Andrzej Pietruszczak

SEMANTICAL INVESTIGATIONS ON SOME WEAK MODAL LOGICS. Part II*

Abstract

In both parts of this paper¹ we examine weak logics similar to $S0.5[\Box \varPhi]$, where $\varPhi\subseteq S0.5$. We also examine their versions (one of which is $S0.5_{\text{rte}}[\Box \varPhi]$) that are closed under replacement of tautological equivalents (rte). We have that: $S0.5_{\text{rte}}[\Box(\texttt{K}),\Box(\texttt{T})]\subsetneq S0.9,\ S0.5_{\text{rte}}[\Box(\texttt{X}),\Box(\texttt{T})]\subsetneq S1$, and in general, if $\varPhi\subseteq E1$, then $S0.5_{\text{rte}}[\Box \varPhi]\subsetneq S2$.

In the present part we give simplified semantics for these logics, formulated by means of some Kripke-style models. We prove that the logics in question are determined by some classes of these models.

Key words: Very weak modal logics, simplified Kripke-style semantics.

3. Simplified Kripke-style semantics for weak t-normal and t-regular systems

3.1. Models for the logics $S0.5^{\circ}$, $S0.5^{\circ}[D]$, $S0.5^{\circ}[T_q]$ and S0.5

For very weak t-normal modal systems (e.g. for the logics $S0.5^{\circ}$, $S0.5^{\circ}[D]$, $S0.5^{\circ}[T_q]$ and S0.5) in [3] are used the following semantics, which consists of "t-normal models". A model for very weak t-normal systems (or t-normal model) is any triple $\langle w, A, V \rangle$ in which

^{*}The first version of this work were presented during The Third Conference: Non-Classical Logic. Theory and Applications, NCU, Toruń, September 16–18, 2010.

¹For its first part see [4].

- 1. w is a «distinguished» (normal) world,
- 2. A is a set of worlds which are alternatives to the world w,
- 3. V is a valuation from For \times ($\{w\} \cup A$) to $\{0,1\}$ such that:
 - (i) for any world $x \in A \cup \{w\}$, the function $V(\cdot, x)$ belongs to Val^{cl} ;
 - (ii) for the world w and any $\varphi \in For$
 - (V_w^{\square}) $V(\square \varphi, w) = 1$ iff $\forall_{x \in A} \ V(\varphi, x) = 1$.

Besides for any world from $A \setminus \{w\}$ and any $\varphi \in$ For, the formula $\sqcap \varphi \sqcap \varphi$ may have an arbitrary value.

A formula φ is *true* in a t-normal model $\langle w, A, V \rangle$ iff $V(\varphi, w) = 1$. We say that a formula is *t-normal valid* iff it is true in all t-normal models. Of course, the set of all formulae which are true in a t-model (resp. t-normal valid) is closed under (MP).

Notice that all formulae from the sets \mathbf{PL} , $\Box \mathbf{PL}$, $\mathbf{M_{PL}}$ $\mathbf{R_{PL}}$ and $\mathbf{E_{PL}}$ are t-normal valid. Moreover, for any t-normal model $\langle w, A, V \rangle$, for any $\tau \in \mathbf{PL}$ and any $x \in \{w\} \cup A$ we have that $V(\tau, x) = 1$. Besides we have the following obvious fact.

FACT 3.1. Let w be any object and A be any set. Then:

- 1. $w \in A$ iff for any $V : \text{For} \times (\{w\} \cup A) \to \{0,1\}$ such that $\langle w, A, V \rangle$ is a t-model we have that $V((\mathtt{T}), w) = 1$.
- 2. If $A \neq \emptyset$, then for any $V : \text{For} \times (\{w\} \cup A) \rightarrow \{0,1\}$ such that $\langle w, A, V \rangle$ is a t-model we have that V((D), w) = 1.
- 3. If $A = \emptyset$, then for any $V : \text{For} \times (\{w\} \cup A) \to \{0,1\}$ such that $\langle w, A, V \rangle$ is a t-model we have that V((D), w) = 0.
- 4. Ether $w \in A$ or $A = \emptyset$ iff for any $V : \text{For } \times (\{w\} \cup A) \to \{0,1\}$ such that $\langle w, A, V \rangle$ is a t-model we have that $V((\mathtt{T}_{\mathsf{q}}), w) = 1$.

PROOF: 1. " \Rightarrow " Obvious. " \Leftarrow " If $w \notin A$, let v_w be any assignment such that $v_w(p) = 0$ and for any $x \in A$ let v_x be any assignment such that $v_x(p) = 1$. Let $V \colon \text{For} \times (\{w\} \cup A) \to \{0,1\}$ be the unique extension of v_w and v_x , for $x \in A$, as in Lemma 3.2(2). Then $\langle w, A, V \rangle$ is a t-normal model such that $V(\Box p, w) = 1$. So $V((\mathtt{T}), w) = 0$.

2 and 3. Obvious.

4. " \Rightarrow " Obvious (see 1 and 3). " \Leftarrow " If $w \notin A \neq \emptyset$, then as in 1, wskazujemy t-model such that $V((\mathtt{T}),w)=0$. Moreover, $V(\lozenge(q\supset q),w)=1$, since $A\neq\emptyset$.

The lemma below shows that the notion of a t-normal model can be defined in a different, but equivalent, way.

- LEMMA 3.2. 1. Let $\langle w, A, v_w, \{V_x\}_{x \in A \setminus \{w\}} \rangle$ be a structure in which w and A are such as in t-normal models, $v_w \colon At \to \{0,1\}$, and for any x in $A \setminus \{w\}$, $V_x \in \mathsf{Val}^\mathsf{cl}$. Then there is the unique $V \colon \mathsf{For} \times (\{w\} \cup A) \to \{0,1\}$ such that:
 - $\bullet \ \forall_{\alpha \in \operatorname{At}} \colon V(\alpha,w) = v_w(\alpha) \ \ and \ \ \forall_{\varphi \in \operatorname{For}} \forall_{x \in A \setminus \{w\}} \colon \ V(\varphi,x) = V_x(\varphi),$
 - V satisfies conditions (i) and (ii) from definition of t-normal models.

Thus, $\langle w, A, V \rangle$ is a t-normal model. Moreover, if $w \in A$, then this model is self-associate.

- 2. Let $\langle w, A, v_w, \{v_x\}_{x \in A \setminus \{w\}} \rangle$ be a structure in which w and A are such as in t-normal models, $v_w \colon \operatorname{At} \to \{0,1\}$, and for any $x \in A \setminus \{w\}$, $v_x \colon \operatorname{PAt} \to \{0,1\}$. Then there is the unique $V \colon \operatorname{For} \times (\{w\} \cup A) \to \{0,1\}$ such that:
 - $\bullet \ \forall_{\alpha \in \operatorname{At}} \colon \ V(\alpha,w) = v_w(\alpha) \ \ and \ \ \forall_{\varphi \in \operatorname{PAt}} \forall_{x \in A \backslash \{w\}} \colon \ V(\varphi,x) = v_x(\varphi),$
 - V satisfies conditions (i) and (ii) from definition of t-normal models.

Thus, $\langle w, A, V \rangle$ is a t-normal model. Moreover, if $w \in A$, then this model is self-associate.

Proof: 1. Obvious.

- 2. By Lemma 1.1(1), from the first part [4], for every $x \in A \setminus \{w\}$ there is the unique extension $V_x \colon \text{For} \to \{0,1\}$ of v_x by classical truth conditions for truth-value operators (i.e. e.g. $V_x \in \mathsf{Val}^\mathsf{cl}$ and $\forall_{\chi \in \mathsf{For}} \colon V_x(\Box \chi) = v_x(\Box \chi)$). The rest as by 1.
- REMARK 3.1. 1. We can see then that structures $\langle w, A, v_w, \{v_x\}_{x \in A \setminus \{w\}} \rangle$ satisfying the conditions from the above lemma can be taken as t-normal models. Again we say that in such model a formula φ is true iff $V(\varphi, w) = 1$.
- 2. However, the latter approach is not general enough while considering week t-normal logics with a set $\Box \Phi$ of additional axioms, where $\Phi \subseteq \mathbf{S0.5}$ (see the condition (iii) in Section 3.3). In these not always can we use Lemma 3.2 while constructing t-normal models.

FACT 3.3. Let $\lceil \varphi \equiv \psi \rceil \in \mathbf{PL}$. Then for any classical formula χ (i.e. without the modal operator) for any world x from $A \cup \{w\}$ in any t-normal model $\langle w, A, V \rangle$ we have that $V(\chi, x) = V(\chi[\varphi/\psi], x)$.

However, when we analyze t-normal rte-logics we need to have such a notion of model, for which an analogous fact will hold for any formula χ from For.

We say that a t-normal model $\langle w, A, V \rangle$ is self-associate (resp. empty, non-empty) iff $w \in A$ (resp. $A = \emptyset$, $A \neq \emptyset$). Let \mathbf{nM} be the class of all t-normal models. Moreover, let $\mathbf{nM^{sa}}$ (resp. $\mathbf{nM^{\emptyset}}$, $\mathbf{nM^{+}}$) be the class of t-normal models which are self-associate (resp. empty, non-empty). Of course, $\mathbf{nM^{sa}} \subseteq \mathbf{nM^{+}}$ and $\mathbf{nM^{\emptyset}} \cap \mathbf{nM^{+}} = \emptyset$.

Let \boldsymbol{C} be any class of considered models. We say that a formula φ is \boldsymbol{C} -valid (written $\models_{\boldsymbol{C}} \varphi$) iff φ is true in all models from \boldsymbol{C} .

Let Σ be an arbitrary modal system. We say that Σ is sound with respect to C iff $\Sigma \subseteq \{\varphi \in \text{For} : \models_{C} \varphi\}$. We say that Σ is complete with respect to C iff $\Sigma \supseteq \{\varphi \in \text{For} : \models_{C} \varphi\}$. We say that Σ is determined by C iff $\Sigma = \{\varphi \in \text{For} : \models_{C} \varphi\}$, i.e., Σ is sound and complete with respect to C.

