0$. Notice that $V_{a}(\operatorname{sub}(\mathrm{~K}))=\{1\}$ and $V_{a}(\operatorname{sub}(\mathrm{~T}))=\{1\}$. Indeed, suppose that $V_{a}(\square(\varphi \supset \psi))=1$ and $V_{a}(\square \varphi)=1$. Hence both $\ulcorner p \supset(\varphi \supset \psi)\urcorner \in \mathbf{P L}$ and either $\ulcorner p \supset \varphi\urcorner \in \mathbf{P L}$ or $\varphi=‘ \square p$ '. So either $\ulcorner p \supset \psi\urcorner \in \mathbf{P L}$ or $\psi=' \square p$ '. Consequently, $V_{a}(\square \psi)=1$. Moreover, if $V_{a}(\square \varphi)=1$, then either $\ulcorner p \supset \varphi\urcorner \in \mathbf{P L}$ or $\varphi={ }^{\prime} \square p$ '. So $V_{a}(\varphi)=1$, since $V \in \mathrm{Val}^{\text {cl }}$ and $V_{a}(p)=1=V_{a}(\square p)$.

Thus, $V_{a}(\mathbf{S 0 . 5})=\{1\}$, since all theses of $\mathbf{S 0 . 5}$ are derivable from $\square \mathbf{P L}$, $\operatorname{sub}(\mathrm{K})$ and $\operatorname{sub}(\mathrm{T})$ by PL and (MP).

Now, as in Lemma 3.2(1), for V_{a} and any assignment $v_{w}:$ At $\rightarrow\{0,1\}$ such that $v_{w}(p)=1$, we build a self-associate t-normal model $\langle w,\{w, a\}, V\rangle$ for $\square \mathbf{S 0 . 5}$. We have: $V(\square \square p, a)=1, V(\square \square \neg \neg p, a)=0, V(\square \square p, w)=$ $V(\square \square \square p, w)=1, V(\square \square \square \neg \neg p, w)=0$. So $V\left(\square\left(\dagger_{\mathrm{a}}\right), w\right)=0$ and $V\left(\left(\ddagger_{\mathrm{a}}\right)\right.$, $w)=0$. Thus, by Fact 3.13(4), $\square\left(\dagger_{\mathrm{a}}\right)$ and $\left(\ddagger_{\mathrm{a}}\right)$ do not belong to $\mathbf{S 0 . 5 [\square \mathbf { S 0 . 5 }] .}$ Similarly for $\square\left(\dagger_{\mathrm{b}}\right)$ and $\left(\ddagger_{\mathrm{b}}\right)$.

FACT 6.5. $\square(\mathrm{X}) \notin \mathbf{S} \mathbf{0} . \mathbf{5}_{\mathrm{rte}}[\square \mathrm{T}, \square \mathrm{K}]$.
Proof: Since $\square(X) \notin \mathbf{S 0 . 9}$ and $\mathbf{S 0 . 5} \mathbf{5 r t e}[\square \mathrm{T}, \square \mathrm{K}] \subsetneq \mathbf{S 0 . 9}$.
FACT 6.6. $\square(\mathrm{K}) \notin \mathbf{S 0 . 5} \mathbf{5}_{\mathrm{rte}}[\square \mathrm{T}] .^{7}$
Proof: Let $w \neq a, A:=\{w, a\}$. Let $v_{a}:$ PAt $\rightarrow\{0,1\}$ be any assignment such that $v_{a}(p)=1=v_{a}(q)$ and for any $\chi \in$ For: $\varphi \in$ For:

$$
v_{a}(\square \chi)= \begin{cases}1 & \text { if }\ulcorner\chi \equiv p\urcorner \in \mathbf{P L} \\ 1 & \text { if }\ulcorner\chi \equiv(p \supset q)\urcorner \in \mathbf{P L} \\ 0 & \text { otherwise }\end{cases}
$$

