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Abstract
We propose and explore a notion of decomposably divisible (D-divisible) dif-
ferentiable quantum evolution families on matrix algebras. This is achieved by
replacing the complete positivity requirement, imposed on the propagator, by
more general condition of decomposability. It is shown that such D-divisible
dynamical maps satisfy a generalized version ofMaster equation and are totally
characterized by their time-local generators. Necessary and sufficient condi-
tions for D-divisibility are found. Additionally, decomposable trace preserving
semigroups are examined.

Keywords: decomposable maps, master equation, Lindbladian,
divisible evolution

(Some figures may appear in colour only in the online journal)

1. Introduction

The aim of this article is to define, construct and characterize a generalization of CP-divisible
(i.e. Markovian) evolution families, or quantum dynamical maps, on matrix algebras onto a
certain subclass of much broader, however still mathematically manageable case of decompos-
able positive maps. We restrict our attention to the case of decomposably divisible families,
i.e. such maps Λt on matrix algebra Md(C), which are divisible and which propagators are
trace preserving and decomposable on Md(C). Decomposability is a relatively simple, yet
non-trivial generalization of complete positivity, which in turn has been a well-characterized
and motivated concept in quantum theory since 1970s (see [1–3] and references within), tradi-
tionally used to model time evolution of quantum systems. In particular, CP-divisible families
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[4, 5] has been granted a special attention, since CP-divisibility is commonly considered equi-
valent to Markovianity. We abandon this approach here in favor of D-divisibility, effectively
obtaining a new subclass of non-Markovian evolution families (or weakly non-Markovian,
using terminology of [6]; see also [7]). We hope that such decomposable dynamical maps
might be useful in future for description of physical systems outside a Markovian regime,
for example influenced by more sophisticated quantum effects or to mirror the existence of
higher-order correlations in the system.

The article is structured as follows. In section 2 we provide some mathematical prelim-
inaries, including notion of decomposable maps over algebra of complex matrices, as well
as some basic description of dynamics of open quantum systems. The main part of the art-
icle is the section 3, devoted to D-divisible quantum evolution families, where we formulate
a necessary and sufficient conditions for D-divisibility expressed in terms of associated time-
dependent generators. Construction of such is presented in theorem 2, which is our main result.
In section 3.4 we remark on a semigroup case and present some results related to their asymp-
totic behavior (theorems 4 and 6). Finally, section 4 presents two simple examples in dimension
2 and 3.

2. Preliminaries

First, we provide some basic preliminaries including notions of decomposability of positive
maps and divisibility (and Markovianity) of quantum dynamics. We will be working a lot
with Hilbert-Schmidt bases spanning spaceMd(C), i.e. bases orthonormal with respect to the
Hilbert-Schmidt inner product (also called Frobenius inner product) on Md(C), given via

〈a,b〉2 = tra∗b=
d∑

i,j=1

aijbij, a,b ∈Md (C) . (2.1)

Amongst all such bases, one consisting of strictlyHermitian matriceswill be granted a special
attention. Namely, let {Fi}d

2

i=1 be a Hilbert-Schmidt basis subject to constraints

Fi = F∗
i , trFi = δi d2 , Fd2 =

1√
d
I. (2.2)

Such basis may be seen as a generalization of both Pauli and Gell–Mann matrices and may
be constructed in similar way (see appendix A.1 for details and for some more properties). By
construction, matrices Fi can be either non-diagonal and symmetric, antisymmetric or diag-
onal (where all Fi s.t. i< d2 are traceless). For any d, there is exactly d(d− 1)/2 of both
symmetric and antisymmetric matrices and d diagonal ones. We reserve symbol Fi for such a
basis exclusively throughout the whole article and introduce an accompanying enumeration,
such that Fi will be:

• symmetric for 1⩽ i ⩽ 1
2d(d− 1),

• antisymmetric for 1+ 1
2d(d− 1)⩽ i ⩽ d(d− 1),

• diagonal for 1+ d(d− 1)⩽ i ⩽ d2.

The following composition rule will be of importance: for every Fi, Fj we have

FiFj =
d2∑
k=1

ξijkFk, (2.3)
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where coefficients ξijk may be computed as

ξijk = 〈Fk,FiFj〉2 = trFiFjFk (2.4)

and are expressible in terms of so-called structure constants, which characterize Md(C) as a
Lie algebra. It is then a simple exercise to check that the following identities hold:

ξijk = ξkij = ξjki, ξijk = ξjik. (2.5)

2.1. Decomposable maps

Let A , B be ordered, unital *-algebras and let A +, B+ stand for convex cones of positive
elements of A and B respectively. We say that a bounded linear map ϕ : A → B is positive,
or ϕ ∈ P(A ,B), if ϕ(A +)⊆ B+, i.e. it maps positive elements into positive. Moreover, if
an extended map ϕn = id⊗ϕ, acting on Mn(A )'Mn(C)⊗A via prescription ϕn([aij]) =
[ϕ(aij)], aij ∈ A , is also positive for some n, we say ϕ is n-positive; if in addition it is n-
positive for all n ∈ N, map ϕ is called completely positive (CP), or ϕ ∈ CP(A ,B). Both sets
P(A ,B), CP(A ,B) are then convex cones in space of all linear maps from A to B.

Structure of CP maps is characterized by means of the famous Stinespring dilation theorem
stating that for every ϕ ∈ CP(A ,B(H)) for A a unital C*-algebra and H a Hilbert space,
exists some auxiliary Hilbert space K such that ϕ admits a (nonunique) representation as a
composition

ϕ(a) = V∗π (a)V, a ∈ A , (2.6)

for some bounded operator V : H→ K and *-homomorphism π : A → B(K). If both A and
H in question are finite-dimensional, i.e. ϕ acts between algebras of matrices, ϕ :Mn(C)→
Mm(C), one defines the so-called Choi matrix of ϕ,

Cϕ =
n2∑

i,j=1

Eij⊗ϕ(Eij) , (2.7)

where Eij are matrix units (i.e. they contain 1 in place (i, j) and 0 s everywhere else) span-
ningMn(C).Mappingϕ 7→ Cϕ is a bijection fromB(Mn(C),Mm(C)) intoMn(C)⊗Mm(C)'
Mmn(C) known as the Choi-Jamiołkowski isomorphism. Then, Stinespring dilation theorem is
equivalent to the famous Choi’s theorem [8], which stays that ϕ is CP iff (if and only if) it is
n-positive, which is then true iff Cϕ ∈Mmn(C)+. Furthermore, as a corollary, it can be shown
that for everyϕ ∈ CP(Mn(C),Mm(C)) there exists a set of matrices {Xi}mni=1 ⊂Mm×n(C) such
that

ϕ(a) =
mn∑
i=1

XiaX
∗
i , a ∈Mn (C) , (2.8)

which is the Kraus decomposition of ϕ (matrices Xi are called Kraus operators) associated
with ϕ. The notion of complete positivity proved itself to be very robust concept, both in
mathematics and physics. Unfortunately, although the complete characterization of CP maps
is known due to results by Stinespring, Choi and Kraus, we lack such in case of merely positive
maps and finding it has been a long-standing goal in mathematics for many years.

Throughout this paper, we will be focusing on a special sub-class of positive maps, the
so-called decomposable maps, which may be seen as a conceptually simple, however still
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nontrivial generalization of CP maps. Moreover, from now on we assume all maps under con-
sideration to be exclusively endomorphisms over matrix slgebra Md(C) and we tweak our
notation accordingly by writing simply B(Md(C)), P(Md(C)) and CP(Md(C)) for appropri-
ate maps on this algebra.

Let θ :Md(C)→Md(C) denote the transposition map, i.e.

θ (a) = aT, [aij] 7→ [aji] , (2.9)

with respect to some chosen basis in Cd. It is easy to see that θ is a positive map, however it is
not CP (in fact, it fails to be even 2-positive). Transposition allows to define yet another class of
positive maps, the so-called completely copositive maps. One says that a map ϕ ∈ P(Md(C))
is completely copositive (coCP), if its composition with θ is CP, or that there exists some
ϕ̃ ∈ CP(Md(C)) such that

ϕ = θ ◦ ϕ̃. (2.10)

The marriage of notions of both complete positivity and copositivity determines a class of
decomposable maps, which will remain at our focus throughout this article:

Definition 1. Let φ ∈ P(Md(C)). We say φ is decomposable, φ ∈ D(Md(C)), if it can be
expressed as a convex combination of CP and coCP map, i.e. if there exist ϕ,ψ ∈ CP(Md(C))
such that

φ = ϕ + θ ◦ψ . (2.11)

Decomposable maps may be also characterized in terms of a following necessary and suffi-
cient condition. Letφ ∈ P(Md(C)) and letCφ ∈Md2(C) be its corresponding Choi matrix. By
identification Md2(C)'Md(C)⊗Md(C) we introduce a linear map of partial transposition
(with respect to second factor) Γ on Md2(C), defined by its action on simple tensors as

a⊗ b 7→ (a⊗ b)Γ = a⊗ bT. (2.12)

Define also two convex cones

Vd =Md2 (C)
+
, VΓ

d =
{
ρ : ρΓ ∈Md2 (C)

+
}
. (2.13)

Then, a following characterization of decomposable maps applies [9, 10]:

Theorem 1. Map φ onMd(C) is decomposable iff

∀ρ ∈ Vd ∩VΓ
d : trCφ ρ⩾ 0. (2.14)

In practice, verifying if a given linear map is decomposable by finding exact decomposi-
tion into a combination (2.11) of its CP and coCP part may be a hopeless task, even in low
dimensional algebras. Instead, condition stated in theorem 1 can be checked quite sufficiently
by means of a semidefinite programming (SDP) routines, as is also the case in this article.