In [3] we proved the following determination theorems for the logics $S0.5^{\circ}$, $S0.5^{\circ}[D]$, $S0.5^{\circ}[T_q]$ and S0.5:

THEOREM 3.4 ([3]). 1. S0.5° is determined by the class nM.

- 2. **S0.5**°[D] is determined by the class **nM**⁺.
- 3. $S0.5^{\circ}[T_q]$ is determined by the class $nM^{sa} \cup nM^{\emptyset}$.
- 4. S0.5 is determined by the class nM^{sa}.²

From the above theorem and Fact 3.1(1) we obtain:

Corollary 3.5. (T) \notin **S0.5°**. Hence **S0.5°** \subseteq **S0.5**.

From Theorem 3.4 (or from Fact 3.1 likewise), we obtain:

FACT 3.6 ([3]). The formulae (†) from the first part do not belong to **S0.5**. Consequently, $PL_{\rm rte} \nsubseteq S0.5$ and S0.5 is not an rte-system.

 $^{^2 \}mathrm{See}$ also [2, Exercise 11.8].

PROOF: For (\dagger_a) : For $w \neq a$ and $A := \{w, a\}$, let v_w and v_a be assignments such that $v_w(p) = v_a(p) = v_a(\Box p) = 1$, $v_a(\Box \neg \neg p) = 0$. Let, as in Lemma 3.2(2), $V : \text{For} \times A \to \{0,1\}$ be the unique extension of v_w and v_a . Thus, $\langle w, A, V \rangle$ is a self-associate t-normal model such that $V(\Box \Box p, w) = 1$ and $V(\Box \Box \neg \neg p, w) = 0$. So $V((\dagger_a), w) = 0$. Similarly for (\dagger_b) : let $v_a(\Box p) = 0$ and $v_a(\Box \neg \neg p) = 1$.

Fact 3.7. $\lozenge \text{For} \cap \mathbf{S0.5}^{\circ} = \emptyset = \lozenge \text{For} \cap \mathbf{S0.5}^{\circ} [\mathsf{T}_{\mathsf{q}}].$

PROOF: For any empty t-normal model $\langle w, \emptyset, V \rangle$, we have $V(\Diamond \varphi, w) = 0$, for any $\varphi \in \text{For. Hence } \lceil \Diamond \varphi \rceil \notin \text{S0.5}^{\circ}[\mathsf{T}_{\mathsf{q}}]$, by Theorem 3.4(3).

FACT 3.8. For any $\varphi \in \text{For}$:

$$\lceil \Box \varphi \rceil \in \mathbf{S0.5}^{\circ} \text{ iff } \varphi \in \mathbf{PL} \text{ iff } \lceil \Box \varphi \rceil \in \mathbf{S0.5}.$$

So $S0.5^{\circ}$, $S0.5^{\circ}[D]$, $S0.5^{\circ}[T_{q}]$ and S0.5 are closed under (RN_{*}) and (SMP).

Proof: Firstly, $\Box PL \subseteq S0.5^{\circ} \subseteq S0.5$.

Secondly, let $\varphi \notin \mathbf{PL}$, $w \neq a$, $A := \{w, a\}$. Then, by Lemma 1.1, for some $V_a \in \mathsf{Val}^\mathsf{cl}$ we have that $V_a(\varphi) = 0$. By Lemma 3.2(1), for V_a and any assignment $v_w \colon \mathsf{At} \to \{0,1\}$ there is a self-associate t-normal model $\langle w, \{w, a\}, V \rangle$, for which $V(\Box \varphi, w) = 0$. Hence $\Box \varphi \not \in \mathbf{S0.5_{rte}}$, by Theorem 3.4(4).

FACT 3.9. For any n > 0 and $\varphi_1, \ldots, \varphi_n, \psi \in \text{For:}$

$$\lceil (\Box \varphi_1 \wedge \cdots \wedge \Box \varphi_n) \supset \Box \psi \rceil \in \mathbf{S0.5}^{\circ} \text{ iff } \lceil (\varphi_1 \wedge \cdots \wedge \varphi_n) \supset \psi \rceil \in \mathbf{PL}$$

$$\text{iff } \lceil (\Box \varphi_1 \wedge \cdots \wedge \Box \varphi_n) \supset \Box \psi \rceil \in \mathbf{S0.5}^{\circ} [\mathbf{D}] .$$

Proof: Firstly, $R_{PL} \subseteq S0.5^{\circ} \subseteq S0.5^{\circ}[D]$.

Let $\lceil (\varphi_1 \wedge \cdots \wedge \varphi_n) \supset \psi \rceil \notin \mathbf{PL}, w \neq a$. Then, by Lemma 1.1, for some $V_a \in \mathsf{Val}^{\mathsf{cl}}$ we have that $V_a(\varphi_1) = \cdots = V_a(\varphi_n) = 1$ and $V_a(\psi) = 0$. By Lemma 3.2(1), for any assignment $v_w \colon \mathsf{At} \to \{0,1\}$ and V_a there is a nonempty t-normal model $\langle w, \{a\}, V \rangle$, for which $V(\Box \varphi_1, w) = V(\Box \varphi_n, w) = 1$ and $V(\Box \psi, w) = 0$. Hence $\lceil (\Box \varphi_1 \wedge \cdots \wedge \Box \varphi_n) \supset \Box \psi \rceil \notin \mathsf{S0.5}^{\circ}[\mathsf{D}]$, by Theorem 3.4(2).³

³Notice that, by Theorem 3.4(3), ' $\Box\Box p\supset\Box p$ ' \in **S0.5**°[T_q] \subseteq **S0.5**.

3.2. Models for C1, D1, C1[Tq] and E1

In the case of very weak t-regular systems we broaden the class of t-normal models by the class of *queer* models of the form $\langle w, V \rangle$ with only one (queer) world w and a valuation $V \colon \text{For} \times \{w\} \to \{0,1\}$ which satisfies classical conditions for truth-value operators, i.e. $V(\cdot, w) \in \mathsf{Val}^{\mathsf{cl}}$, and

(ii') for any $\varphi \in \text{For}$, $V(\Box \varphi, w) = 0$.

LEMMA 3.10. Let $\langle w, v_w \rangle$ be a structure, where v_w is an assignment from At to $\{0,1\}$. Then there is the unique function $V : \text{For} \times \{w\} \to \{0,1\}$ such that:

- $\forall_{\alpha \in At}$: $V(\alpha, w) = v_w(\alpha)$,
- V satisfies conditions (i) and (ii') from definition of queer models.

Thus, $\langle w, V \rangle$ is queer model.

Let qM be the class of all queer models and we put $rM := nM \cup qM$, i.e. rM is the class of models for very weak t-regular systems.

A formula φ is true in a queer model $\langle w, V \rangle$ iff $V(\varphi, w) = 1$. We say that a formula is t-regular valid iff it is true in all models from **rM**. Notice that all formulae from the sets **PL**, M_{PL} R_{PL} and E_{PL} are t-regular valid.

In [3] we proved the following determination theorems for the logics C1, D1, C1[T_{α}] and E1:

THEOREM 3.11 ([3]). 1. C1 is determined by the class rM.

- 2. **D1** is determined by the class $nM^+ \cup qM$.
- 3. $C1[T_{\alpha}]$ is determined by the class $nM^{sa} \cup nM^{\emptyset} \cup qM$.
- 4. E1 is determined by the class $nM^{sa} \cup qM$.

We will now give a semantical proof of facts (2.1)–(2.3), about which we wrote in the first part [4]:

Fact 3.12. $C1 = C2 \cap S0.5^{\circ}$, $C1 \subseteq C2 \cap S0.5 \nsubseteq S0.5^{\circ}$ and $E1 = E2 \cap S0.5$.

PROOF: For " \subseteq ": See the first part [4].

For "C2 \cap S0.5° \subseteq C1" (resp. "E2 \cap S0.5 \subseteq E1"): Let $\varphi \in$ C2 \cap S0.5° (resp. $\varphi \in$ E2 \cap S0.5) and $\mathscr{M} \in$ rM (resp. $\mathscr{M} \in$ nM^{sa} \cup qM). If $\mathscr{M} \in$ nM (resp. $\mathscr{M} \in$ nM^{sa}), then since $\varphi \in$ S0.5° (resp. $\varphi \in$ S0.5), φ is true in

 \mathcal{M} , by Theorem 3.4. If $\mathcal{M} = \langle w, V \rangle \in \mathbf{qM}$, then we can identify it with the following relational model $\langle \{w_0\}, \emptyset, \emptyset, V_0 \rangle$ used for (strictly) regular logics.⁴ Since $\varphi \in \mathbf{C2}$, so from soundness of $\mathbf{C2}$ with Kripke relational model semantics we obtain that $V(\varphi, w) = 1$. Hence φ is also true in \mathcal{M} . Them, by Theorem 3.11, we obtain that $\varphi \in \mathbf{C1}$ (resp. $\varphi \in \mathbf{E1}$).

For "C1 \subseteq C2 \cap S0.5 \nsubseteq S0.5°": Since ' $\Box r \supset \Box(K)$ ' \in C2', so '(T) \vee ($\Box r \supset \Box(K)$)' belongs to C2 \cap S0.5. But the latest formula does belong to S0.5° (and so it does not belong to C1). Indeed, for $w \neq a$, let v_w and v_a be assignments such that $v_w(p) = 0$, $v_a(p) = v_a(r) = 1 = v_a(\Box p) = v_a(\Box(p) \supset q)$ and $v_a(\Box q) = 0$. $V \colon \text{For} \times \{w, a\} \to \{0, 1\}$ be the unique extension of v_w and v_a , as in Lemma 3.2(2). Then $\langle w, \{a\}, V \rangle$ is a t-normal model such that $V(\Box p, w) = 1$. So we have that $V((T), w) = 0 = V(\Box(K), w)$ and $V(\Box r, w) = 1$.