The assignment v_{a} satisfies the condition ($\star_{\text {PAt }}$) from Lemma 1.21. Indeed, for any $\chi, \chi_{1}, \chi_{2} \in$ For such that $\left\ulcorner\chi_{1} \equiv \chi_{2}\right\urcorner \in \mathbf{P L}: v_{a}(\square \chi)=1$ iff either

[^6]$\ulcorner p \equiv \chi\urcorner \in \mathbf{P L}$ or $\ulcorner(p \supset q) \equiv \chi\urcorner \in \mathbf{P L}$ iff either $\left\ulcorner p \equiv \chi\left[{ }^{\chi_{1}} / \chi_{2}\right]\right\urcorner \in \mathbf{P L}$ or $\left\ulcorner(p \supset q) \equiv \chi\left[\chi_{1} / \chi_{2}\right]\right\urcorner \in \mathbf{P L}$ iff $v_{a}\left(\square \chi\left[\chi^{\chi_{1}} / \chi_{2}\right]\right)=1$. Let V_{a} : For $\rightarrow\{0,1\}$ be the unique extension of v_{a} by classical truth conditions for truth- value operators. By Lemma 1.21(1), $V_{a} \in \mathrm{Val}_{\text {rte }}^{c l}$.

Notice that $V_{a}(\operatorname{sub}(T))=\{1\}$. Indeed, if $V_{a}(\square \chi)=1$, then either $\ulcorner p \equiv \chi\urcorner \in \mathbf{P L}$ or $\ulcorner(p \supset q) \equiv \chi\urcorner \in \mathbf{P L}$. So $V_{a}(\chi)=1$, by Lemma 1.21(2).

Since $V_{a}(\square(p \supset q))=1=V_{a}(\square p)$ and $V_{a}(\square q)=0$, so $V_{a}(\mathrm{~K})=0$.
Now, as in Lemma 4.2(1), for any assignment $v_{w}:$ At $\rightarrow\{0,1\}$ and V_{a}, we construct a self-associate t-normal rte-model $\langle w,\{w, a\}, V\rangle$ for $\{\square(\mathrm{T})\}$, since $V(\operatorname{sub}(T), w)=\{1\}$. Since $V(\square(K), w)=0$, so $\square(K) \notin \mathbf{S 0 . 5} \mathbf{5}_{\text {rte }}[\square \mathrm{T}]$, by Theorem 5.7(8).

FACT 6.7. $\square(\mathrm{T}) \notin \mathbf{S 0 . 5} \mathbf{5}_{\mathrm{rte}}[\square \mathrm{X}]$.
Proof: Let $w \neq a, A:=\{w, a\}$. Let $v_{a}:$ PAt $\rightarrow\{0,1\}$ be any assignment such that $v_{a}(0)$ and for any $\chi \in$ For: $\varphi \in$ For:

$$
v_{a}(\square \chi)= \begin{cases}1 & \text { if }\ulcorner\chi \equiv p\urcorner \in \mathbf{P L} \\ 0 & \text { otherwise }\end{cases}
$$

The assignment v_{a} satisfies the condition (\star_{PAt}) from Lemma 1.21. Indeed, for any $\chi, \chi_{1}, \chi_{2} \in$ For such that $\left\ulcorner\chi_{1} \equiv \chi_{2}\right\urcorner \in \mathbf{P L}: v_{a}(\square \chi)=1$ iff $\ulcorner p \equiv$ $\chi\urcorner \in \mathbf{P L}$ iff $\left\ulcorner p \equiv \chi\left[{ }^{\chi_{1}} / \chi_{2}\right]\right\urcorner \in \mathbf{P L}$ iff $v_{a}\left(\square \chi\left[\chi^{\chi_{1}} / \chi_{2}\right]\right)=1$. Let $V_{a}:$ For $\rightarrow\{0,1\}$ be the unique extension of v_{a} by classical truth conditions for truth- value operators. By Lemma 1.21(1), $V_{a} \in \mathrm{Val}_{\text {rte }}^{c l}$.