Every decomposable map φ is in addition Hermiticity preserving, i.e. it satisfies

φ (a)∗ = φ (a∗) (2.15)

for all a ∈Md(C). It is known from works by Størmer and Woronowicz [9, 11] that cones of
positive and decomposable maps in B(Mn(C),Mm(C)) are equal if mn⩽ 6, i.e. every positive
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map is decomposable in such case; in particular, all positive endomorphisms on M2(C) are
decomposable, as well as positive maps between M2(C) and M3(C). The question of exact
conditions for decomposability in higher-dimensional algebras remains unanswered, however
counter-examples are known in literature already for maps onM3(C).

2.2. Quantum evolution families

Here we provide some basic description of evolution in theory of open quantum systems. Let
ρt stand for a time-dependent density matrix of some d-dimensional quantum system, i.e. let

ρt ∈Md (C)+ , trρt = 1 for all t ∈ R+. (2.16)

A family of linear, time-parametrized maps {Λt : t ∈ R+} on Md(C), providing an evolution
of density matrix via equation

ρt = Λt (ρ0) (2.17)

for some initial ρ0, will be called the quantum evolution family, or quantum dynamical map.
In order to maintain the probabilistic interpretation of ρt as density matrix at every t⩾ 0, it is
required for Λt to be trace preserving (i.e. trΛt(ρ) = trρ) and positive. By physical reasoning,
one often demands not merely a positivity, but rather complete positivity of Λt (one can find
appropriate explanation e.g. in [1–3] and numerous other sources). This restriction, however,
will be abandoned in this paper in favor of decomposability.

Definition 2. We say that quantum evolution family {Λt : t ∈ R+} is divisible in some interval
[t1, t2]⊆ R+ if for every t ∈ [t1, t2] and every s ∈ [t1, t] there exists a map Vt,s satisfying

Λt = Vt,s ◦Λs. (2.18)

If in addition Vt,s is a positive or completely positive map for every s⩽ t, then {Λt : t ∈ R+}
is called P-divisible or CP-divisible in this interval, respectively.

Such two-parameter family of maps {Vt,s : s⩽ t} is then called the propagator of evolution
family (as Vt,s propagates Λs forward in time). If Λt is invertible then it is immediate that
Vt,s = Λt ◦Λ−1

s . CP-divisibility is commonly identified with Markovianity.
It is most frequently assumed, that the dynamical map in question satisfies the time-local

Master equation in two equivalent forms

dΛt

dt
= Lt ◦Λt or

dρt
dt

= Lt (ρt) , (2.19)

for some map Lt ∈ B(Md(C)), called a generator. All dynamical maps obeying (2.19) are
divisible. By celebrated results of Lindblad, Gorini, Kossakowski and Sudarshan [4, 5], a
necessary and sufficient condition for an invertible map Λt subject to Master equation (2.19)
to be CP-divisible is that Lt must be of a form

Lt (ρ) =−i [Ht,ρ] +
d2−1∑
j,k=1

ajk (t)

(
FjρFk−

1
2
{FkFj,ρ}

)
, (2.20)

where Ht is Hermitian and [ajk(t)] ∈Md2−1(C)+ for all t ∈ R+ ({a,b}= ab+ ba is the anti-
commutator). Equation (2.20) defines so-called standard form (also Lindblad form or LGKS
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form) of Lt. On physics grounds, Ht is identified with system’s Hamiltonian (which includes
Lamb-shift corrections; here one puts ℏ= 1 for brevity) and matrix [ajk(t)], being commonly
called the Kossakowski matrix, expresses the ‘non-unitary’ part of the evolution due to interac-
tions between system and the environment. If generator Lt is time-independent, i.e. Lt = L, then
a solution of Master equation (2.19) is a one-parameter contraction semigroup {etL : t ∈ R+}
of trace preserving CP maps, known as the Quantum Dynamical Semigroup.

3. D-divisible quantum evolution families

3.1. Notion of D-divisibility

In this section we propose and elaborate on the notion of D-divisibility. Let {Λt : t ∈ R+}
again stand for a family of positive and trace preserving maps on Md(C). Then, we define
D-divisibility of this family in a manner analogous to CP-divisibility by demanding that the
propagator is decomposable:

Definition 3. We say that a family {Λt : t ∈ R+} is D-divisible (decomposably divisible) in
interval [t1, t2]⊆ R+, iff it is divisible in [t1, t2] and its associated propagator Vt,s is trace pre-
serving and decomposable for all s, t ∈ [t1, t2], s⩽ t, i.e.

Vt,s = Xt,s+ θ ◦Yt,s, (3.1)

for some maps Xt,s,Yt,s ∈ CP(Md(C)) continuously depending on (t, s).

We stress here that although map Vt,s is required to be trace preserving as a whole, neither
of maps Xt,s, Yt,s is a priori expected to be so:

Proposition 1. Let a family {Λt : t ∈ R+} be D-divisible in [t1, t2]⊆ R+ and letΛ0 = id. Then,
the following hold for all t ∈ [t1, t2] and all s ∈ [t1, t]:

(1) Vt,t = id,
(2) Xt,t = id,
(3) Yt,t = 0,
(4) Λt ∈ D(Md(C)) and is trace preserving,
(5) Xt,s+Yt,s is trace preserving.

Proof. Property 1 follows immediately from divisibility condition (2.18) after taking s= t.
As a consequence Vt,t is a decomposable map with its coCP part being zero, so properties
2 and 3 follow. For property 4, see that (2.18) also yields Λt = Vt,0 ◦Λ0 = Vt,0 and so Λt is
decomposable and trace preserving. Remaining property 5 then follows from linearity of trace
and trace preservation of transposition map after simple algebra.

3.2. Generators of decomposable dynamics

In this section we present our main result, i.e. a necessary and sufficient condition for a
quantum evolution family to be D-divisible expressed in terms of properties of the associ-
ated generator. Before that we briefly discuss some additional notions. Our construction of
generator (given in a proof of theorem 2) will be heavily depending on so-called operator sum
representation of linear maps onMd(C), including the transposition map. Namely, if T is any
linear endomorphism on algebra Md(C), its action on a ∈Md(C) may be always represented
in a form

6
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T(a) =
d2∑

i,j=1

tijFi aFj (3.2)

for somematrix of coefficients [tij] ∈Md2(C). In addition, T ∈ CP(Md(C)) iff [tij] ∈Md2(C)+.
Similarly, the transposition map θ admits an operator-sum representation of a form

θ (a) = aT =
d2∑
i=1

θiFi aFi (3.3)

for coefficients θi ∈ {−1, 1} given as

θi =

{
−1, for 1+ 1

2d(d− 1)⩽ i ⩽ d(d− 1) ,

+1, otherwise.
(3.4)

Proof of this statement is available in the appendix A.3.1. We will use coefficients θi given
above to define a particular 4-index geometric tensor, which will be of crucial importance later
on. Recall that basis matrices Fi obey composition rule (2.3) for coefficients ξijk = trFiFjFk.

Definition 4. We define the 4-index geometric tensor Ω̂= [Ωjk
µν ], where 1⩽ j,k⩽ d2, 1⩽

µν ⩽ d2 − 1, by setting

Ωjk
µν =

d2∑
i=1

θi ξijµξikν . (3.5)

One can easily show (see lemma 1 in section A.4 of the appendix) that Ω̂ admits a somewhat
more compact and robust representation as

Ωjk
µν = 〈FT

kFµ,F
T
νFj〉2, (3.6)

which will become useful. Now we are ready to formulate our main result:

Theorem 2. Let a family {Λt : t ∈ R+} of maps on Md(C) satisfy an ordinary differential
equation

dΛt

dt
= Lt ◦Λt, Λ0 = id, (3.7)

where Lt ∈ B(Md(C)) and function t 7→ Lt is continuous everywhere in interval [t1, t2]⊆ R+.
Then, family {Λt : t ∈ R+} is D-divisible and trace preserving in this interval iff there exists
a map Mt on Md(C) in standard form, Hermitian matrix Kt ∈Md(C) and matrix [ωjk(t)] ∈
Md2(C)+ such that

Lt =Mt+Nt, t ∈ [t1, t2] , (3.8)

where Nt admits a form

Nt (ρ) =−i [Kt,ρ] +
d2−1∑
µ,ν=1

ηµν (t)

(
FµρFν −

1
2
{FνFµ,ρ}

)
(3.9)

7



J. Phys. A: Math. Theor. 56 (2023) 485202 K Szczygielski

for coefficients

ηµν (t) =
d2∑

j,k=1

Ωjk
µνωjk (t) . (3.10)

Proof. The proof will follow general guidelines of [3, theorem 4.2.1]. We are interested in
computing dρt

dt , where the derivative is to be calculated ‘from above’, i.e.

dρt
dt

= lim
ϵ↘0

Λt+ϵ (ρ0)−Λt (ρ0)

ϵ
= lim

ϵ↘0

Vt+ϵ,t− id
ϵ

◦Λt (ρ0) = Lt (ρt) , (3.11)

which comes via divisibility, Λt+ϵ = Vt+ϵ,t ◦Λt and Λ0 = id. We therefore have

Lt = lim
ϵ↘0

Vt+ϵ,t− id
ϵ

. (3.12)

Let us apply the D-divisibility condition, i.e. put

Vt+ϵ,t = Xt+ϵ,t+ θ ◦Yt+ϵ,t (3.13)

for some continuous functions (t,s) 7→ Xt,s,Yt,s ∈ CP(Md(C)), s⩽ t. Maps Xt,s and Yt,s, being
completely positive, admit operator-sum representations

Xt,s (ρ) =
d2∑

j,k=1

xjk (t,s)FjρFk, Yt,s (ρ) =
d2∑

j,k=1

yjk (t,s)FjρFk, (3.14)

where ρ ∈Md(C), for some matrices [xjk(t,s)], [yjk(t,s)] ∈Md2(C)+, also continuously
depending on (t, s). Similarly, the transposition map θ admits a representation (3.3), i.e.