3.3. Models for weak t-normal systems with additional axioms of the form $\Box \varphi \Box$

While considering very week t-normal systems with an additional axiom of the form $\sqcap \varphi \urcorner$, where $\varphi \in \mathbf{S0.5}$, we will take into account such t-normal models $\mathscr{M} = \langle w, A, V \rangle$ which satisfy the following additional condition: (iii $_{\varphi}$) for all $x \in A \setminus \{w\}$ and uniform substitution $s, V(s(\varphi), x) = 1$.

A model of this kind will be called a t-normal model for $\Box \varphi$.

Let $\Phi \subseteq \mathbf{S0.5}$. If for every $\varphi \in \Phi$, \mathscr{M} is a t-normal model for $\Box \varphi$, then we say that \mathscr{M} is a t-normal model for $\Box \Phi$. Thus such models satisfy the following additional condition:

(iii) for any $x \in A \setminus \{w\}$ and any ψ which is an instance of some formula from Φ , $V(\psi, x) = 1$.

REMARK 3.2. For any $\Phi \subseteq \mathbf{S0.5}$ we put $\Phi^* := \{ \psi : \psi \text{ is an instance of some formula from } \Phi \}$. Of course, $\Phi^* \subseteq \mathbf{S0.5}$. The logic $\mathbf{S0.5}$ is consistent, so $\mathbf{S0.5}$ is \mathbf{PL} -consistent; i.e. $\mathbf{S0.5} \not\models_{\mathbf{PL}} p \land \neg p$. Therefore, Φ^* is also \mathbf{PL} -consistent, i.e. $\Phi^* \not\models_{\mathbf{PL}} p \land \neg p$. Hence there is a valuation $V \in \mathsf{Val}^\mathsf{cl}$ such that $V(\Phi^*) = \{1\}$.

⁴For (strictly) regular logics we use Kripke models of the form $\langle W, N, R, V \rangle$, where W is a non-empty set of possible worlds, N is a subset of W (is a set of normal worlds), $R \subseteq W \times W$ and $V \colon \text{For} \times W \to \{0,1\}$ such that for any $x \in W \colon V(\cdot,x) \in \mathsf{Val}^\mathsf{cl}$ and for any $\varphi \in \mathsf{For}$, $V(\Box \varphi, x) = 1$ iff both $x \in N$ and $\forall_{y \in R(x)} V(\varphi, x) = 1$. If $N = \emptyset$, then $V(\Box \varphi, w) = 0$, for any $\varphi \in \mathsf{For}$.

Let $\mathbf{nM}[\Box \Phi]$ be the class of all t-normal models for $\Box \Phi$. Moreover, let $\mathbf{nM}^{\mathsf{sa}}[\Box \Phi]$ (resp. $\mathbf{nM}^{\emptyset}[\Box \Phi]$, $\mathbf{nM}^{+}[\Box \Phi]$) be the class of t-normal models which are self-associate (resp. empty, non-empty) for $\Box \Phi$. Of course, $\mathbf{nM}^{\mathsf{sa}}[\Box \Phi] \subsetneq \mathbf{nM}^{+}[\Box \Phi]$ and $\mathbf{nM}^{\emptyset}[\Box \Phi] \cap \mathbf{nM}^{+}[\Box \Phi] = \emptyset$.

Fact 3.13. For any $\Phi \subseteq \mathbf{S0.5}$:

- 1. S0.5°[$\Box \Phi$] is sound with respect to the class $\mathsf{nM}[\Box \Phi]$.
- 2. **S0.5°**[D, $\Box \Phi$] is sound with respect to the class $\mathbf{nM}^+[\Box \Phi]$.
- 3. $\mathbf{S0.5}^{\circ}[T_{\mathsf{q}}, \Box \Phi]$ is sound with respect to the class $\mathsf{nM}^{\emptyset}[\Box \Phi] \cup \mathsf{nM}^{\mathsf{sa}}[\Box \Phi]$.
- 4. **S0.5**[$\Box \Phi$] is sound with respect to the class of $\mathsf{nM}^{\mathsf{sa}}[\Box \Phi]$.

PROOF: 1. Let $\mathscr{M} = \langle w, A, V \rangle$ be any t-normal model for $\Box \Phi$. All members of the sets \mathbf{PL} , $\Box \mathbf{PL}$ and $\mathrm{sub}(\mathtt{K})$ are true in \mathscr{M} . Moreover, suppose that $\varphi \in \mathrm{sub}(\Phi)$. Then for any x from $A \setminus \{w\}$ we have that $V(\varphi, x) = 1$, by the condition (iii). Now we consider two cases.

- (a) $w \notin A$: Then $V(\Box \varphi, w) = 1$, by the conditions (ii) and (iii).
- (b) $w \in A$: Since $\varphi \in \mathbf{S0.5}$, so $V(\varphi, w) = 1$, by Theorem 3.4(4). Thus, $V(\Box \varphi, w) = 1$, by the conditions (ii) and (iii).
- 2. Let $\mathcal{M} = \langle w, A, V \rangle$ be any non-empty t-normal model for $\Box \Phi$. All instances of (D) are true in \mathcal{M} . The rest as in 1.
- 3. Let $\mathscr{M} = \langle w, A, V \rangle$ be any self-associate t-normal model for $\Box \Phi$. All instances of (T_q) are true in \mathscr{M} . The rest as in the case (b) of 1.
- Let $\mathscr{M} = \langle w, \emptyset, V \rangle$ be any empty t-normal model for $\Box \Phi$. All instances of $(\mathsf{T}_{\mathsf{q}})$ and all formulae of the form $\Box \psi \neg$ are true in \mathscr{M} .
- 4. Let $\mathscr{M} = \langle w, A, V \rangle$ be any self-associate t-normal model for $\Box \Phi$. All instances of (T) are true in \mathscr{M} . The rest as in the case (b) of 1.

4. Simplified Kripke-style semantics for weak t-normal rte-systems

4.1. Models for very weak t-normal rte-systems

For very weak t-normal systems which are closed under (rte) in [3] we use t-normal rte-models which are t-normal models $\langle w, A, V \rangle$ satisfing the following condition:

(iv) $\forall_{\varphi,\psi,\chi\in\text{For}}$: if $\ulcorner\varphi\equiv\psi\urcorner\in\mathbf{PL}$, then $V(\chi,w)=V(\chi[\varphi/\psi],w)$.

Theorem 4.1 gives other equivalent ways of expressing the condition (iv). The most interesting of them is the one that follows:

(iv')
$$\forall_{\varphi,\psi,\chi\in\text{For}}$$
: if $\ulcorner\varphi\equiv\psi\urcorner\in\mathbf{PL}$, then $\forall_{x\in A\setminus\{w\}}$: $V(\Box\chi,x)=V(\Box\chi[^{\varphi}/_{\psi}],x)$.

Thus, the conditions (i) and (iv) in definition of t-normal rte-models say that for any such model $\langle w, A, V \rangle$, the function $V(\cdot, w)$ belongs to $\mathsf{Val}^\mathsf{cl}_\mathsf{rte}$.

THEOREM 4.1. Suppose that $\lceil \varphi \equiv \psi \rceil \in \mathbf{PL}$. Then for any t-normal model $\langle w, A, V \rangle$ the following conditions are equivalent:

- (a) $\forall_{\chi \in \text{For}}$: $V(\chi, w) = V(\chi[\varphi/\psi], w)$,
- (b) $\forall_{\chi \in \text{For}}$: $V(\Box \chi, w) = V(\Box \chi[\varphi/\psi], w)$,
- $\text{(c)} \ \forall_{\chi \in \text{For}} \colon \forall_{x \in A} \ V(\chi, x) = 1 \ \textit{iff} \ \forall_{x \in A} \ V(\chi[\varphi], x) = 1,$
- (d) $\forall_{\chi \in \text{For}} \forall_{x \in A} : V(\chi, x) = V(\chi[\varphi/\psi], x),$
- (e) $\forall_{\chi \in \text{For}} \forall_{x \in A}$: $V(\Box \chi, x) = V(\Box \chi[\varphi/\psi], x)$,
- (f) $\forall_{\chi \in \text{For}} \forall_{x \in A \setminus \{w\}} : V(\chi, x) = V(\chi[\varphi/\psi], x),$
- (g) $\forall_{\chi \in \text{For}} \forall_{x \in A \setminus \{w\}} : V(\Box \chi, x) = V(\Box \chi[\varphi/\psi], x).$

PROOF: Let $\langle w,A,V\rangle$ be a t-normal model and suppose (throughout the proof) that $\lceil \varphi \equiv \psi \rceil \in \mathbf{PL}$.

"(a) \Rightarrow (b)", "(d) \Rightarrow (c)", "(d) \Rightarrow (e)", "(d) \Rightarrow (f)" and "(f) \Rightarrow (g)": Obvious.

"(b) \Leftrightarrow (c)" By the condition (V_w^{\square}) .

"(b) \Rightarrow (d)" Since $V(\Box(\chi \equiv \chi), w) = 1$, so $V(\Box(\chi \equiv \chi[\varphi/\psi]), w) = 1$, by (b). Hence for any $x \in A$: $V(\chi, x) = V(\chi[\varphi/\psi], x)$, by (V_w^{\Box}) .

"(b) \Rightarrow (a)" As the proof of the part " \Leftarrow " of Lemma 1.21(1), for the valuations $V := V(\cdot, w)$ and $v := V(\cdot, w)|_{PAt}$; so (a) is (\star) and (b) is (\star_{PAt}) .

"(e) \Rightarrow (d)" and "(g) \Rightarrow (f)": Similarly as in "(b) \Rightarrow (a)". The difference is in taking a world x from A (resp. from $A \setminus \{w\}$) instead of w.

"(f) \Rightarrow (b)" We consider two cases.

Firstly, $w \notin A$: By (f) we obtain (c); so we have also (b).

Secondly, $w \in A$: We show that $V(\chi, w) = V(\chi[\varphi/\psi], w)$, i.e. we prove (a), hence we also obtain (b).