Notice that $V_{a}(\operatorname{sub}(\mathrm{X}))=\{1\}$. Indeed, suppose that $V_{a}\left(\square\left(\varphi_{1} \supset \varphi_{2}\right)\right)=$ $1=V_{a}\left(\square\left(\varphi_{2} \supset \varphi_{3}\right)\right)$. Then (i) $\left\ulcorner p \equiv\left(\varphi_{1} \supset \varphi_{2}\right)\right\urcorner \in \mathbf{P L}$ and (ii) $\left\ulcorner p \equiv\left(\varphi_{2} \supset\right.\right.$ $\left.\left.\varphi_{3}\right)\right\urcorner \in \mathbf{P L}$. From (i): either both $\left\ulcorner\varphi_{1} \equiv \neg p\right\urcorner \in \mathbf{P L}$ and $\left\ulcorner\varphi_{2} \equiv p\right\urcorner \in \mathbf{P L}$, or both $\varphi_{1} \in \mathbf{P L}$ and $\left\ulcorner\varphi_{2} \equiv p\right\urcorner \in \mathbf{P L}$, or both $\left\ulcorner\varphi_{1} \equiv \neg p\right\urcorner \in \mathbf{P L}$ and $\left\ulcorner\neg \varphi_{2}\right\urcorner \in \mathbf{P L}$. From (ii): either both $\left\ulcorner\varphi_{2} \equiv \neg p\right\urcorner \in \mathbf{P L}$ and $\left\ulcorner\varphi_{3} \equiv p\right\urcorner \in \mathbf{P L}$, or both $\varphi_{2} \in \mathbf{P L}$ and $\left\ulcorner\varphi_{3} \equiv p\right\urcorner \in \mathbf{P L}$, or both $\left\ulcorner\varphi_{2} \equiv \neg p\right\urcorner \in \mathbf{P L}$ and $\left\ulcorner\neg \varphi_{3}\right\urcorner \in \mathbf{P L}$. Contradiction.

Moreover, $V_{a}(\mathrm{~T})=0$, since $V_{a}(\square p)$ and $V_{a}(p)=0$.
Now, as in Lemma 4.2(1), for any assignment v_{w} : At $\rightarrow\{0,1\}$ and V_{a}, we build a self-associate t-normal rte-model $\langle w,\{w, a\}, V\rangle$ for $\{\square(\mathrm{X})\}$, since $V(\operatorname{sub}(\mathrm{X}), w)=\{1\}$. Since $V(\square(\mathrm{~T}), w)=0$, so $\square(\mathrm{T}) \notin \mathbf{S} \mathbf{0} . \mathbf{5}_{\mathrm{rte}}[\square \mathrm{T}]$, by Theorem 5.7(8).

FACT 6.8. $\square(\mathrm{K}) \notin \mathbf{S 0 . 5}[\square \mathrm{T}, \square \mathrm{X}, \square \mathrm{R}]$.
Proof: Let $w \neq a$ and $A:=\{w, a\}$. Let v_{a} : PAt $\rightarrow\{0,1\}$ such that $v_{a}(p)=1=v_{a}(q)$ and for any $\varphi \in$ For: $v_{a}(\square \varphi)=1$ iff either $\varphi=$ ' p ', or $\varphi=$ ' $p \wedge p$ ', or $\varphi=$ ' $p \supset q$ ', or $\varphi=$ ' $(p \supset q) \wedge(p \supset q)$ '.

Let V_{a} be the unique extension of v_{a} by classical truth conditions for truth-value operators. Then $V_{a}(\square q)=0$ and $V_{a}(\operatorname{sub}(\mathrm{~T}))=V_{a}(\operatorname{sub}(\mathrm{X}))=$ $V_{a}(\operatorname{sub}(\mathrm{R}))=\{1\}$.