θ (ρ) = ρT =
d2∑
i=1

θiFi ρFi (3.15)

where θi are given in (3.4). Therefore, the expression for Lt, using composition rule (2.3) and
properties (2.5), is

Lt (ρ) = lim
ϵ↘0

1
ϵ

[
Xt+ϵ,t (ρ)+ Yt+ϵ,t (ρ)

T − ρ
]

(3.16)

= lim
ϵ↘0

1
ϵ

 d2∑
j,k=1

xjk (t+ ϵ, t)FjρFk+
d2∑

j,k,l=1

θlyjk (t+ ϵ, t)FlFjρFkFl− ρ


= lim

ϵ↘0

1
ϵ

 d2∑
j,k=1

xjk (t+ ϵ, t)FjρFk+
d2∑

j,k,l=1

d2∑
µ,ν=1

θlyjk (t+ ϵ, t)ξljµξlkνFµρFν − ρ


= lim

ϵ↘0

1
ϵ

 d2∑
j,k=1

xjk (t+ ϵ, t)FjρFk+
d2∑

µ,ν=1

d2∑
j,k=1

Ωjk
µνyjk (t+ ϵ, t)FµρFν − ρ

 .
8
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Let now

zµν (t,s) =
d2∑

j,k=1

Ωjk
µνyjk (t,s) . (3.17)

It is easy to check that matrix [zµν(t,s)]µν ∈Md2−1(C) is Hermitian for every (t, s), however
is not positive semidefinite in general. Next, we subtract from both summations terms with
µ,ν = d2 and obtain, by Fd2 =

1√
d
Id,

Lt (ρ) = lim
ϵ↘0

Wt,ϵρ+Et,ϵρ+ ρE∗
t,ϵ +

d2−1∑
µ,ν=1

wµν (t+ ϵ, t)FµρFν

 , (3.18)

where we introduced

wµν (t,s) = xµν (t,s)+ zµν (t,s) , (3.19a)

Wt,ϵ =

[
1
d
wd2d2 (t+ ϵ, t)− 1

]
Id, (3.19b)

Et,ϵ =
1√
d

d2−1∑
µ=1

wµd2 (t+ ϵ, t)Fµ. (3.19c)

Now, we define new time-dependent coefficients gµν(t) by setting

gd2d2 (t) = lim
ϵ↘0

1
ϵ

[
1
d
wd2d2 (t+ ϵ, t)− 1

]
, (3.20a)

gµν (t) = lim
ϵ↘0

1
ϵ
wµν (t+ ϵ, t) , 1⩽ µ,ν ⩽ d2 − 1, (3.20b)

where existence of all limits is assured by differentiability of Λt, so our expression for Lt(ρ)
becomes

Lt (ρ) = gd2d2 (t)ρ+Etρ+ ρE∗
t +

d2−1∑
µ,ν=1

gµν (t)FµρFν (3.21)

for Et = 1√
d

∑d2

µ=1 gµd2(t)Fµ. Introducing two new matrices

At =
1
2
(Et+E∗

t )+
1
2
γd2d2 (t) Id, (3.22a)

Jt =− 1
2i

(Et−E∗
t ) , (3.22b)

we obtain

Lt (ρ) =−i [Jt,ρ] + {At,ρ}+
d2−1∑
µ,ν=1

gµν (t)FµρFν . (3.23)

9
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We demand Vt,s to obey the trace preservation condition, which means that Lt must nullify
the trace, trLt(ρ) = 0 regardless of ρ. This applied to our expression yields, after some algebra
involving cyclic property of trace,

At =−1
2

d2−1∑
µ,ν=1

gµν (t)FνFµ. (3.24)

By inserting back we therefore end up with a form

Lt (ρ) =−i [Jt,ρ] +
d2−1∑
µ,ν=1

gµν (t)

(
FµρFν −

1
2
{FνFµ,ρ}

)
, (3.25)

which despite its visual resemblance is not the standard form, since matrix [gµν(t)]µν is not
positive semi-definite in general. However, formula (3.19a) allows to split coefficients gµν(t)
into a sum of expressions defined solely via either the CP or the coCP part of the propagator,
namely

gµν (t) = γµν (t)+ ηµν (t) , (3.26)

where

γµν (t) = lim
ϵ↘0

1
ϵ
xµν (t+ ϵ, t) , ηµν (t) = lim

ϵ↘0

1
ϵ

d2∑
j,k=1

Ωjk
µνyjk (t+ ϵ, t) . (3.27)

In similar fashion, we have Jt = Ht+Kt where

Ht =
i

2
√
d

d2−1∑
µ=1

γµd2 (t)Fµ −
d2−1∑
µ=1

γµd2 (t)Fµ

 (3.28)

and Kt has an identical structure, with ηµd2(t) in place of γµd2(t). It is then evident that expres-
sion (3.25) may be rewritten as a sum of two maps, Lt =Mt+Nt, acting on ρ, where

Nt (ρ) =−i [Kt,ρ] +
d2−1∑
µ,ν=1

ηµν (t)

(
FµρFν −

1
2
{FνFµ,ρ}

)
(3.29)

and Mt is of the same structure, with Ht replacing Kt and γµν(t) in place of ηµν(t). By dir-
ect check, matrices Ht and Kt are Hermitian and complete positivity of map Xt,s yields both
matrices [xµν(t,s)] and [γµν(t)] to be positive semidefinite, i.e. map Mt is in standard form. It
remains to show that coefficients ηµν(t) are as claimed. We have

ηµν (t) =
d2∑

j,k=1

Ωjk
µν lim

ϵ↘0

1
ϵ
yjk (t+ ϵ, t) . (3.30)

As we show in lemma 2 in the appendix, the above limiting procedure under the summation
defines a positive semidefinite matrix for all t ∈ [t1, t2], i.e. we have

ωjk (t) = lim
ϵ↘0

1
ϵ
yjk (t+ ϵ, t) , [ωjk (t)] ∈Md2 (C)

+ (3.31)

10
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and ηµν(t) admits a form (3.10). This proves sufficiency. To show necessity, we start with
re-expressing Nt, basing on expression (3.29), as

Nt (ρ) =−i [Kt,ρ] +

 d2∑
α=1

Cα,tρC
∗
α,t

T

− 1
2
[Dt−D∗

t ,ρ] (3.32)

− 1
2

d2∑
α=1

{
C∗
α,tCα,t,ρ

}
which is achieved by: (1) expressing ηµν(t) via (3.10), (2) expanding the geometric tensorΩjk

µν

according to (3.5), (3) applying the operator-sum representation (3.3) of transposition map θ,
(4) expressing [ωjk(t)] ∈Md2(C)+ as ωjk(t) =

∑
α cjα(t)ckα(t) for some newmatrix [cij(t)] and

finally (5) substituting

Cα,t =
d2∑
j=1

cαj (t)Fj, Dt =
d2∑

j,k=1

ωjk (t)AkFj, (3.33)

for Ak =
∑

l θlξlkd2Fl (see the derivation in section A.5 in the appendix). The matrixDt−D∗
t is

clearly skew-Hermitian, so it is of a form Dt−D∗
t =−iEt for some Hermitian Et. Now, recall

Mt was in standard form, so matrix [γµν(t)] is positive semidefinite, i.e. it may be cast into a
form

γµν (t) =
d2−1∑
i=1

gµi (t)gνi (t) (3.34)

for some matrix [gij(t)] ∈Md2−1(C). Then, by defining Gα,t =
∑

i gαi(t)Fi we can rewriteMt

as

Mt (ρ) =−i [Ht,ρ] +
∑
α

(
Gα,tρG

∗
α,t−

1
2

{
G∗

α,tGα,t,ρ
})

, (3.35)

which is sometimes referred to as the second standard form of a generator. All of this allows
to rewrite expression for Lt as

Lt = L̃(0)t + L̃(1)t + L̃(2)t (3.36)

where individual parts L̃(i)t are defined via

L̃(0)t (ρ) =−i [Ht+Kt+Et,ρ]−
1
2

∑
α

{
G∗

α,tGα,t+C∗
α,tCα,t,ρ

}
, (3.37a)

L̃(1)t (ρ) =
∑
α

Gα,tρG
∗
α,t, (3.37b)

L̃(2)t (ρ) =

(∑
α

Cα,tρC
∗
α,t

)T

= θ

(∑
α

Cα,tρC
∗
α,t

)
. (3.37c)