First we consider the possibility that $\chi = \varphi$, as for "(b) \Rightarrow (a)", i.e. as in the proof of the part " \Leftarrow " of Lemma 1.21(1). Thus, we may assume henceforth that $\chi \neq \varphi$. The proof proceeds now by induction on the complexity of χ . We give it for the cases in which χ is (*) atomic; (**) $\neg \chi_1 \neg$ or $\neg \chi_1 \circ \chi_2 \neg$, for $\circ = \lor, \land, \supset, \equiv$; and (***) a necessitation, $\neg \Box \chi_1 \neg$.

For (*) and (**): As for "(b) \Rightarrow (a)", i.e. as in the proof of the part " \Leftarrow " of Lemma 1.21(1).

For (***): We make the inductive hypothesis that the result holds for all sentences shorter than χ . So $V(\chi_1,w)=V(\chi_1[^{\varphi}/_{\psi}],w)$. Moreover, by the assumption (f) we have that $V(\chi_1,x)=V(\chi_1[^{\varphi}/_{\psi}],x)$, for any $x\in A\setminus\{w\}$. Thus, by (V_w^{\square}) , we obtain that $V(\square\chi_1,w)=V(\square\chi_1[^{\varphi}/_{\psi}],w)$, which ends the inductive proof.

The lemma below — analogous to Lemma 3.2 — shows that the notion of a *t-normal rte-model* could be defined in different albeit equivalent way.

LEMMA 4.2. 1. Let $\langle w, A, v_w, \{V_x\}_{x \in A \setminus \{w\}} \rangle$ be a structure in which w and A are such as in t-normal models, $v_w \colon \mathrm{At} \to \{0,1\}$, and for any x in $A \setminus \{w\}$, $V_x \in \mathsf{Val}^\mathsf{cl}_\mathsf{rte}$. Then there is the unique $V \colon \mathrm{For} \times (\{w\} \cup A) \to \{0,1\}$ such that:

- $\forall_{\alpha \in At}$: $V(\alpha, w) = v_w(\alpha)$ and $\forall_{\varphi \in For} \forall_{x \in A \setminus \{w\}}$: $V(\varphi, x) = V_x(\varphi)$,
- \bullet V satisfies conditions (i), (ii) and (iv) from definition of t-normal rte-models.

Thus, $\langle w, A, V \rangle$ is a t-normal rte-model. Moreover, if $w \in A$, then this model is self- associate.

2. Let $\langle w, A, v_w, \{v_x\}_{x \in A \setminus \{w\}} \rangle$ be a structure in which w and A are such as in t-normal models, v_w is an assignment from At to $\{0,1\}$, and for any $x \in A \setminus \{w\}$, v_x is an assignment from PAt to $\{0,1\}$ such that:

(iv_{PAt}) $\forall_{\chi,\varphi,\psi\in\text{For}}$: if $\ulcorner\varphi\equiv\psi\urcorner\in\text{PL}$, then $v_x(\Box\chi)=v_x(\Box\chi[\varphi/\psi])$.

Then there is the unique function $V : \text{For} \times (\{w\} \cup A) \to \{0,1\}$ such that:

- $\forall_{\alpha \in At} \ V(\alpha, w) = v_w(\alpha) \ and \ \forall_{\varphi \in PAt} \forall_{x \in A \setminus \{w\}} : \ V(\varphi, x) = v_x(\varphi),$
- V satisfies conditions (i), (ii) and (iv) from definition of t-normal rte-models.

Thus, $\langle w, A, V \rangle$ is a t-normal rte-model. Moreover, if $w \in A$, then this model is self-associate.

PROOF: 1. By Theorem 4.1.

2. By Lemma 1.21(1), for every $x \in A \setminus \{w\}$ there is the unique extension V_x : For $\to \{0,1\}$ of v_x by classical truth conditions for truth-value operators (i.e. e.g. $V_x \in \mathsf{Val}^{\mathsf{cl}}_{\mathsf{rte}}$ and $\forall_{\chi \in \mathsf{For}} \colon V_x(\Box \chi) = v_x(\Box \chi)$). The rest as in 1.

REMARK 4.1. In the light of the above results the structures of the form $\langle w, A, v_w, \{v_x\}_{x \in A \setminus \{w\}} \rangle$ which satisfy the conditions from Lemma 4.2 can serve as t-normal rte-models. In a similar way, we assume that in such a model a formula φ is true iff $V(\varphi, w) = 1$.

Let nM_{rte} be the class of all t-normal rte-models. Moreover, let nM_{rte}^{sa} (resp. nM_{rte}^{g} , nM_{rte}^{+}) be the class of t-normal rte-models which are self-associate (resp. empty, non-empty).

We have the following facts.

FACT 4.3. 1. All members of PL_{rte} are true in all models from nM_{rte}∪qM. 2. All members of □PL_{rte} are true in all models from nM_{rte}.

PROOF: 1. For any $\tau \in \mathbf{PL}$, we have that $V(\tau, w) = 1$, for any model from $\mathbf{nM_{rte}} \cup \mathbf{qM}$. Thus we use the conditions (iv), (ii') and induction.

2. For any $\tau \in \mathbf{PL}$, we have that $V(\Box \tau, w) = 1$, for any model from $\mathsf{nM}_{\mathsf{rte}}$. Therefore it is enough to use the condition (iv).

In [3] we proved the following determination theorems for the logics $S0.5^{\circ}_{rte}$, $S0.5^{\circ}_{rte}[D]$, $S0.5^{\circ}_{rte}[T_q]$ and $S0.5_{rte}$:

THEOREM 4.4 ([3]). 1. S0.5°_{rte} is determined by the class nM_{rte}.

- 2. S0.5°_{rte}[D] is determined by the class nM_{rte}^+ .
- 3. $S0.5^{\circ}_{rte}[T_q]$ is determined by the class $nM^{sa}_{rte} \cup nM^{\emptyset}_{rte}$.
- 4. S0.5_{rte} is determined by the class nM_{rte}.

For logic $S0.5^{\circ}_{rte}$ and $S0.5_{rte}$ there holds a fact which is analogous to Fact 3.8 for logics $S0.5^{\circ}$ and S0.5.

FACT 4.5. For any $\varphi \in \text{For}$:

So $S0.5^{\circ}_{rte}$ and $S0.5_{rte}$ are closed under (RN_{*}) and (SMP).

PROOF: Firstly, by Corollary 1.19, $\Box PL_{\text{rte}} \subseteq S0.5^{\circ}_{\text{rte}} \subseteq S0.5_{\text{rte}}$.

Secondly, let $\varphi \notin \mathbf{PL}_{\text{rte}}$, $w \neq a$, $A := \{w, a\}$. Then, by Lemma 1.21, for some $V_a \in \mathsf{Val}^{\mathsf{cl}}_{\mathsf{rte}}$ we have that $V_a(\varphi) = 0$. As in Lemma 4.2(1), for any assignment $v_w \colon \mathsf{At} \to \{0,1\}$ and V_a , we construct a self-associate t-normal

rte-model $\langle w, \{w, a\}, V \rangle$ such that $V(\Box \varphi, w) = 0$. Hence $\Box \varphi \not \in \mathbf{S0.5_{rte}}$, by Theorem 4.4(4).

4.2. Models for weak t-normal rte-systems with additional axioms of the form $\Box \varphi$

While considering week t-normal rte-systems with an additional axiom of the form $\Box \varphi$, where $\varphi \in \mathbf{S0.5}$, we will take t-normal rte-models for $\Box \varphi$, that is these that satisfy (iii $_{\varphi}$). More generally, for systems with additional axioms from a set $\Box \Phi$, where $\Phi \subseteq \mathbf{S0.5}$, we will use t-normal rte-models for $\Box \Phi$, that is such that satisfy (iii).

Let $\mathsf{nM}_{\mathsf{rte}}[\Box \Phi]$ be the class of all t-normal rte-models for $\Box \Phi$. Moreover, let $\mathsf{nM}_{\mathsf{rte}}^{\mathsf{sa}}[\Box \Phi]$ (resp. $\mathsf{nM}_{\mathsf{rte}}^{\emptyset}[\Box \Phi]$, $\mathsf{nM}_{\mathsf{rte}}^{\mathsf{+}}[\Box \Phi]$) be the class of t-normal rte-models which are self-associate (resp. empty, non-empty) for $\Box \Phi$.

Similarly to Fact 3.13 we prove the following:

Fact 4.6. For any $\Phi \subseteq \mathbf{S0.5}$:

- 1. $\mathbf{S0.5_{rte}^{\circ}}[\Box \Phi]$ is sound with respect to the class $\mathbf{nM_{rte}}[\Box \Phi]$.
- 2. $\mathbf{S0.5_{rte}^{\circ}}[D, \Box \Phi]$ is sound with respect to the class $\mathbf{nM_{rte}^{+}}[\Box \Phi]$.
- 3. $\mathbf{S0.5^{\circ}_{rte}}[T_q, \Box \Phi]$ is sound with respect to the class $\mathsf{nM^{\emptyset}_{rte}}[\Box \Phi] \cup \mathsf{nM^{sa}_{rte}}[\Box \Phi]$.
- 4. $\mathbf{S0.5_{rte}}[\Box \Phi]$ is sound with respect to the class $\mathsf{nM_{rte}^{sa}}[\Box \Phi]$.

5. Completeness and determination theorems

For completeness of considered weak t-normal and t-normal rte-logics we use the method of canonical models.

5.1. Notions and facts concerning maximal consistent sets

Let Σ be any modal system and $\Gamma \subseteq \text{For. A set } \Gamma$ is Σ -consistent iff for some $\varphi \in \text{For, } \Gamma \nvdash_{\Sigma} \varphi$; equivalently in the light of **PL**, iff $\Gamma \nvdash_{\Sigma} p \wedge \neg p$. We have (see e.g. [1]):

- $\bullet\,$ If \varGamma is $\boldsymbol{\varSigma}\text{-consistent},$ then $\boldsymbol{\varSigma}$ is consistent.
- Σ is consistent iff Σ is Σ -consistent.
- If Γ is Σ -consistent and Σ' is a modal system such that $\Sigma' \subseteq \Sigma$, then Γ is Σ' -consistent; so, Γ is **PL**-consistent.