Now, as in Lemma 3.2(1), for any assignment v_{w} : At $\rightarrow\{0,1\}$ and V_{a}, we build a self-associate t-normal model $\langle w,\{w, a\}, V\rangle$. By Theorem 3.4, $V(\operatorname{sub}(\mathrm{~T}), w)=V(\operatorname{sub}(\mathrm{X}), w)=V(\operatorname{sub}(\mathrm{C}), w)=V(\operatorname{sub}(\mathrm{M}), w)=\{1\}$. So we have a model for $\{\square(\mathrm{T}), \square(\mathrm{X}), \square(\mathrm{R})\}$, in which $V(\square(\mathrm{~K}), w)=0$. Thus, by Fact 3.13(4), \square (K) does not belong to $\mathbf{S 0 . 5}[\square \mathrm{T}, \square \mathrm{X}, \square \mathrm{R}]$.

If we are only interested in formulae $\square(K), \square(X)$ and $\square(T)$, as in the case of $\mathbf{S 0 . 9}{ }^{\circ}, \mathbf{S 0 . 9}, \mathbf{S 1}{ }^{\circ}$ and $\mathbf{S 1}$, by the above facts and Fact 2.2 we obtain.

Corollary 6.9. 1. $\mathbf{S 0 . 5} \mathbf{5}^{\circ}[\square \mathrm{K}] \subsetneq \mathbf{S 0 . 5} \mathbf{5}_{\mathrm{rte}}^{\circ}[\square \mathrm{K}]$,
$\mathbf{S 0 . 5}{ }^{\circ}[\square \mathrm{K}, \square \mathrm{X}] \subsetneq \mathbf{S 0 . 5}{ }^{\circ}{ }_{\mathrm{rte}}[\square \mathrm{X}]$,
$\mathbf{S 0 . 5}{ }^{\circ}[\square \mathrm{T}, \square \mathrm{K}] \subsetneq \mathbf{S 0 . 5}{ }_{\mathrm{rte}}^{\circ}[\square \mathrm{T}, \square \mathrm{K}]$,
$\mathbf{S 0 . 5}{ }^{\circ}[\square \mathrm{T}, \square \mathrm{K}, \square \mathrm{X}] \subsetneq \mathbf{S} 0.5_{\mathrm{rte}}^{\circ}[\square \mathrm{T}, \square \mathrm{X}]$.
2. $\mathbf{S 0 . 5}{ }^{\circ} \subsetneq \mathbf{S} 0 . \mathbf{5}^{\circ}[\square \mathrm{K}] \subsetneq \mathbf{S} 0 . \mathbf{5}^{\circ}[\square \mathrm{K}, \square \mathrm{X}] \subsetneq \mathbf{S} 0 . \mathbf{5}^{\circ}[\square \mathrm{T}, \square \mathrm{K}, \square \mathrm{X}]$,
$\mathbf{S 0 . 5}$ © $\mathbf{S O}_{\mathbf{\circ}} . \mathbf{5}^{\circ}[\square \mathrm{X}] \subsetneq \mathbf{S} 0 . \mathbf{5}^{\circ}[\square \mathrm{K}, \square \mathrm{X}]$,
$\mathbf{S 0 . 5}{ }^{\circ}[\square \mathrm{K}] \subsetneq \mathbf{S 0 . 5}{ }^{\circ}[\square \mathrm{T}, \square \mathrm{K}] \subsetneq \mathbf{S 0 . 5}{ }^{\circ}[\square \mathrm{T}, \square \mathrm{K}, \square \mathrm{X}]$,
$\mathbf{S 0 . 5}{ }^{\circ}[\square \mathrm{X}] \subsetneq \mathbf{S 0 . 5}{ }^{\circ}[\square \mathrm{T}, \square \mathrm{X}] \subsetneq \mathbf{S} \mathbf{0 . 5}{ }^{\circ}[\square \mathrm{T}, \square \mathrm{K}, \square \mathrm{X}]$.