11
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Now, select an increasing sequence (τj)nj=0 ⊂ [s, t] of instants such that τ0 = s and τn = t.
Then, we can express the propagator Vt,s in a form

Vt,s = lim
max |τj+1−τj|→0

0∏
j=n−1

e(τj+1−τj)Lτj , (3.38)

i.e. we approximate the exact propagator by a composition of semigroups; this is known as the
time-splitting formula [3]. Denote τj+1 − τj =∆j. Applying decomposition (3.8) we have, by
Lie-Trotter product formula,

e∆jLτj = exp

(
∆j

2∑
k=0

L̃(k)τj

)
= lim

n→∞

(
2∏

k=0

exp
∆j

n
L̃(k)τj

)n

. (3.39)

We now have to specify properties of three maps exp ∆j

n L̃
(k)
t for k= 0, 1 and 2:

(1) Case k= 0. Let us define

W=
∆j

n

−i(Ht+Kt+Et)−
1
2

d2∑
α=1

(
G∗

α,tGα,t+C∗
α,tCα,t

) (3.40)

for fixed t, j and a mapping ξ 7→ fξ ∈ CP(Md(C)) by setting

fξ (ρ) = eξWρeξW
∗
, ρ ∈Md (C) . (3.41)

Then, by direct calculation one can easily check that we have

d
dξ
fξ (ρ) =

∆j

n
L̃(0)t

(
fξ (ρ)

)
, (3.42)

i.e. the identity

fξ = exp
ξ∆j

n
L̃(0)t (3.43)

holds for all ξ ∈ R, i.e. {fξ : ξ ∈ R} is a group of completely positive maps. In particular,

exp ∆j

n L̃
(0)
t = f1 is CP.

(2) Case k= 1. Note that L̃(1)t defined in (3.37b) is a CP map (being in its Kraus form).
Therefore exp ∆j

n L̃
(1)
t is also CP due to proposition 6 (see appendix A.3.3).

(3) Case k= 2. Finally, L̃(2)t given via (3.37c) is clearly a coCP map. Then, by virtue of pro-
position 7 (appendix A.3.3), the remaining map exp ∆j

n L̃
(2)
t is decomposable.

In the result, the map appearing under the limit in expression (3.39) is decomposable for
every n (as a composition); this shows e∆jLτj is also decomposable, since it is a limit of a
sequence of decomposable maps in closed cone D(Md(C)). This very same fact then shows
that Vt,s given in (3.38) is also decomposable. Finally, one checks by direct calculation that
Lt =Mt+Nt nullifies the trace, i.e. trLt(ρ) = 0. This yields that a family {eτLt : τ ∈ R+}must
be trace preserving for every choice of t ∈ R+; in consequence, every map e∆jLτj in decom-
position (3.38) is also trace preserving and so is the whole propagator Vt,s. This concludes the
proof.

12
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We furnish our result with the following equivalent statement. Recall that, as a finite dimen-
sional vector space, Md(C) is isomorphic to its algebraic dual Md(C) ′ with duality pairing
expressed in terms of the trace,

Md (C) ′ ×Md (C) 3 ( f,a) = trbfa, (3.44)

where a mapping f 7→ bf ∈Md(C) is a bijection. Let ϕ be a linear map onMd(C). Then, there
exists another linear map ϕ ′ on Md(C) such that

traϕ(b) = trϕ ′ (a)b, a,b ∈Md (C) , (3.45)

which we call dual to ϕ (with a slight abuse of terminology). We have:

Theorem 3. Family {Λt : t ∈ R+} of linear maps onMd(C), subject to equation (3.7) in inter-
val [t1, t2]⊆ R+, is D-divisible if and only if there exists a Hermitian matrix St ∈Md(C) and
map φt ∈ D(Md(C)) such that the generator Lt admits the form

Lt =−i [St, · ] +φt−
1
2
{φ ′

t (I) , ·} . (3.46)

Proof. It suffices to set two CP maps,

ϕt (ρ) =
∑
α

Gα,tρG
∗
α,t, ψt (ρ) =

∑
α

Cα,tρC
∗
α,t, (3.47)

where we used the same notation as in the proof of theorem 2. Then one checks that both parts
Mt and Nt of the generator may be conveniently re-expressed as

Mt =−i [Ht, · ] +ϕt−
1
2
{ϕ ′

t (I) , ·} , (3.48a)

Nt =−i [Kt+Et, · ] +ψt−
1
2
{ψ ′

t (I) , ·} (3.48b)

and their sum can be shown with a simple algebra to be in the claimed form after defining a
decomposable map φt and Hermitian matrix St via

φt = ϕt+ θ ◦ψt, St = Ht+Kt+Et (3.49)

and notifying (θ ◦ψt) ′(I) = ψ ′
t (I).

In order to confirm validity of our results, we verified if families given by Lt in proposed
form were indeed decomposable. We checked for condition stated in theorem 1 by minimizing
the functional ρ 7→ trCetLρ over a convex set Vd ∩VΓ

d . This was achieved via a numerical and
symbolic application of SDP optimization routines for a very wide range of different forms of
Lt in different dimensions and values of t.

13
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3.3. Asymptotic complete positivity

In general, decomposability properties of D-divisible dynamical maps turn out to be quite sur-
prising, as we were able to check numerically. For instance, it may happen that Λt suddenly
becomes completely positive despite the fact that the propagator Vt,s remains truly decompos-
able, i.e. has a non-zero coCP part. Behavior of Λt in this manner may be quite complex and
ranges from being simply CP to even fluctuating between complete positivity and decomposab-
ility. Under particular circumstances, i.e. under specific choice of the generator, an interesting
phenomenon ofΛt is observed: namely, it is possible that initiallyΛt is decomposable and then
it switches to being only CP and remains such as time progresses. This observation justifies a
following definition of asymptotic complete positivity of decomposable maps:

Definition 5. We will call a family {Λt : t ∈ R+} asymptotically CP if there exists t0 > 0 such
that Λt is CP and trace preserving for all t⩾ t0.

In fact, asymptotic complete positivity is observed even in simplest semigroup case, as
an example (see below) demonstrates, and is analyzed by examining the spectrum of Choi
matrix CΛt . Since Λt is Hermiticity preserving, CΛt is Hermitian and therefore it suffices
that specCΛt ⊂ R+ for Λt to be CP, which in turn is guaranteed if the smallest eigenvalue
λmin(Cφ) is non-negative. Therefore one should be interested at least in finding some well-
behaved and computable lower bounds for smallest eigenvalues. One such bound was spe-
cified by Wolkowicz and Styan in [12, theorem 2.1]. Let A ∈Mn(C) be a matrix of real spec-
trum, specA= {λi(A) : 1⩽ i ⩽ n}, λi (A) ∈ R. Then, the smallest eigenvalue λmin(A) satisfies
inequality

µA− νA
√
n− 1⩽ λmin (A)⩽ µA−

νA√
n− 1

, (3.50)

for µA = 1
n trA and ν2A =

1
n tr(A

2)−µ2
A. This allows to formulate a following sufficient condi-

tion for complete positivity:

Proposition 2. A trace preserving map φ ∈ D(Md(C)) is CP if
d∑

i,j=1

‖φ (Eij)‖22 ⩽
d2

d2 − 1
, (3.51)

where ‖a‖2 =
√
tra∗a stands for the Hilbert-Schmidt norm of a ∈Md(C).

Proof. Clearly φ ∈ CP(Md(C)) if λmin(Cφ) is non-negative. By a simple algebra involving
trace preservation of φ one checks that

trCφ = d, trC2
φ =

d∑
i,j=1

trφ(Eij)φ(Eji) =
d∑

i,j=1

‖φ (Eij)‖22 , (3.52)

since Eij = E∗
ji and φ is Hermiticity preserving. This allows to check that λmin(Cφ) satisfies

λmin (Cφ)⩾
1
d

1−
√√√√√(d2 − 1)

 d∑
i,j=1

‖φ (Eij)‖22 − 1


 , (3.53)

which comes from (3.50) after putting A= Cφ, n= d2. Finally, demanding the above lower
bound to be non-negative yields the claim.

A following criterion of asymptotic complete positivity arises:
14
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Theorem 4. Let {Λt : t ∈ R+} be D-divisible trace preserving family. If it happens that

lim
t→∞

d∑
i,j=1

‖Λt (Eij)‖22 <
d2

d2 − 1
, (3.54)

then the family is asymptotically CP.

Proof. Let g(t) =
∑d

i,j=1 ‖Λt(Eij)‖22. If indeed limt→∞ g(t)< d2

d2−1 then by definition of a

limit there exists t0 ⩾ 0 such that g(t)< d2

d2−1 for all t> t0 and we have λmin(CΛt)⩾ 0,
Λt ∈ CP(Md(C)) by proposition 2, i.e. a family is asymptotically CP.

3.4. Decomposable semigroups

Here we briefly remark on the semigroup case. It is immediate that by suppressing all time
dependence in decomposition (3.8) we obtain a general characterization of D-divisible trace
preserving semigroups overMd(C), for any d. Clearly, a semigroup is D-divisible if and only
if it is decomposable, so we have a following corollary of theorem 2:

Theorem 5. A semigroup {etL : t ∈ R+} is trace preserving and decomposable iff L is of a
form stated in theorems 2 and 3, with all matrices time independent.