We say that Γ is Σ -maximal iff Γ is Σ -consistent and Γ has only Σ -inconsistent proper extensions. Let $\operatorname{Max}_{\Sigma}$ be the set of all Σ -maximal sets.

Lemma 5.1 ([1]). Let $\Gamma \in \text{Max}_{\Sigma}$. Then

- 1. $\Sigma \subseteq \Gamma$ and Γ is a modal system.
- 2. $\Gamma \vdash_{\Sigma} \varphi \text{ iff } \varphi \in \Gamma$.
- 3. $\neg \varphi \neg \in \Gamma \text{ iff } \varphi \notin \Gamma.$
- 4. $\lceil \varphi \wedge \psi \rceil \in \Gamma$ iff both $\varphi \in \Gamma$ and $\psi \in \Gamma$.
- 5. $\lceil \varphi \lor \psi \rceil \in \Gamma$ iff either $\varphi \in \Gamma$ or $\psi \in \Gamma$.
- 6. $\lceil \varphi \supset \psi \rceil \in \Gamma$ iff either $\varphi \notin \Gamma$ or $\psi \in \Gamma$.
- 7. $\lceil \varphi \equiv \psi \rceil \in \Gamma$ iff either $\varphi, \psi \in \Gamma$ or $\varphi, \psi \notin \Gamma$.

Lemma 5.2. If $\Gamma \in \text{Max}_{\Sigma}$, then $\Gamma \in \text{Max}_{PL}$.

LEMMA 5.3 ([1]). 1. $\Gamma \vdash_{\Sigma} \varphi$ iff $\varphi \in \Delta$, for any Δ such that $\Delta \in \text{Max}_{\Sigma}$ and $\Gamma \subseteq \Delta$.

2. $\varphi \in \Sigma$ iff $\varphi \in \Delta$, for any $\Delta \in \text{Max}_{\Sigma}$.

We also need the following auxiliary lemma.

LEMMA 5.4 ([3]). Let Σ be a t-normal consistent system and $\Gamma \in \text{Max}_{\Sigma}$. Then for every $\varphi \in \text{For the following conditions are equivalent:}$

- (a) $\sqcap \varphi \neg \in \Gamma$.
- (b) $\Gamma \vdash_{\Sigma} \Box \varphi$.
- (c) $\{\psi : \lceil \Box \psi \rceil \in \Gamma\} \vdash_{\mathbf{PL}} \varphi$.
- (d) $\varphi \in \Delta$, for any **PL**-maximal set Δ such that $\{\psi : \lceil \Box \psi \rceil \in \Gamma\} \subseteq \Delta$.

5.2. Canonical models and completeness

Let Σ be a t-normal consistent system and $\Gamma \in \operatorname{Max}_{\Sigma}$. We say that $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is a canonical model for Σ and Γ iff it satisfies the following conditions:

- $w_{\Gamma} := \Gamma$,
- $A_{\Gamma} := \{ \Delta \in \text{Max}_{PL} : \forall_{\psi \in \text{For}} (\lceil \Box \psi \rceil \in \Gamma \Rightarrow \psi \in \Delta) \},$
- V_{Γ} : For $\times (\{w_{\Gamma}\} \cup A_{\Gamma}) \to \{0,1\}$ is a valuation such that for all $\varphi \in$ For and $\Delta \in \{w_{\Gamma}\} \cup A_{\Gamma}$

$$V_{\Gamma}(\varphi, \Delta) := \begin{cases} 1 & \text{if } \varphi \in \Delta \\ 0 & \text{otherwise} \end{cases}$$

Lemma 5.5. For any t-normal system Σ and $\Gamma \in \operatorname{Max}_{\Sigma}$ it holds that:

- 1. $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is a t-normal model.
- 2. For any set Φ , if $\Phi \subseteq \mathbf{S0.5}$ and $\mathrm{sub}(\Box \Phi) \subseteq \Sigma$, then $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is a t-normal model for $\Box \Phi$.
- 3. If $\operatorname{sub}(\mathtt{T}) \subseteq \Sigma$, then $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is self-associate.
- 4. If $sub(D) \subseteq \Sigma$, then $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is non-empty.
- 5. If $\operatorname{sub}(T_q) \subseteq \Sigma$, then $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is either empty or self-associate.
- 6. If Σ is an ree-system, then $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is a t-normal ree-model.

PROOF: Let $\Gamma \in \operatorname{Max}_{\Lambda[\Box \Phi]}$; hence Λ and $\Lambda[\Box \Phi]$ are consistent.

- 1. Thanks to properties of maximal sets (see Lemma 5.1), for every $\Delta \in \{w_{\Gamma}\} \cup A_{\Gamma}, V_{\Gamma}(\cdot, \Delta) \in \mathsf{Val}^{\mathsf{cl}}$. We prove that for w_{Γ} the assignment $V_{\Gamma}(\cdot, w_{\Gamma})$ satisfies the condition $(V_{w_{\Gamma}}^{\square})$ for any $\varphi \in \mathsf{For}$: $V_{\Gamma}(\square \varphi, w_{\Gamma}) = 1$ iff $\square \varphi^{\square} \in \Gamma$ (by definition of V_{Γ}) iff $\varphi \in \Delta$, for every $\Delta \in \mathsf{Max}_{\mathbf{PL}}$ such that $\{\psi \in \mathsf{For} : \square \psi^{\square} \in \Gamma\} \subseteq \Delta$ (by Lemma 5.4) iff $\varphi \in \Delta$, for every $\Delta \in A_{\Gamma}$ (by definition of V_{Γ}).
- 2. Let $\Phi^* := \text{sub}(\Phi)$. By definitions of A_{Γ} and V_{Γ} , for any world from $A_{\Gamma} \setminus \{w_{\Gamma}\}$, all formulae from Φ^* have the value 1, since $\Box \Phi^* \subseteq \Sigma \subseteq \Gamma$, by Lemma 5.1(1).
- 3. We show that $w_{\Gamma} \in A_{\Gamma}$. Firstly, by Lemma 5.2, $\Gamma \in \text{Max}_{PL}$. Secondly, by Lemma 5.1(1), for any $\psi \in \text{For}$, $\lceil \Box \psi \rceil \in \Gamma$. So, by Lemma 5.1(6), if $\lceil \Box \psi \rceil \in \Gamma$, then $\psi \in \Gamma$, i.e. $\Gamma \in A_{\Gamma}$.
- 4. By Lemma 5.1, $\lceil \lozenge \top \rceil \in \Gamma$, i.e., $\lceil \neg \Box \neg \top \rceil \in \Gamma$; so and $\lceil \Box \neg \top \rceil \notin \Gamma$. Therefore, by Lemma 5.4, $\lceil \neg \top \rceil \notin \Delta_0$, for some Δ_0 such that Δ_0 is **PL**-maximal and $\{\psi : \lceil \Box \psi \rceil \in \Gamma\} \subseteq \Delta_0$. Hence $\Delta_0 \in A_{\Gamma}$. Thus, $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle \in \mathsf{nM}^+$.
- 5. We show that $w_{\Gamma} \in A_{\Gamma}$ or $A_{\Gamma} = \emptyset$. Notice that, by Lemma 5.1, $\lceil \neg \Box (p \wedge \neg p) \supset (\Box \psi \supset \psi) \rceil \in \Gamma$, for any formula ψ . Suppose that $A_{\Gamma} \neq \emptyset$. Then ' $\Box (p \wedge \neg p)$ ' $\notin \Gamma$, by Lemma 5.4, since ' $p \wedge \neg p$ ' $\notin \Delta$, for any Δ which is **PL**-consistent. So, ' $\neg \Box (p \wedge \neg p)$ ' $\in \Gamma$. Therefore $\lceil \Box \psi \supset \psi \rceil \in \Gamma$. Hence $w_{\Gamma} \in A_{\Gamma}$, as in 3.

6. Since REP_{PL} $\subseteq \Sigma$, so if $\lceil \varphi \equiv \psi \rceil \in \mathbf{PL}$, then $\lceil \chi \equiv \chi \lceil \varphi/\psi \rceil \rceil \in \Sigma$. Hence $\lceil \chi \equiv \chi \lceil \varphi/\psi \rceil \rceil \in \Gamma$, by Lemma 5.1(1). Thus, by definitions of w_{Γ} and V_{Γ} , $V(\chi, w_{\Gamma}) = V(\chi \lceil \varphi/\psi \rceil, w_{\Gamma})$.

By lemmas 5.3 and 5.5 we obtain the completeness of considered logics.

Theorem 5.6. Let Λ be a t-normal consistent logic and $\Phi \subseteq \mathbf{S0.5}$. Then

- 1. $\Lambda[\Box \Phi]$ is complete with respect to the class $\mathsf{nM}[\Box \Phi]$.
- 2. If $(T) \in \Lambda$, then $\Lambda[\Box \Phi]$ is complete with respect to the class $\mathsf{nM}^{\mathsf{sa}}[\Box \Phi]$.
- 3. If $(D) \in \Lambda$, then $\Lambda[\Box \Phi]$ is complete with respect to the class $\mathsf{nM}^+[\Box \Phi]$.
- 4. If $(T_q) \in \Lambda$, then $\Lambda[\Box \Phi]$ is complete with respect to the class $\mathsf{nM}^{\emptyset}[\Box \Phi] \cup \mathsf{nM}^{\mathsf{sa}}[\Box \Phi]$.
- 5. If Λ is an rte-logic, then $\Lambda[\Box \Phi]$ is complete with respect to the class $\mathsf{nM}_{\mathsf{rte}}[\Box \Phi]$.

Proof: All considered logics are consistent.