3. $\mathbf{S 0 . 5}{ }^{\circ} \subsetneq \mathbf{S 0 . 5} 5_{\mathrm{rte}}^{\circ} \subsetneq \mathbf{S} 0.5_{\mathrm{rte}}^{\circ}[\square \mathrm{K}] \subsetneq \mathbf{S} 0.5_{\mathrm{rte}}^{\circ}[\square \mathrm{X}]$.
4. $\mathbf{S 0 . 5} \mathbf{5}^{\circ}[\square \mathrm{K}, \square \mathrm{X}] \subsetneq \mathbf{S} 0 . \mathbf{5}_{\text {rte }}^{\circ}[\square \mathrm{X}] \subsetneq \mathbf{S} 0 . \mathbf{5}_{\mathrm{rte}}^{\circ}[\square \mathrm{T}, \square \mathrm{X}]$.
5. $\mathbf{S 0 . 5}[\square \mathrm{T}, \square \mathrm{K}] \subsetneq \mathbf{S 0 . 5} \mathbf{5 r t e}^{[}[\square \mathrm{T}, \square \mathrm{K}] \subsetneq \mathbf{S 0 . 9}$.
6. $\mathbf{S 0 . 5} \subsetneq \mathbf{S 0 . 5}[\square \mathrm{K}] \subsetneq \mathbf{S 0 . 5}[\square \mathrm{K}, \square \mathrm{X}] \subsetneq \mathbf{S 0 . 5}[\square \mathrm{T}, \square \mathrm{K}, \square \mathrm{X}] \subsetneq \mathbf{S} \mathbf{0} . \mathbf{5}_{\mathrm{rte}}[\square \mathrm{T}, \square \mathrm{X}]$,
$\mathbf{S 0 . 5} \subsetneq \mathbf{S 0 . 5}[\square \mathrm{X}] \subsetneq \mathbf{S 0 . 5}[\square \mathrm{K}, \square \mathrm{X}]$,
$\mathrm{S} 0.5[\square \mathrm{~K}] \subsetneq \mathrm{S0.5}[\square \mathrm{~T}, \square \mathrm{~K}] \subsetneq \mathrm{S} 0.5[\square \mathrm{~T}, \square \mathrm{~K}, \square \mathrm{X}]$,
$\mathbf{S 0 . 5}[\square \mathrm{X}] \subsetneq \mathbf{S 0 . 5}[\square \mathrm{T}, \square \mathrm{x}] \subsetneq \mathbf{S 0 . 5}[\square \mathrm{T}, \square \mathrm{K}, \square \mathrm{X}]$.
7. $\mathbf{S 0 . 5}[\square \mathrm{T}, \square \mathrm{K}, \square \mathrm{X}] \subsetneq \mathbf{S 0 . 5}$ rte $[\square \mathrm{T}, \square \mathrm{X}]$.
8. $\mathbf{S 0 . 5} \subsetneq \mathbf{S 0 . 5} \mathbf{5 r t e}^{\text {re }} \mathbf{S} \mathbf{0 . 5} \mathbf{5}_{\mathrm{rte}}[\square \mathrm{K}] \subsetneq \mathbf{S} \mathbf{0} . \mathbf{5}_{\mathrm{rte}}[\square \mathrm{X}] \subsetneq \mathbf{S} \mathbf{0} . \mathbf{5}_{\mathrm{rte}}[\square \mathrm{T}, \square \mathrm{X}]$,
$\mathbf{S 0 . 5}[\square \mathrm{K}] \subsetneq \mathbf{S 0 . 5} \mathbf{5 r t e}^{\mathrm{rt}}[\square \mathrm{K}] \subsetneq \mathbf{S 0 . 5} \mathbf{5 r t e}^{\mathrm{rt}}[\square \mathrm{T}, \square \mathrm{K}] \subsetneq \mathbf{S 0 . 5} \mathbf{5}_{\mathrm{rte}}[\square \mathrm{T}, \square \mathrm{X}]$,
$\mathbf{S 0 . 5}[\square \mathrm{X}] \subsetneq \mathbf{S} 0 . \mathbf{5}_{\mathrm{rte}}[\square \mathrm{X}]$.
Fact 6.7 can be strengthen to the following:

FACT 6.10. $\square(\mathrm{T}) \notin \mathbf{S} \mathbf{0 . 5} \mathbf{5}_{\text {rte }}\left[\square \mathbf{S} 0 . \mathbf{5}^{\circ}\right]$.
Proof: Let $w \neq a, A:=\{w, a\}$. Let $v_{a}:$ PAt $\rightarrow\{0,1\}$ be any assignment such that $v_{a}(p)=0$ and for any $\chi \in$ For:

$$
v_{a}(\square \chi)= \begin{cases}1 & \text { if } \chi \in \mathbf{P L}_{\mathrm{rte}} \\ 1 & \text { if }\ulcorner p \supset \chi\urcorner \in \mathbf{P L}_{\mathrm{rte}} \\ 0 & \text { otherwise }\end{cases}
$$

The assignment v_{a} satisfies the condition (\star_{PAt}) from Lemma 1.21. Indeed, we have two cases. In the first one the situation is analogous to that of in the proof of Fact 6.2. In the second one for $\chi, \chi_{1}, \chi_{2} \in$ For such that $\left\ulcorner\chi_{1} \equiv \chi_{2}\right\urcorner \in \mathbf{P L}: v_{a}(\square \chi)=1$ iff $\ulcorner p \supset \chi\urcorner \in \mathbf{P L}_{\mathrm{rte}}$ iff $\left\ulcorner p \supset \chi\left[\chi^{\chi_{1}} / \chi_{2}\right]\right\urcorner \in \mathbf{P} \mathbf{L}_{\mathrm{rte}}$ iff $v_{a}\left(\square \chi\left[{ }^{\chi_{1}} / \chi_{2}\right]\right)=1$. Let V_{a} : For $\rightarrow\{0,1\}$ be the unique extension of v_{a} by classical truth conditions for truth-value operators. By Lemma 1.21(1), $V_{a} \in \mathrm{Val}_{\mathrm{rte}}^{\mathrm{cl}}$.

Notice that $V_{a}(\operatorname{sub}(\mathrm{~K}))=\{1\}$. Indeed, suppose that $V_{a}\left(\square\left(\varphi_{1} \supset \varphi_{2}\right)\right)=$ $1=V_{a}\left(\square \varphi_{1}\right)$. Then both either $\left\ulcorner\varphi_{1} \supset \varphi_{2}\right\urcorner \in \mathbf{P L}_{\text {rte }}$ or $\left\ulcorner p \supset\left(\varphi_{1} \supset \varphi_{2}\right)\right\urcorner \in$ $\mathbf{P L}_{\text {rte }}$ and either $\varphi_{1} \in \mathbf{P L}_{\text {rte }}$ or $\left\ulcorner p \supset \varphi_{1}\right\urcorner \in \mathbf{P L}_{\text {rte }}$. Hence, either (i) both $\varphi_{1} \in \mathbf{P L}_{\mathrm{rte}}$ and $\left\ulcorner\varphi_{1} \supset \varphi_{2}\right\urcorner \in \mathbf{P L}_{\mathrm{rte}}$, or (ii) both $\left\ulcorner p \supset \varphi_{1}\right\urcorner \in \mathbf{P L}_{\mathrm{rte}}$ and $\left\ulcorner\varphi_{1} \supset \varphi_{2}\right\urcorner \in \mathbf{P L}_{\text {rte }}$, or (iii) both $\varphi_{1} \in \mathbf{P L}_{\text {rte }}$ and $\left\ulcorner p \supset\left(\varphi_{1} \supset \varphi_{2}\right)\right\urcorner \in \mathbf{P L}_{\text {rte }}$, or (iv) both $\left\ulcorner p \supset \varphi_{1}\right\urcorner \in \mathbf{P L}_{\text {rte }}$ and $\left\ulcorner p \supset\left(\varphi_{1} \supset \varphi_{2}\right)\right\urcorner \in \mathbf{P L}_{\text {rte }}$. Hence, by Lemma $1.21(3), \varphi_{2} \in \mathbf{P L}_{\text {rte }}$ or $\left\ulcorner p \supset \varphi_{2}\right\urcorner \in \mathbf{P L}_{\text {rte }}$, and consequently, $V_{a}\left(\square \varphi_{2}\right)=1$.