We note here that an equivalent formula for generator L in semigroup case was derived by
Franke in 1976 [13], however with methods different from ours and without explicit utilization
of decomposability.

In some cases, the limit appearing in theorem 4 may be computed exactly. For example, if L
is diagonalizable, its value turns out to be determined by the biorthogonal system of eigenbasis
and associated dual basis of L:

Theorem 6. Let L be diagonalizable, let 0 ∈ specL be of multiplicity 1 and let ε ∈ kerL be an
associated eigenmatrix. Then,

lim
t→∞

d∑
i,j=1

∥∥etL (Eij)∥∥22 = (‖ε‖2 ‖β‖2)
2 ⩾ 1, (3.55)

where β ∈Md(C) is an element of dual basis of L such that 〈β,ε〉2 = 1.

Proof. Let again g(t) =
∑d

i,j=1

∥∥etL(Eij)∥∥22 and assume that L is diagonalizable, i.e. that there

exists a linearly independent set {ei} spanning Cd2 of (not necessarily orthogonal) normalized
eigenvectors of L̂ ∈Md2(C), the matrixized version of L, as elaborated in section A.2. Then,
one can show that there always exists so-called dual basis (or reciprocal basis) {bi}, also
spanning Cd2 , which is subject to relation 〈bi,ej〉= δij, or that ({ei},{bi}) constitutes for a
biorthogonal system. Then, every operator Â acting on Cd2 may be cast into a form

Â=
d2∑

i,j=1

aij〈bi, ·〉ej (3.56)
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for coefficients aij = 〈bi, Âej〉. In particular, when basis {ei} is chosen as an eigenbasis of Â,
we have

Â=
d2∑
i=1

λi (A)〈bi, ·〉ei , (3.57)

where λi (A) ∈ specA, i.e. Â admits a pseudo-spectral decomposition as a combination of
non-orthogonal rank one projection operators onto its eigenspaces. By diagonalizability,
Â= P̂D̂P̂−1 for invertible matrix P̂, built from eigenvectors ei stacked column-by-column
and diagonal matrix D̂= diag{λi (A)}. In result, every analytic function f of Â shares the
same eigenspaces and f(Â) = P̂f(D̂)P̂−1, i.e. spec f(Â) = {f(λi (A))}. Let us therefore denote
spec L̂= {µi} and assume L̂ is diagonalizable. Then L̂ admits a decomposition (3.57) for eigen-
values µi, eigenvectors ei and associated dual vectors bi. Naturally, map L itself is also diag-
onalizable and we have

etL =
d2∑
i=1

eµi t〈βi, ·〉2 εi , (3.58)

where βi = vec−1bi, εi = vec−1 ei are eigenmatrices of L and 〈βi,εj〉2 = δij.
From general theory of positive unital maps, we know that specetL lays inside unit circle

(being a trace norm contraction), contains 1 (as a result of trace preservation) and is closed with
respect to complex conjugation, i.e. eµi t,eµi t ∈ specetL (by Hermiticity preservation property)
[14]. This implies that 0 ∈ specL and specL \ {0} consists of pairs {µi,µi : Reµi < 0} and
possibly some negative reals. Let us then set µ1 = 0. We have

eµ1t = 1 and eµi t = e−|Reµi|tei Imµit, 1⩽ i ⩽ d2 − 1, (3.59)

where we write −|Reµi| to emphasize negativity of real parts. Decomposition (3.58) allows
to re-write expression for g(t). First, one easily confirms that

〈etL (Eij) ,etL (Eij)〉2 =
d2∑

k,l=1

eµkteµlt〈〈βk,Eij〉2εk,〈βl,Eij〉2εl〉2 (3.60)

=
d2∑

k,l=1

e(µk+µl)t (βk)ji (βl)ji〈εk,εl〉2

which comes from properties of inner product and property trEij[aij] = aji. Substituting this
into formula for g(t) we have

g(t) =
d2∑

k,l=1

e(µk+µl)tzkl (3.61)

for shorthand notation zkl = 〈βl,βk〉2〈εk,εl〉2. Applying properties of eigenvalues µi we recast
this into

16
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g(t) = z11 +
d2∑
k=2

e−2|Reµk|tzkk+ 2
∑
k<l

e−|Reµk|te−|Reµl|tRe
[
ei Im(µk−µl)tzkl

]
. (3.62)

Clearly, both sums vanish exponentially as t→∞, so

lim
t→∞

g(t) = z11 = ‖β1‖22 ‖ε1‖
2
2 . (3.63)

By Schwartz inequality, 1= 〈β1,ε1〉2 ⩽ ‖β1‖2 ‖ε1‖2, so indeed limt→∞ g(t)⩾ 1, as claimed.

4. Examples

Here we present two simple examples of D-divisible trace preserving evolution as outlined
in preceding sections in low dimensional matrix algebras. The first one concerns a decom-
posable semigroup over M2(C), whereas as the second one we explore a very basic case of
time-dependent generator in M3(C). For simplicity and readability of obtained formulas we
choose the appropriate generators in simplest possible way, e.g. by choosing matrix [ωjk(t)] as
a diagonal one or neglecting some parts of generator Lt (such as commutator terms).

4.1. Decomposable semigroup on algebra M2(C)

As a first example, we examine a decomposable semigroup on algebra of complex square
matrices of size 2. We set

L(ρ) = N(ρ) =
1
2

3∑
µ,ν=1

ηµν

(
σµρσν −

1
2
{σνσµ,ρ}

)
, (4.1)

where σi is the usual basis of Pauli matrices, i.e. we explicitly neglect the M generator from
decomposition (3.8) and the commutator part of (3.9). The geometric tensor Ω̂ may be then
computed by applying (3.6); its only non-zero coefficients Ωjk

µν read

Ω11
11 =Ω11

22 =Ω12
12 =Ω13

13 =Ω13
31 =Ω21

21 =Ω22
11 =Ω22

22 =Ω22
33

=Ω23
23 =Ω31

13 =Ω31
31 =Ω32

32 =Ω33
22 =Ω33

33 =Ω44
11 =Ω44

33 =
1
2
, (4.2a)

Ω11
33 =Ω12

21 =Ω21
12 =Ω23

32 =Ω32
23 =Ω33

11 =Ω44
22 =−1

2
, (4.2b)

Ω14
23 =Ω14

32 =Ω24
31 =Ω42

31 =Ω43
12 =Ω43

21 =
i
2
, (4.2c)

Ω24
13 =Ω34

12 =Ω34
21 =Ω41

23 =Ω41
32 =Ω42

13 =− i
2
. (4.2d)

For demonstration purpose of this example we choose a diagonal matrix [ωjk],

[ωjk] = diag{w1, . . . , w4}, wi ⩾ 0. (4.3)
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Matrix [ηµν ] also admits a diagonal form

[ηµν ] =
1
2
diag{w1 +w2 −w3 +w4,w1 +w2 +w3 −w4,−w1 +w2 +w3 +w4}. (4.4)

After some computations, one arrives at the generator L,

L(ρ) =
1
2

(
s12 (ρ11 − ρ22) −(s23 + s24)ρ12 +(w4 −w3)ρ21

−(s23 + s24)ρ21 +(w4 −w3)ρ12 s12 (ρ11 − ρ22)

)
(4.5)

for sij = wi +wj. Next, performing the vectorization of L (which we omit here for brevity) we
obtain its spectrum,

specL= {µ1 = 0,µ2 =−s12,µ3 =−s23,µ4 =−s24} , (4.6)

as well as corresponding eigenmatrices εi such that L(εi) = µi εi, which in this particular case
happen to be equivalent to Pauli matrices,

ε1 =
1√
2
I, ε2 =− 1√

2
σ3, ε3 =

1√
2
σ1, ε4 =− i√

2
σ2. (4.7)

In such case, a dual basis is identical, βi = εi. Dynamical semigroup etL can be then (again,
by vectorization techniques) characterized by its action on matrix ρ= [ρij] via

ρt = [ρij (t)] = etL ([ρij]) , (4.8)

for matrix elements

ρ11 (t) =
1
2

(
1+ e−s12t

)
ρ11 +

1
2

(
1− e−s12t

)
ρ22, (4.9a)

ρ21 (t) =
1
2

(
e−s23t− e−s24t

)
ρ12 +

1
2

(
e−s23t+ e−s24t

)
ρ21, (4.9b)

ρ12 (t) =
1
2

(
e−s23t− e−s24t

)
ρ21 +

1
2

(
e−s23t+ e−s24t

)
ρ12, (4.9c)

ρ22 (t) =
1
2

(
1+ e−s12t

)
ρ22 +

1
2

(
1− e−s12t

)
ρ11. (4.9d)

The Choi matrix CetL is Hermitian as expected and reads

CetL =
1
2


1+ e−s12t 0 0 e−s23t+ e−s24t

0 1− e−s12t e−s23t− e−s24t 0
0 e−s23t− e−s24t 1− e−s12t 0

e−s23t+ e−s24t 0 0 1+ e−s12t

 (4.10)

and its spectrum is found to be

λ1 (CetL) =
1
2

(
1− e−s12t− e−s23t+ e−s24t

)
, (4.11a)

λ2 (CetL) =
1
2

(
1− e−s12t+ e−s23t− e−s24t

)
, (4.11b)
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Figure 1. Spectrum of Choi matrix CetL as function of t for parameters w1 = 0.3,
w2 = 0.4, w3 = 0.7, w4 = 0.1. All eigenvalues are non-negative, i.e. semigroup is
always CP.