- 1. Let φ be an arbitrary formula which is true in all t-normal models for $\Box \Phi$. Let Γ be an arbitrary $\Lambda[\Box \Phi]$ -maximal set. By Lemma 5.5(1)(2), $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is a t-normal model for $\Box \Phi$. So $V_{\Gamma}(\varphi, w_{\Gamma}) = 1$. Hence $\varphi \in \Gamma$, by definitions of w_{Γ} and V_{Γ} . So, we have shown that φ belongs to all $\Lambda[\Box \Phi]$ -maximal sets. Hence $\varphi \in \Lambda[\Box \Phi]$, by Lemma 5.3(2).
 - 2. By Lemma 5.5(3), $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is self-associate. The rest as in 1.
 - 3. By Lemma 5.5(4), $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is non-empty. The rest as in 1.
- 4. By Lemma 5.5(5), $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is self-associate or empty. The rest as in 1.
- 5. If Λ is an rte-logic, then $\Lambda[\Box \Phi]$ is also an rte-logic. By Lemma 5.5(6), $\langle w_{\Gamma}, A_{\Gamma}, V_{\Gamma} \rangle$ is a t-normal rte-model. The rest as in 1.

5.3. Determination theorems

By facts 3.13 and 4.6, and Theorem 5.6 we obtain:⁵

Theorem 5.7. For any $\Phi \subseteq \mathbf{S0.5}$:

- 1. $\mathbf{S0.5}^{\circ}[\Box \Phi]$ is determined by the class $\mathbf{nM}[\Box \Phi]$.
- 2. **S0.5°**[D, $\Box \Phi$] is determined by the class $\mathbf{nM}^+[\Box \Phi]$.
- 3. $\mathbf{S0.5}^{\circ}[\mathsf{T}_{\mathsf{q}}, \Box \Phi]$ is determined by the class $\mathsf{nM}^{\emptyset}[\Box \Phi] \cup \mathsf{nM}^{\mathsf{sa}}[\Box \Phi]$.

⁵Of course, if $\Phi \subseteq PL$ (so also if $\Phi = \emptyset$), then we obtain theorems 3.4 and 4.4.

- 4. $\mathbf{S0.5}[\Box \Phi]$ is determined by the class $\mathbf{nM^{sa}}[\Box \Phi]$.
- 5. $\mathbf{S0.5^{\circ}_{rte}}[\Box \Phi]$ is determined by the class $\mathbf{nM_{rte}}[\Box \Phi]$.
- 6. $\mathbf{S0.5^{\circ}_{rte}}[D, \Box \Phi]$ is determined by the class $\mathsf{nM^{+}_{rte}}[\Box \Phi]$.
- 7. $\mathbf{S0.5^{\circ}_{rte}}[\mathtt{T_q}, \Box \Phi]$ is determined by the class $\mathsf{nM^{\varnothing}_{rte}}[\Box \Phi] \cup \mathsf{nM^{sa}_{rte}}[\Box \Phi]$.
- 8. $\mathbf{S0.5_{rte}}[\Box \Phi]$ is determined by the class of $\mathbf{nM_{rte}^{sa}}[\Box \Phi]$.

6. Mutual dependencies among very weak t-normal logics. Very weak t-normal logics vs. S0.9°, S0.9, S1° and S1

Firstly notice that the following lemma holds.

LEMMA 6.1. Let a logic Λ be one from S0.9°, S0.9, S1°, S1. Then for all $\varphi, \psi \in \text{For}$, if $\lceil \Box \varphi \rceil$ and $\lceil \Box \psi \rceil \in \Lambda$, then $\lceil \Box (\Box \varphi \equiv \Box \psi) \rceil \in \Lambda$. Consequently, $\lceil \Box (\Box (K) \equiv \Box \top) \rceil \in \text{S0.9}^{\circ}$.

PROOF: Since $R_{PL} \subseteq \Lambda$, so $\lceil (\Box \varphi \wedge \Box \psi) \supset \Box (\varphi \equiv \psi) \rceil \in \Lambda$ and so $\lceil \Box (\varphi \equiv \psi) \rceil \in \Lambda$. Hence, by $(RRSE_T)$, $\lceil \Box (\Box \varphi \equiv \Box \psi) \rceil \in \Lambda$. Finally, $\Box (K)$, $\Box T \in S0.9^{\circ}$.

FACT 6.2. For any $\varphi \notin \mathbf{PL}_{\text{rte}}$ and $\psi \in \mathbf{PL}_{\text{rte}}$,

$$\lceil \Box (\Box \varphi \equiv \Box \psi) \rceil \notin \mathbf{S0.5_{rte}} [\Box \mathbf{S0.5}].$$

PROOF: Let $w \neq a$, $A := \{w, a\}$. Let $v_a : \operatorname{PAt} \to \{0, 1\}$ be any assignment such that for any $\chi \in \operatorname{For}: v_a(\Box \chi) = 1$ iff $\chi \in \operatorname{PL}_{\operatorname{rte}}$. The assignment v_a satisfies the condition $(\star_{\operatorname{PAt}})$ from Lemma 1.21. Indeed, for any $\chi, \chi_1, \chi_2 \in \operatorname{For}$ such that $\lceil \chi_1 \equiv \chi_2 \rceil \in \operatorname{PL}: v_a(\Box \chi) = 1$ iff $\chi \in \operatorname{PL}_{\operatorname{rte}}$ iff $\chi[\chi_1] \in \operatorname{PL}_{\operatorname{rte}}$ iff $v_a(\Box \chi[\chi_1] = 1$. Let $V_a : \operatorname{For} \to \{0, 1\}$ be the unique extension of v_a by classical truth conditions for truth- value operators. By Lemma 1.21(1), $V_a \in \operatorname{Val}^{\operatorname{cl}}_{\operatorname{rte}}$.

Notice that $V_a(\operatorname{sub}(\mathsf{T})) = \{1\} = V_a(\operatorname{sub}(\mathsf{K}))$. Indeed, if $V_a(\Box \chi) = 1$, then $\chi \in \mathbf{PL}_{\mathrm{rte}}$. So $V_a(\chi) = 1$, by Lemma 1.21(2). Moreover, if $V_a(\Box(\chi_1 \supset \chi_2)) = 1 = V_a(\Box \chi_1)$, then $\lceil \chi_1 \supset \chi_2 \rceil \in \mathbf{PL}_{\mathrm{rte}}$ and $\chi_1 \in \mathbf{PL}_{\mathrm{rte}}$. Hence, by Lemma 1.21(3), for any $V \in \mathsf{Val}^{\mathsf{cl}}_{\mathrm{rte}}$: $V(\chi_1 \supset \chi_2) = 1 = V(\chi_1)$, so also $V(\chi_2) = 1$. Hence $\chi_2 \in \mathbf{PL}_{\mathrm{rte}}$ and consequently, $V_a(\Box \chi_2) = 1$.

Thus, $V_a(\mathbf{S0.5}) = \{1\}$, since all theses of $\mathbf{S0.5}$ are derivable in \mathbf{PL} , $\Box \mathbf{PL}$, sub(K) and sub(T) by (MP), and for all formulae derivable in this way the function V_a has the value 1.

Now, as in Lemma 4.2(1), for any assignment $v_w : At \to \{0,1\}$ and V_a we construct a self-associate t-normal rte-model $\langle w, \{w, a\}, V \rangle$ for $\square \mathbf{S0.5}$. For any $\varphi \notin \mathbf{PL}_{\mathrm{rte}}$ and $\psi \in \mathbf{PL}_{\mathrm{rte}}$ we have that $V(\square(\square\varphi \equiv \square\psi), w) = 0$, since $V(\square\varphi \equiv \square\psi), a) = 0$. Thus, $\square(\square\varphi \equiv \square\psi) \not\in \mathbf{S0.5}_{\mathrm{rte}}[\square \mathbf{S0.5}]$, by Fact 4.6.

Finally notice that $(K) \notin \mathbf{PL}_{\mathrm{rte}}$ and $\top \in \mathbf{PL}_{\mathrm{rte}}$.

By the above facts, Fact 2.2 and Corollary 2.6 we obtain:

Corollary 6.3. 1. $\mathbf{S0.5^{\circ}_{rte}}[\square K] \subseteq \mathbf{S0.9^{\circ}}$.

- 2. $S0.5_{rte}[\Box T, \Box K] \subseteq S0.9$.
- 3. $S0.5^{\circ}_{rte}[\Box X] \subsetneq S1^{\circ}$.
- 4. $S0.5_{rte}[\Box T, \Box X] \subsetneq S1$.
- 5. If $\Phi \subseteq \mathbf{C2} \cap \mathbf{S0.5}$, then $\mathbf{S0.5_{rte}^{\circ}}[\Box \Phi] \subseteq \mathbf{S2}^{\circ}$.
- 6. If $\Phi \subseteq \mathbf{E1}$, then $\mathbf{S0.5_{rte}}[\Box \Phi] \subsetneq \mathbf{S2}$.

FACT 6.4. The formulae $\Box(\dagger)$ and (\dagger) from the first part do not belong to $\mathbf{S0.5}[\Box\mathbf{S0.5}]$. Consequently, $\mathbf{S0.5}[\Box\mathbf{S0.5}]$ is not an rte-system.

PROOF: Let $w \neq a$ and $A := \{w, a\}$.

First way:⁶ Since $(\dagger_a) \notin \mathbf{S0.5}$, so $\mathbf{S0.5} \not\models_{\mathbf{PL}} (\dagger_a)$. Hence there is $V_a \in \mathsf{Val}^{\mathsf{cl}}$ such that $V_a(\mathbf{S0.5}) = \{1\}$ and $V_a(\dagger_a) = 0$. So $V_a(\Box\Box p) = 1$, $V_a(\Box\Box\neg\neg p) = 0$ and $V_a(\mathrm{sub}(\mathsf{T})) = \{1\}$. Consequently, $V_a(\Box p) = 1 = V_a(p)$.