Thus, $V_{a}\left(\mathbf{S 0 . 5}{ }^{\circ}\right)=\{1\}$, since all theses of $\mathbf{S 0 . 5}$ are derivable from $\mathbf{P L}$, $\square \mathbf{P L}$ and $\operatorname{sub}(\mathrm{K})$ by (MP), and for all formulae derivable in this way the function V_{a} takes the value 1.

We also have that $V_{a}(\mathrm{~T})=0$, since $V_{a}(\square p)$ and $V_{a}(p)=0$.
Now, as in Lemma 4.2(1), for any assignment $v_{w}:$ At $\rightarrow\{0,1\}$ and V_{a}, we build a self-associate t-normal rte-model $\langle w,\{w, a\}, V\rangle$ for $\square \mathbf{S 0 . 5}{ }^{\circ}$ such that $V(\square(\mathrm{~T}), w)=0$.

References

[1] B. F. Chellas, Modal Logic. An Introduction, Cambridge 1980, Cambridge University Press.
[2] G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic, London and New York 1996, Routledge.
[3] A. Pietruszczak, Simplified Kripke-style semantics for some very weak modal logics, Logic end Logical Philosophy 18 (2009), pp. 271-296.
[4] A. Pietruszczak, Semantical investigations on some weak modal logics. Part I, Bulletin of the Section of Logic 41:1/2 (2012), pp. 33-50.

Nicolaus Copernicus University
Department of Logic
ul. Asnyka 2
87-100 Toruń, Poland
pietrusz@uni.torun.pl

[^0]: *The first version of this work were presented during The Third Conference: NonClassical Logic. Theory and Applications, NCU, Toruń, September 16-18, 2010.
 ${ }^{1}$ For its first part see [4].

[^1]: ${ }^{2}$ See also [2, Exercise 11.8].

[^2]: ${ }^{3}$ Notice that, by Theorem 3.4(3), ${ }^{‘} \square \square p \supset \square p \prime \in \mathbf{S 0 . 5}{ }^{\circ}\left[\mathrm{T}_{\mathrm{q}}\right] \subseteq \mathbf{S 0 . 5}$.

[^3]: ${ }^{4}$ For (strictly) regular logics we use Kripke models of the form $\langle W, N, R, V\rangle$, where W is a non-empty set of possible worlds, N is a subset of W (is a set of normal worlds), $R \subseteq W \times W$ and $V:$ For $\times W \rightarrow\{0,1\}$ such that for any $x \in W: V(\cdot, x) \in \mathrm{Val}^{\mathrm{cl}}$ and for any $\varphi \in$ For, $V(\square \varphi, x)=1$ iff both $x \in N$ and $\forall_{y \in R(x)} V(\varphi, x)=1$. If $N=\emptyset$, then $V(\square \varphi, w)=0$, for any $\varphi \in$ For.

[^4]: ${ }^{5}$ Of course, if $\Phi \subseteq \mathbf{P L}$ (so also if $\Phi=\emptyset$), then we obtain theorems 3.4 and 4.4.

[^5]: ${ }^{6}$ We will present two different ways in order to show different methods of construction of countermodels.

[^6]: ${ }^{7}$ Notice that, by Fact $4.5, \square(K) \notin \mathbf{S} 0 . \mathbf{5}_{\text {rte }}$.