λ3 (CetL) =
1
2

(
1+ e−s12t− e−s23t− e−s24t

)
, (4.11c)

λ4 (CetL) =
1
2

(
1+ e−s12t+ e−s23t+ e−s24t

)
. (4.11d)

Depending on actual values of wi, the smallest eigenvalue of CetL may change sign and
monotonicity. It is then possible for the semigroup to exhibit a mixed behavior:

(1) it may be CP for all t⩾ 0, when λmin(CetL) is everywhere non-negative; exemplary plot
regarding such situation is shown in figure 1,

(2) it may be decomposable (with both CP and coCP parts non-zero) for all t⩾ 0, when
λmin(CetL)< 0 everywhere; see figure 2,

(3) and finally, it can be decomposable in some interval (0, t0] and then become CP for t⩾ t0,
i.e. it may be asymptotically CP, as presented in figure 3.

4.2. Time-dependent commutative Lindbladian in d = 3

Our second example concerns a simple time-dependent Lindbladian over algebra M3(C)
which we choose as

Lt = g(t)L, where g(t) = e−t (1+ sinωt) , (4.12)

and L= ϵ1M+ ϵ2N is constant and given as in (3.8) and (3.9), however lacking commutator
terms; ϵ1, ϵ2,ω ⩾ 0 are dimensionless parameters. Just as earlier, we choose a diagonal matrix
[ωjk], this time of a form

[ωjk] =
3∑

i=1

Eii⊗Eii = diag{1, 0, 0, 0, 1, 0, 0, 0, 1}, (4.13)

19



J. Phys. A: Math. Theor. 56 (2023) 485202 K Szczygielski

Figure 2. Spectrum of Choi matrix CetL as function of t for parameters w1 = w2 = 0,
w3 = 0.2, w4 = 0.7. One eigenvalue remains negative for all t> 0, i.e. a semigroup is
decomposable, yet never CP (except for t= 0).

Figure 3. Spectrum of Choi matrix CetL as function of t for parameters w1 = 0.1,
w2 = 0.03, w3 = 0.2, w4 = 0.9. The smallest eigenvalue λmin(CetL) changes sign in
neighborhood of t0 ≈ 3.79 and remains positive for all t> t0 i.e. a semigroup is asymp-
totically CP.

which in result yields

[ηµν ] =
1
6
diag{5, 5, 2, 1, 1,−2}⊕ 1

6

(
−1

√
3√

3 5

)
. (4.14)

Matrix [γµν ] which defines the part M of the generator is simply chosen to be identity, γµν =
δµν . Note, that function f is always non-negative so positive semidefiniteness of matrices [γµν ]
and [ωjk] cannot be spoiled. The Hilbert-Schmidt orthonormal basis {Fi}9i=1 spanningM3(C)
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consists of Gell–Mann matrices (up to normalization); see appendix A.1 for details. After
evaluations, we obtain the action of maps M and N,

M(ρ) =
8∑

µ=1

(
FµρFµ −

1
2

{
F2
µ,ρ
})

(4.15a)

=

 −2ρ11 + ρ22 + ρ33 −3ρ12 −3ρ13
−3ρ21 ρ11 − 2ρ22 + ρ33 −3ρ23
−3ρ31 −3ρ32 ρ11 + ρ22 − 2ρ33

 ,
N(ρ) =

8∑
µ,ν=1

ηµν

(
FµρFµ −

1
2

{
F2
µ,ρ
})

(4.15b)

=
1
12

 6(−2ρ11 + ρ22 + ρ33) 4ρ21 − 7ρ12 4ρ31 − 19ρ13
4ρ12 − 7ρ21 6(ρ11 − ρ22) 2(2ρ32 − 5ρ23)
4ρ13 − 19ρ31 2(2ρ23 − 5ρ32) 6(ρ11 − ρ33)

 .
Notice that generator Lt satisfies commutativity condition [Lt,Ls] = 0 for any two chosen

t,s ∈ R+. This convenient property implies a particularly simple, formal expression for Λt,

Λt = exp

tˆ

0

Lt ′dt
′ = ef(t)L, (4.16)

where

f(t) =

tˆ

0

g(t ′)dt ′ = 1− e−t+
1

1+ω2

(
ω−ωe−t cosωt− e−t sinωt

)
. (4.17)

Map Λt is then defined by its action, ρt = Λt([ρij]), for explicit matrix elements

ρ11 (t) = p1 (t)ρ11 + p2 (t)ρ22 + p2 (t)ρ33, (4.18a)

ρ22 (t) = p2 (t)ρ11 + s1 (t)ρ22 + s2 (t)ρ33, (4.18b)

ρ33 (t) = p2 (t)ρ11 + s2 (t)ρ22 + s1 (t)ρ33, (4.18c)

ρ21 (t) = q1 (t)ρ12 + q2 (t)ρ21, ρ12 (t) = q2 (t)ρ12 + q1 (t)ρ21, (4.18d)

ρ31 (t) = r1 (t)ρ13 + r2 (t)ρ31, ρ13 (t) = r2 (t)ρ13 + r1 (t)ρ31, (4.18e)

ρ32 (t) = u1 (t)ρ23 + u2 (t)ρ32, ρ23 (t) = u1 (t)ρ32 + u2 (t)ρ23, (4.18f )

and functions

p1 (t) =
1
3

(
1+ 2e−

3
2 (2ϵ1+ϵ2)f(t)

)
, (4.19a)
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Figure 4. Time dependence of λmin(CΛt) (numerically obtained) in example 4.2 for dif-
ferent values of ϵ1, ϵ2 and fixedω= 10, showing three possible regimes of the dynamical
map Λt being CP (ϵ1 = 0.1, ϵ2 = 0.2), decomposable (ϵ1 = 0.01, ϵ2 = 0.2) and asymp-
totically CP (ϵ1 = 0.1, ϵ2 = 1.0).

p2 (t) =
1
3

(
1− e−

3
2 (2ϵ1+ϵ2)f(t)

)
, (4.19b)

q1,2 (t) =
1
2
e−

1
4 (12ϵ1+ϵ2)f(t)

(
1∓ e−

2
3 ϵ2f(t)

)
, (4.19c)

r1 (t) =
1
2
e−(3ϵ1+

23
12 ϵ2)f(t)

(
−1+ e−

2
3 ϵ2f(t)

)
, (4.19d)

r2 (t) =
1
2
e−(3ϵ1+

5
4 ϵ2)f(t)

(
1+ e−

2
3 ϵ2f(t)

)
, (4.19e)

s1,2 (t) =
1
6

[
2+ e−(3ϵ1+

3
2 ϵ2)f(t)

(
1± 3eϵ2f(t)

)]
, (4.19f )

u1,2 (t) =
1
2
e−(3ϵ1+

1
2 ϵ2)f(t)

(
1∓ e−

2
3 ϵ2f(t)

)
. (4.19g)

After some effort, one can calculate the associated Choi matrix CΛt and its spectrum (for
sake of reader’s convenience we chose to avoid presenting the resulting cumbersome formu-
las), at least numerically for chosen values of parameters. Similar to the previous semigroup
example, we had examined the time dependence of λmin(CΛt), the smallest eigenvalue of
Choi matrix, for a wide range of ϵ1, ϵ2 and ω and found the behavior of Λt to be in par-
allel with the semigroup case, i.e. Λt may be always CP (when λmin(CΛt)⩾ 0, t⩾ 0), always
decomposable (i.e. with coCP part non-zero, when λmin(CΛt)< 0, t⩾ 0) or asymptotically CP
(when λmin(CΛt)⩾ 0 for all t⩾ t0), depending on parameters ϵ1,2. Some exemplary plots of
λmin(CΛt) are presented in figure 4. Clearly, lowering the ϵ1/ϵ2 ratio decreases the significance
of part M (4.15a) of the generator and pushes the dynamics from global complete positivity
towards decomposability.
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Appendix. Mathematical supplement

A.1. Hermitian Hilbert-Schmidt basis

Let {Fi}d
2

i=1 be the Hermitian Hilbert-Schmidt orthonormal basis in Md(C) subject to
conditions (2.2), i.e.

Fj = F∗
j , trFjFk = δjk, trFj = δj d2 , Fd2 =

1√
d
I. (A.1)

Matrices {Fi} can be then constructed explicitly in a following way [15, 16]. Let again Ejk
denotematrix units, i.e. they contain 1 in position (j, k) and 0 s elsewhere. Let us definematrices
Wd
kj,K

d
k ∈Md(C) such that

Wjk =

{
1√
2
(Ejk+Ekj) , for k< j,

− i√
2
(Ejk−Ekj) , for k> j,

(A.2)

such that j,k ∈ {1, . . . , d2 − 1}, j 6= k, as well as

Kk =
1√

k(k+ 1)

 k∑
j=1

Ejj− kEk+1,k+1

 , (A.3)

where k ∈ {1, . . . , d− 1}. Then, the set {Wjk, Kk, 1√
d
Id} contains d2 matrices and is orthonor-

mal (with respect to Hilbert-Schmidt inner product) and complete, being a basis of Md(C).
Its elements are then labeled Fi for 1⩽ i ⩽ d2. MatricesW jk are either symmetric off-diagonal
or antisymmetric and matrices Kk are diagonal and of zero trace. By simple counting, there
is then exactly 1

2d(d− 1) of both symmetric off-diagonal and antisymmetric matrices and d
diagonal matrices (including Fd2 =

1√
d
I).