Now, as in Lemma 3.2(1), for V_a and any assignment $v_w \colon \operatorname{At} \to \{0,1\}$ such that $v_w(p) = 1$, we build a self-associate t-normal model $\langle w, \{w,a\}, V \rangle$ for $\Box \mathbf{S0.5}$. We have: $V(\Box\Box p, a) = 1$, $V(\Box\Box\neg\neg p, a) = 0$, $V(\Box p, w) = V(\Box\Box p, w) = V(\Box\Box\Box p, w) = 1$ and $V(\Box\Box\Box\neg\neg p, w) = 0$. So $V(\Box(\dagger_a), w) = 0$ and $V((\dagger_a), w) = 0$. Thus, by Fact 3.13(4), $\Box(\dagger_a)$ and (\dagger_a) do not belong to $\mathbf{S0.5}[\Box\mathbf{S0.5}]$. Similarly for $\Box(\dagger_b)$ and (\dagger_b) .

Second way: Let v_a : PAt $\to \{0,1\}$ be any assignment such that $v_a(p) = 1$ and for any $\varphi \in \text{For}$:

 $^{^6\}mathrm{We}$ will present two different ways in order to show different methods of construction of countermodels.

$$v_a(\Box \varphi) = \begin{cases} 1 & \text{if } \lceil p \supset \varphi \rceil \in \mathbf{PL} \\ 1 & \text{if } \varphi = '\Box p' \\ 0 & \text{otherwise} \end{cases}$$

Let V_a : For $\to \{0,1\}$ be the unique extension of v_a by classical truth conditions for truth-value operators. Evidently $V_a(\Box\Box\neg\neg p)=0$. Notice that $V_a(\operatorname{sub}(\mathsf{K}))=\{1\}$ and $V_a(\operatorname{sub}(\mathsf{T}))=\{1\}$. Indeed, suppose that $V_a(\Box(\varphi\supset\psi))=1$ and $V_a(\Box\varphi)=1$. Hence both $\neg p\supset (\varphi\supset\psi)\neg\in \mathbf{PL}$ and either $\neg p\supset \varphi \neg\in \mathbf{PL}$ or $\varphi=`\Box p$ '. So either $\neg p\supset \psi \neg\in \mathbf{PL}$ or $\psi=`\Box p$ '. Consequently, $V_a(\Box\psi)=1$. Moreover, if $V_a(\Box\varphi)=1$, then either $\neg p\supset \varphi \neg\in \mathbf{PL}$ or $\varphi=`\Box p$ '. So $V_a(\varphi)=1$, since $V\in \mathsf{Val}^\mathsf{Cl}$ and $V_a(p)=1=V_a(\Box p)$.

Thus, $V_a(\mathbf{S0.5}) = \{1\}$, since all theses of $\mathbf{S0.5}$ are derivable from $\Box \mathbf{PL}$, sub(K) and sub(T) by \mathbf{PL} and (MP).

Now, as in Lemma 3.2(1), for V_a and any assignment $v_w \colon \operatorname{At} \to \{0,1\}$ such that $v_w(p) = 1$, we build a self-associate t-normal model $\langle w, \{w,a\}, V \rangle$ for $\Box \mathbf{S0.5}$. We have: $V(\Box\Box p, a) = 1$, $V(\Box\Box\neg\neg p, a) = 0$, $V(\Box\Box p, w) = V(\Box\Box\Box p, w) = 1$, $V(\Box\Box\Box\neg\neg p, w) = 0$. So $V(\Box(\dagger_a), w) = 0$ and $V((\ddagger_a), w) = 0$. Thus, by Fact 3.13(4), $\Box(\dagger_a)$ and (\ddagger_a) do not belong to $\mathbf{S0.5}[\Box \mathbf{S0.5}]$. Similarly for $\Box(\dagger_b)$ and (\ddagger_b) .

Fact 6.5. $\square(X) \notin \mathbf{S0.5_{rte}}[\square T, \square K]$.

PROOF: Since $\square(X) \notin S0.9$ and $S0.5_{rte}[\square T, \square K] \subseteq S0.9$.

Fact 6.6. $\square(\mathtt{K}) \notin \mathbf{S0.5_{rte}}[\square\mathtt{T}].^7$

PROOF: Let $w \neq a$, $A := \{w, a\}$. Let $v_a : \text{PAt} \to \{0, 1\}$ be any assignment such that $v_a(p) = 1 = v_a(q)$ and for any $\chi \in \text{For}$: $\varphi \in \text{For}$:

$$v_a(\Box \chi) = \begin{cases} 1 & \text{if } \ulcorner \chi \equiv p \urcorner \in \mathbf{PL} \\ 1 & \text{if } \ulcorner \chi \equiv (p \supset q) \urcorner \in \mathbf{PL} \\ 0 & \text{otherwise} \end{cases}$$

The assignment v_a satisfies the condition (\star_{PAt}) from Lemma 1.21. Indeed, for any $\chi, \chi_1, \chi_2 \in For$ such that $\lceil \chi_1 \equiv \chi_2 \rceil \in PL$: $v_a(\square \chi) = 1$ iff either

⁷Notice that, by Fact 4.5, $\square(\texttt{K}) \notin \textbf{S0.5}_{\textbf{rte}}$.

 $\lceil p \equiv \chi \rceil \in \mathbf{PL}$ or $\lceil (p \supset q) \equiv \chi \rceil \in \mathbf{PL}$ iff either $\lceil p \equiv \chi[\chi_1/\chi_2] \rceil \in \mathbf{PL}$ or $\lceil (p \supset q) \equiv \chi[\chi_1/\chi_2] \rceil \in \mathbf{PL}$ iff $v_a(\square \chi[\chi_1/\chi_2]) = 1$. Let V_a : For $\to \{0,1\}$ be the unique extension of v_a by classical truth conditions for truth-value operators. By Lemma 1.21(1), $V_a \in \mathsf{Val}^{\mathsf{cl}}_{\mathsf{rte}}$.

Notice that $V_a(\operatorname{sub}(\mathsf{T})) = \{1\}$. Indeed, if $V_a(\Box \chi) = 1$, then either $\neg p \equiv \chi \neg \in \mathbf{PL}$ or $\neg (p \supset q) \equiv \chi \neg \in \mathbf{PL}$. So $V_a(\chi) = 1$, by Lemma 1.21(2).

Since $V_a(\Box(p \supset q)) = 1 = V_a(\Box p)$ and $V_a(\Box q) = 0$, so $V_a(K) = 0$.

Now, as in Lemma 4.2(1), for any assignment $v_w : At \to \{0,1\}$ and V_a , we construct a self-associate t-normal rte-model $\langle w, \{w, a\}, V \rangle$ for $\{\Box(\mathtt{T})\}$, since $V(\operatorname{sub}(\mathtt{T}), w) = \{1\}$. Since $V(\Box(\mathtt{K}), w) = 0$, so $\Box(\mathtt{K}) \notin \mathbf{S0.5_{rte}}[\Box\mathtt{T}]$, by Theorem 5.7(8).

Fact 6.7. $\Box(\mathtt{T}) \notin \mathbf{S0.5_{rte}}[\Box \mathtt{X}]$.

PROOF: Let $w \neq a$, $A := \{w, a\}$. Let $v_a : \mathrm{PAt} \to \{0, 1\}$ be any assignment such that $v_a(0)$ and for any $\chi \in \mathrm{For}$: $\varphi \in \mathrm{For}$:

$$v_a(\Box \chi) = \begin{cases} 1 & \text{if } \lceil \chi \equiv p \rceil \in \mathbf{PL} \\ 0 & \text{otherwise} \end{cases}$$

The assignment v_a satisfies the condition (\star_{PAt}) from Lemma 1.21. Indeed, for any $\chi, \chi_1, \chi_2 \in For$ such that $\lceil \chi_1 \equiv \chi_2 \rceil \in \mathbf{PL}$: $v_a(\square \chi) = 1$ iff $\lceil p \equiv \chi \rceil \in \mathbf{PL}$ iff $\lceil p \equiv \chi \rceil \in \mathbf{PL}$ iff $v_a(\square \chi \rceil \times [\chi_1]) = 1$. Let $V_a \colon For \to \{0, 1\}$ be the unique extension of v_a by classical truth conditions for truth-value operators. By Lemma 1.21(1), $V_a \in \mathsf{Val}^{\mathsf{cl}}_{\mathsf{rte}}$.

Notice that $V_a(\operatorname{sub}(\mathbf{X})) = \{1\}$. Indeed, suppose that $V_a(\Box(\varphi_1 \supset \varphi_2)) = 1 = V_a(\Box(\varphi_2 \supset \varphi_3))$. Then (i) $\lceil p \equiv (\varphi_1 \supset \varphi_2) \rceil \in \mathbf{PL}$ and (ii) $\lceil p \equiv (\varphi_2 \supset \varphi_3) \rceil \in \mathbf{PL}$. From (i): either both $\lceil \varphi_1 \equiv \neg p \rceil \in \mathbf{PL}$ and $\lceil \varphi_2 \equiv p \rceil \in \mathbf{PL}$, or both $\varphi_1 \in \mathbf{PL}$ and $\lceil \varphi_2 \equiv p \rceil \in \mathbf{PL}$, or both $\lceil \varphi_1 \equiv \neg p \rceil \in \mathbf{PL}$ and $\lceil \neg \varphi_2 \rceil \in \mathbf{PL}$. From (ii): either both $\lceil \varphi_2 \equiv \neg p \rceil \in \mathbf{PL}$ and $\lceil \varphi_3 \equiv p \rceil \in \mathbf{PL}$, or both $\varphi_2 \in \mathbf{PL}$ and $\lceil \varphi_3 \equiv p \rceil \in \mathbf{PL}$, or both $\lceil \varphi_2 \equiv \neg p \rceil \in \mathbf{PL}$ and $\lceil \neg \varphi_3 \rceil \in \mathbf{PL}$. Contradiction.

Moreover, $V_a(T) = 0$, since $V_a(\Box p)$ and $V_a(p) = 0$.

Now, as in Lemma 4.2(1), for any assignment $v_w \colon At \to \{0,1\}$ and V_a , we build a self-associate t-normal rte-model $\langle w, \{w,a\}, V \rangle$ for $\{\Box(X)\}$, since $V(\operatorname{sub}(X), w) = \{1\}$. Since $V(\Box(T), w) = 0$, so $\Box(T) \notin \mathbf{S0.5_{rte}}[\Box T]$, by Theorem 5.7(8).

Fact 6.8. $\square(K) \notin \mathbf{S0.5}[\square T, \square X, \square R]$.

PROOF: Let $w \neq a$ and $A := \{w, a\}$. Let $v_a : \text{PAt} \to \{0, 1\}$ such that $v_a(p) = 1 = v_a(q)$ and for any $\varphi \in \text{For: } v_a(\Box \varphi) = 1$ iff either $\varphi = p'$, or $\varphi = p' \land p'$.

Let V_a be the unique extension of v_a by classical truth conditions for truth-value operators. Then $V_a(\Box q) = 0$ and $V_a(\operatorname{sub}(\mathtt{T})) = V_a(\operatorname{sub}(\mathtt{X})) = V_a(\operatorname{sub}(\mathtt{R})) = \{1\}.$

Now, as in Lemma 3.2(1), for any assignment $v_w : \operatorname{At} \to \{0,1\}$ and V_a , we build a self-associate t-normal model $\langle w, \{w,a\}, V \rangle$. By Theorem 3.4, $V(\operatorname{sub}(\mathtt{T}), w) = V(\operatorname{sub}(\mathtt{X}), w) = V(\operatorname{sub}(\mathtt{C}), w) = V(\operatorname{sub}(\mathtt{M}), w) = \{1\}$. So we have a model for $\{\Box(\mathtt{T}), \Box(\mathtt{X}), \Box(\mathtt{R})\}$, in which $V(\Box(\mathtt{K}), w) = 0$. Thus, by Fact 3.13(4), $\Box(\mathtt{K})$ does not belong to $\mathbf{S0.5}[\Box\mathtt{T}, \Box\mathtt{X}, \Box\mathtt{R}]$.

If we are only interested in formulae $\Box(K)$, $\Box(X)$ and $\Box(T)$, as in the case of **S0.9°**, **S0.9**, **S1°** and **S1**, by the above facts and Fact 2.2 we obtain.

```
Corollary 6.9. 1. \mathbf{S0.5}^{\circ}[\Box K] \subseteq \mathbf{S0.5}^{\circ}_{\mathrm{rte}}[\Box K],
        \mathbf{S0.5}^{\circ}[\square \mathtt{K}, \square \mathtt{X}] \subsetneq \mathbf{S0.5}^{\circ}_{\mathbf{rte}}[\square \mathtt{X}]
        \mathbf{S0.5}^{\circ}[\Box\mathtt{T},\Box\mathtt{K}]\subsetneq\mathbf{S0.5^{\circ}_{rte}}[\Box\mathtt{T},\Box\mathtt{K}],
        S0.5^{\circ}[\Box T, \Box K, \Box X] \subsetneq S0.5^{\circ}_{\mathrm{rte}}[\Box T, \Box X].
2. \mathbf{S0.5}^{\circ} \subseteq \mathbf{S0.5}^{\circ}[\square K] \subseteq \mathbf{S0.5}^{\circ}[\square K, \square X] \subseteq \mathbf{S0.5}^{\circ}[\square T, \square K, \square X],
        S0.5^{\circ} \subseteq S0.5^{\circ}[\Box X] \subseteq S0.5^{\circ}[\Box K, \Box X],
        S0.5^{\circ}[\Box K] \subseteq S0.5^{\circ}[\Box T, \Box K] \subseteq S0.5^{\circ}[\Box T, \Box K, \Box X],
        S0.5^{\circ}[\Box X] \subseteq S0.5^{\circ}[\Box T, \Box X] \subseteq S0.5^{\circ}[\Box T, \Box K, \Box X].
3. S0.5^{\circ} \subseteq S0.5^{\circ}_{rte} \subseteq S0.5^{\circ}_{rte}[\square X] \subseteq S0.5^{\circ}_{rte}[\square X].
4. \mathbf{S0.5}^{\circ}[\Box \mathtt{K}, \Box \mathtt{X}] \subsetneq \mathbf{S0.5}^{\circ}_{\mathsf{rte}}[\Box \mathtt{X}] \subsetneq \mathbf{S0.5}^{\circ}_{\mathsf{rte}}[\Box \mathtt{T}, \Box \mathtt{X}].
5. S0.5[\Box T, \Box K] \subsetneq S0.5_{rte}[\Box T, \Box K] \subsetneq S0.9.
6. \mathbf{S0.5} \subseteq \mathbf{S0.5}[\square \texttt{K}] \subseteq \mathbf{S0.5}[\square \texttt{K}, \square \texttt{X}] \subseteq \mathbf{S0.5}[\square \texttt{T}, \square \texttt{K}, \square \texttt{X}] \subseteq \mathbf{S0.5}_{\text{rte}}[\square \texttt{T}, \square \texttt{X}],
        S0.5 \subseteq S0.5[\square X] \subseteq S0.5[\square K, \square X],
        S0.5[\Box K] \subseteq S0.5[\Box T, \Box K] \subseteq S0.5[\Box T, \Box K, \Box X],
        S0.5[\Box X] \subsetneq S0.5[\Box T, \Box X] \subsetneq S0.5[\Box T, \Box K, \Box X].
7. S0.5[\Box T, \Box K, \Box X] \subsetneq S0.5_{rte}[\Box T, \Box X].
8. S0.5 \subsetneq S0.5_{rte} \subsetneq S0.5_{rte}[\square X] \subsetneq S0.5_{rte}[\square X] \subsetneq S0.5_{rte}[\square T, \square X],
        S0.5[\square \texttt{K}] \subsetneq S0.5_{rte}[\square \texttt{K}] \subsetneq S0.5_{rte}[\square \texttt{T}, \square \texttt{K}] \subsetneq S0.5_{rte}[\square \texttt{T}, \square \texttt{X}],
        S0.5[\Box X] \subsetneq S0.5_{rte}[\Box X].
```

Fact 6.7 can be strengthen to the following:

Fact 6.10. $\square(\mathtt{T}) \notin \mathbf{S0.5_{rte}}[\square \mathbf{S0.5^{\circ}}].$

PROOF: Let $w \neq a$, $A := \{w, a\}$. Let $v_a : \text{PAt} \to \{0, 1\}$ be any assignment such that $v_a(p) = 0$ and for any $\chi \in \text{For}$:

$$v_a(\Box \chi) = \begin{cases} 1 & \text{if } \chi \in \mathbf{PL}_{\text{rte}} \\ 1 & \text{if } \lceil p \supset \chi \rceil \in \mathbf{PL}_{\text{rte}} \\ 0 & \text{otherwise} \end{cases}$$

Notice that $V_a(\operatorname{sub}(\mathtt{K})) = \{1\}$. Indeed, suppose that $V_a(\Box(\varphi_1 \supset \varphi_2)) = 1 = V_a(\Box\varphi_1)$. Then both either $\ulcorner \varphi_1 \supset \varphi_2 \urcorner \in \mathbf{PL}_{\mathrm{rte}}$ or $\ulcorner p \supset (\varphi_1 \supset \varphi_2) \urcorner \in \mathbf{PL}_{\mathrm{rte}}$ and either $\varphi_1 \in \mathbf{PL}_{\mathrm{rte}}$ or $\ulcorner p \supset \varphi_1 \urcorner \in \mathbf{PL}_{\mathrm{rte}}$. Hence, either (i) both $\varphi_1 \in \mathbf{PL}_{\mathrm{rte}}$ and $\ulcorner \varphi_1 \supset \varphi_2 \urcorner \in \mathbf{PL}_{\mathrm{rte}}$, or (ii) both $\ulcorner p \supset \varphi_1 \urcorner \in \mathbf{PL}_{\mathrm{rte}}$ and $\ulcorner \varphi_1 \supset \varphi_2 \urcorner \in \mathbf{PL}_{\mathrm{rte}}$, or (iii) both $\varphi_1 \in \mathbf{PL}_{\mathrm{rte}}$ and $\ulcorner p \supset (\varphi_1 \supset \varphi_2) \urcorner \in \mathbf{PL}_{\mathrm{rte}}$, or (iv) both $\ulcorner p \supset \varphi_1 \urcorner \in \mathbf{PL}_{\mathrm{rte}}$ and $\ulcorner p \supset (\varphi_1 \supset \varphi_2) \urcorner \in \mathbf{PL}_{\mathrm{rte}}$. Hence, by Lemma 1.21(3), $\varphi_2 \in \mathbf{PL}_{\mathrm{rte}}$ or $\ulcorner p \supset \varphi_2 \urcorner \in \mathbf{PL}_{\mathrm{rte}}$, and consequently, $V_a(\Box\varphi_2) = 1$.

Thus, $V_a(\mathbf{S0.5}^{\circ}) = \{1\}$, since all theses of $\mathbf{S0.5}^{\circ}$ are derivable from \mathbf{PL} , $\Box \mathbf{PL}$ and sub(K) by (MP), and for all formulae derivable in this way the function V_a takes the value 1.

We also have that $V_a(T) = 0$, since $V_a(\Box p)$ and $V_a(p) = 0$.

Now, as in Lemma 4.2(1), for any assignment $v_w : At \to \{0,1\}$ and V_a , we build a self-associate t-normal rte-model $\langle w, \{w,a\}, V \rangle$ for $\Box \mathbf{S0.5}^{\circ}$ such that $V(\Box(\mathtt{T}), w) = 0$.

References

- B. F. Chellas, Modal Logic. An Introduction, Cambridge 1980, Cambridge University Press.
- [2] G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic, London and New York 1996, Routledge.

- [3] A. Pietruszczak, Simplified Kripke-style semantics for some very weak modal logics, Logic end Logical Philosophy 18 (2009), pp. 271–296.
- [4] A. Pietruszczak, Semantical investigations on some weak modal logics. Part I, Bulletin of the Section of Logic 41:1/2 (2012), pp. 33–50.

Nicolaus Copernicus University Department of Logic ul. Asnyka 2 87-100 Toruń, Poland pietrusz@uni.torun.pl