One then introduces the so-called structure constants f ijk and gijk, which respectively define
the commutation and anticommutation relations amongst matrices Fi,
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[Fi,Fj] =
d2−1∑
k=1

fijkFk, {Fi,Fj}=
d2−1∑
k=1

gijkFk, (A.4)

being defined as

fijk = trFk [Fi,Fj], gijk = trFk {Fi,Fj}. (A.5)

It is worth noting that structure constants characterizeMd(C) as a Lie algebra. These allow us
to derive a following composition rule

FaFb =
d2∑
c=1

ξabcFc (A.6)

for coefficients ξijk = 1
2 ( fijk+ gijk) = trFiFjFk.

A.1.1. Cases d= 2,3 When d= 2, matrices Fi are proportional to usual Pauli matrices:

F1 =
1√
2

(
0 1
1 0

)
, F2 =

1√
2

(
0 −i
i 0

)
, F3 =

1√
2

(
1 0
0 −1

)
, (A.7)

and F4 =
1√
2
I. For d= 3 instead, resulting matrices take the form

F1 =
1√
2

 0 1 0
1 0 0
0 0 0

 , F2 =
1√
2

 0 0 1
0 0 0
1 0 0

 , (A.8)

F3 =
1√
2

 0 0 0
0 0 1
0 1 0

 , F4 =
1√
2

 0 −i 0
i 0 0
0 0 0

 ,
F5 =

1√
2

 0 0 −i
0 0 0
i 0 0

 , F6 =
1√
2

 0 0 0
0 0 −i
0 i 0

 ,
F7 =

1√
2

 1 0 0
0 −1 0
0 0 0

 , F8 =
1√
6

 1 0 0
0 1 0
0 0 −2


and F9 =

1√
3
I, i.e. they are proportional to Gell–Mann matrices.

A.2. Vectorization and matrixization

Recall, that Md(C) is isomorphically identified with Cd2 and B(Md(C)) with Md2(C). It is
then very common and convenient to utilize these identifications in order to represent matrices
as (column) vectors and linear maps onMd(C) as matrices of size d2.

Every bijectionMd(C)→ Cd2 defines so-called vectorization scheme [17, 18]. A conveni-
ent vectorization, which we here denote by vec, is the one given as the operation of flattening of
a matrix—namely, for a matrix [mij] ∈Md(C)we define a unique vectorm= vec([mij]) ∈ Cd2

via [18]

m= vec([mij]) = (m11, m12, . . . , m1d, m21, m22, . . . , mdd)
T
, (A.9)
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i.e. by putting rows of [mij] one behind another, or in a lexicographic order. We remark here,
that the convention of vectorizationwe use in this article is by nomeans universal. For example,
some authors prefer the matrix flattening not in a row-by-rowmanner, but rather in column-by-
column manner, which is sometimes called a reshaping. For details, see [17] and references
within. The inverse operation vec−1 : Cd2 →Md(C) reforms vectors back into matrices by
splitting them into d-tuples and stacking one behind the other; such operation is sometimes
called matrixization. Every linear map T on Md(C) then admits a unique representation as a
matrix T̂ ∈Md2(C) in such a way, that for any m ∈Md(C), matrix T(m) is identified with T̂m,
i.e. T(m) = vec-1 (T̂m).

A.3. Linear maps on matrix algebra

A.3.1. Operator-sum representation Let T :Mn(C)→Mm(C) be linear. Then, there exist
two nonunique, finite families of matrices {Ai},{Bi} ∈Mm,n(C) such that action of T on any
a ∈Mn(C) can be expressed as

T(a) =
∑
i

Ai aB
∗
i , (A.10)

where it is customary to put the Hermitian conjugation of matrix Bi. Form (A.10) is called the
operator-sum representation of T. For example, any Hermiticity preserving map possesses a
form

T(a) =
∑
i

λiAi aA
∗
i (A.11)

for some family of matrices {Ai} and real coefficients λi [19]. If in addition all λi ⩾ 0, then T
is completely positive.

Assume T is an endomorphism over Md(C). Expanding matrices Ai, Bi in basis {Fi} one
quickly checks that (A.10) can be equivalently expressed as

T(a) =
d2∑

i,j=1

tijFi aFj (A.12)

for some coefficients tij ∈ C. Then, we easily see that T is Hermiticity preserving if and only
if [tij] is Hermitian and CP if and only if [tij]⩾ 0. We have a following

Proposition 3. Matrix [tij] ∈Md2(C) in decomposition (A.12) may be computed as

tij = tr
[(
Fi ⊗Fk

)∗
T̂
]
, (A.13)

where T̂ ∈Md2(C) is a matricial representation of T under vectorization scheme elaborated
in section A.2.

Proof. It may be shown [17, 18] that the mapping a 7→ AaB, for a,A,B ∈Md(C), can be
represented under the vectorization scheme (A.9) as a matrix A⊗BT where ⊗ is the usual
Kronecker product of matrices, i.e.

vec(AaB) =
(
A⊗BT

)
a. (A.14)
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This means that general prescription for linear map (A.12) is equivalently represented as a
matrix T̂ of size d2 of a form

T̂=
d2∑

i,j=1

tij
(
Fi ⊗FT

j

)
. (A.15)

Notice that {FT
i } is still a Hilbert-Schmidt orthonormal basis in spaceMd(C)T 'Md(C), and

so a set {Fi ⊗FT
j } spans space Md(C)⊗Md(C)T 'Md2(C) being still a Hermitian Hilbert-

Schmidt basis. This, together with Hermiticity of Fi immediately implies

tij = 〈Fi ⊗FT
j , T̂〉2 = tr

[(
Fi⊗Fj

)∗
T̂
]
, (A.16)

which is the claim.

A.3.2. Transposition map We grant a special attention to a transposition map, i.e. a linear,
Hermiticity and trace preserving map θ :Md(C)→Md(C) acting via prescription θ([aij]) =
[aji]. Let again a spaceMd(C) be spanned by a Hilbert-Schmidt orthonormal basis {Fi} satis-
fying properties (2.2). Then we have a following result:

Proposition 4. Let

θ̂ = diag{θ1, . . . , θd2}= I 1
2 d(d−1) ⊕

(
−I 1

2 d(d−1)

)
⊕ Id, (A.17)

Define also a set

J =

{
1+

1
2
d(d− 1) , . . . , d(d− 1)

}
. (A.18)

Then, the transposition map θ admits an operator-sum representation of a form

θ (a) = aT =
d2∑
i=1

θiFi aFi (A.19)

for coefficients θi ∈ {−1, 1} given explicitly as

θi =

{
−1, for i ∈ J ,
+1, otherwise,

(A.20)

which therefore yields

θ (a) =
d2∑
i=1

Fi aFi − 2
∑
i∈J

Fi aFi . (A.21)

Proof. From proposition 3 we know that the transposition map may be put in its operator-sum
representation

θ (a) =
d2∑

i,j=1

θijFi aFj (A.22)
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for matrix [θij] ∈Md2(C) calculated from formula (A.13), where T̂ is chosen as a matricial
representation of θ under the vectorization scheme. It is not difficult to show that general
structure of T̂ is

T̂=
d∑

i,j=1

Eij⊗Eji (A.23)

where Eij are matrix units. T̂ then consists of d2 square blocks containing only single 1 at some
location and 0 s elsewhere and in fact is a permutationmatrix (in literature, those are sometimes
called SWAP matrices). As an example, below we demonstrate appropriate matrices for d= 2
and 3:

T̂2×2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (A.24a)

T̂3×3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


. (A.24b)

Now, by Hermiticity of Fi we have

θij = tr
[(
Fi ⊗Fj

)∗
T̂
]
= tr

[(
Fi ⊗FT

j

)
T̂
]

=
d∑

k,l=1

tr
(
FiEkl⊗FT

j Elk
)
=

d∑
k,l=1

trFiEkl · trFT
j Elk

=
d∑

k,l=1

〈Fi,Ekl〉2〈Ekl,FT
j 〉2 =

〈
Fi,

d∑
k,l=1

〈Ekl,FT
j 〉2Ekl

〉
2

= 〈Fi,FT
j 〉2, (A.25)

since canonical basis {Eij} is yet another (nonhermitian) Hilbert-Schmidt orthonormal basis.
Notice that FT

j =±Fj depending on symmetry of Fj and so

θij =±δij (A.26)

andmatrix [θij] is diagonal, θij = diag{θi} for θi =±1. If 1⩽ i ⩽ 1
2d(d− 1), i.e. Fi is symmet-

ric, we have θi = 1; if, on the other hand 1
2d(d− 1)+ 1⩽ i ⩽ d2 − d, i.e. Fi is antisymmetric,

we have θi =−1. In the remaining case d2 − d+ 1⩽ i ⩽ d2 the resulting diagonal matrices
Fi are naturally also symmetric, so we still have θi = 1, as claimed.
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Proposition 5. The following statements hold:

(1) For every (not necessarily Hermitian) Hilbert-Schmidt basis {Gi} there exists such a
Hermitian matrix [mij] ∈Md2(C) unitarily equivalent to θ̂ (A.17) that the mapping a 7→∑d2

i,j=1mijGi aG∗
j is a transposition.

(2) For every matrix [mij] ∈Md2(C) unitarily equivalent to matrix θ̂ (A.17) there exists
such a (not necessarily Hermitian) Hilbert-Schmidt basis {Gi} that a mapping a 7→∑d2

i,j=1mijGi aG∗
j is a transposition.

Proof. Ad (1). Let {Gi} be some orthonormal Hilbert-Schmidt basis. Then there exists a unit-
ary transformation matrix U= [uij] ∈Md2(C) such that

Gi =
∑
j

ujiFj and Fi =
∑
j

uijGj. (A.27)

Set a matrix [mij] as

[mij] = U∗θ̂U, mij =
∑
kl

θkδklukiulj, (A.28)

which then yields, for a ∈Md(C),∑
ij

mijGi aG
∗
j =

∑
i

θiFi aFi = aT (A.29)

after easy algebra. Ad (2). Analogously, let again [mij] = U∗θ̂U for some arbitrarily
chosen unitary U= [uij]. Then, if one defines Gi =

∑
j ujiFj then immediately we have∑

ijmijGi aG∗
j =

∑
i θiFi aFi = aT and there exists such a basis.

A.3.3. Some properties of decomposable maps

Proposition 6. Let ϕ ∈ CP(Md(C)). Then eϕ ∈ CP(Md(C)) as well.

Proof. Recall that, since ϕmay be represented as a complex square matrix of size d2, one can
always express eϕ as a limit

eϕ = lim
n→∞

(
id+

1
n
ϕ

)n

, (A.30)

where all maps of a form
(
id+ 1

nϕ
)n
, n ∈ N, are also CP. Then, the limit also defines a CP map

since the cone CP(Md(C)) is closed.

Proposition 7. Let φ ∈ coCP(Md(C)). Then eφ ∈ D(Md(C)).

Proof. Let φ = θ ◦ϕ for ϕ 6= 0 completely positive (case ϕ= 0 gives eθ◦ϕ = id which is trivi-
ally decomposable). Then, it suffices to express eφ by putting θ ◦ϕ in place of ϕ in for-
mula (A.30) and to notice that all maps under the limit are decomposable, for all n ∈ N, as
is the limit itself by the fact, that D(Md(C)) is closed.
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A.4. Secondary lemmas and proofs

Lemma 1. Geometric tensor Ω̂ may be re-expressed in a form

Ωjk
µν = 〈FT

kFµ,F
T
νFj〉2. (A.31)

Proof. Recall that the operator-sum representation (3.3) of transposition map may be
rearranged in a form of formula (A.21),

θ (a) =
d2∑
i=1

Fi aFi − 2
∑
i∈J

Fi aFi, (A.32)

where J = {1+ d(d− 1)/2, . . . , d(d− 1)} enumerates the antisymmetric part of basis, i.e. a
linear span of {Fi : i ∈ J } is the subspace Md(C)as. of all antisymmetric matrices in Md(C).
This fact implies that Ωjk

µν may be, after using cyclicity of trace, put in a form

Ωjk
µν = 〈FµFj,

d2∑
i=1

θi 〈Fi,FνFk〉2Fi 〉2

= 〈FµFj,
(
idMd(C) − 2Pas.

)
(FνFk)〉2 (A.33)

where idMd(C) is the identitymap onMd(C) andPas. is the orthogonal projection ontoMd(C)as.
given as

Pas. (a) =
∑
i∈J

〈Fi,a〉2Fi . (A.34)

Let {ei} be a canonical basis in Cd. By dimension count, it is easy to see that space Md(C)
may be identified with a Hilbert space tensor product Cd⊗Cd, with a mapping ζ : Cd⊗Cd →
Md(C) defined by its action on basis elements as

ζ (ei ⊗ ej) = Eij = |ei 〉〈ej| (A.35)

and then extended by linearity, being a natural bijection. Under action of ζ, every vector x=∑
ij xijei ⊗ ej ∈ Cd⊗Cd can be isomorphically represented as a matrix [xij] ∈Md(C) and vice

versa. This implies, that Md(C)as. is identified with Cd ∧Cd, the antisymmetric subspace of
Cd⊗Cd. In result, operator Pas. = ζ−1 ◦Pas. ◦ ζ is the corresponding projection ontoCd ∧Cd.
We know however, that such projection may be expressed in a form

Pas. =
1
2
(idCd⊗Cd −V) , (A.36)

with V being the swap operator on Cd⊗Cd defined via

V(x⊗ y) = y⊗ x, x,y ∈ Cd. (A.37)

From this, we have

idMd(C) − 2Pas. = ζ ◦V ◦ ζ−1, (A.38)
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which by direct check is a transposition on Md(C). In result, (A.33) reads

Ωjk
µν = 〈FµFj,(FνFk)

T〉2 (A.39)

which is equal to claimed form (A.31) after easy manipulations.

Lemma 2. Matrix [ωjk(t)] ∈Md2(C) given via expression

ωjk (t) = lim
ϵ↘0

1
ϵ
yjk (t+ ϵ, t) (A.40)

is well-defined and positive semidefinite for all t ∈ [t1, t2].

Proof. Let v ∈ Cd2 and define function fv : [t1, t2]2 → R as

fv (t,s) = 〈v, [yjk (t,s)]v〉=
d2∑

j,k=1

yjk (t,s)vjvk. (A.41)

Since matrix [yjk(t,s)] was uniquely identified with a CP map Yt,s appearing in the propag-

ator, it is positive semidefinite for all t⩾ s, so clearly fv(t,s)⩾ 0 for every v ∈ Cd2 and t⩾ s.
Moreover, from proposition 1 we have Yt,t = 0 and so fv(t, t) = 0. Let then t ∈ [t1, t2] be arbit-
rary and assume indirectly, that fv(· , t) is decreasing in some interval [t0, ξ0] for some t0 ⩾ t.
Then there exists ξ ⩾ t0 such that f(ξ, t0)< f(t0, t0) = 0, which is a contradiction. This yields
that ξ 7→ fv(ξ , t), where ξ ⩾ t, must be non-decreasing for every t⩾ 0. We will use this reas-
oning in a following computation. The formula for matrix [ωjk(t)] can be rewritten as

ωjk (t) = lim
ϵ↘0

1
ϵ
yjk (t+ ϵ, t)

= lim
ϵ↘0

yjk (t+ ϵ, t)− yjk (t, t)
ϵ

=
∂yjk (ξ, t)
∂ξ

∣∣∣∣
t

, (A.42)

since yjk(t, t) = 0, i.e. as a derivative w.r.t. first variable of a matrix [yjk(ξ, t)], computed at ξ = t.

This however yields, for every v ∈ Cd2 ,

d2∑
j,k=1

ωµν (t)vjvk =
d2∑

j,k=1

∂yjk (ξ, t)
∂ξ

∣∣∣∣
t

vjvk =
∂fv (ξ, t)
∂ξ

∣∣∣∣
t

⩾ 0 (A.43)

due to demonstrated monotonicity of fv(· , t). This shows that [ωjk(t)] ∈Md(C)+ for t ∈ [t1, t2].

A.5. Derivation of formula (3.32)

Starting with expression (3.29) for Nt we rewrite it by expanding the anticommutator and
expressing ηµν(t) as (3.10),
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Nt (ρ) =
d2∑

j,k=1

d2−1∑
µ,ν=1

Ωjk
µνωjk (t)FµρFν −

1
2

d2∑
j,k=1

d2−1∑
µ,ν=1

Ωjk
µνωjk (t)FνFµρ

− 1
2

d2∑
j,k=1

d2−1∑
µ,ν=1

Ωjk
µνωjk (t)ρFνFµ − i [Kt,ρ] , (A.44)

where we also put back Ωjk
µν as given in (3.5) in each term. In order to reintroduce the trans-

position map θ into the expression, we expand the summations over µ, ν up to d2 and then
subtract redundant terms. The first term appearing at the right hand side of equality (A.44) is
therefore

d2∑
j,k=1

d2−1∑
µ,ν=1

Ωjk
µνωjk (t)FµρFν

=
∑
jklm

θlωjk (t)

(∑
µ

ξljµFµ − ξljd2Fd2

)
ρ

(∑
ν

ξlkνFν − ξlkd2Fd2

)∗

=
∑
jklm

θlωjk (t)

(
FlFj−

1√
d
ξljd2

)
ρ

(
FlFk−

1√
d
ξlkd2

)∗

=
∑
jk

ωjk (t)
[
(FjρFk)

T −AkFjρ− ρFkA
∗
j + bjkρ

]
(A.45)

for quantities

Ak =
∑
l

θlξlkd2Fl, bjk =
∑
l

θlξjld2ξlkd2 , (A.46)

where we employed composition rule (2.3) and operator sum representation (3.3) of transpos-
ition map θ (all ‘limitless’ summation indices run from 1 up to d2). Next, we utilize the fact
that [ωjk(t)] was a positive semi-definite matrix for all t, i.e. we introduce

ωjk (t) =
∑
α

cjα (t)ckα (t), (A.47)

for some matrix [cjk(t)]. This, inserted into the last line of (A.45) allows to re-express it as

d2∑
j,k=1

d2−1∑
µ,ν=1

Ωjk
µνωjk (t)FµρFν =

∑
α

[(
Cα,tρC

∗
α,t

)T −Dtρ− ρD∗
t + e(t)ρ

]
, (A.48)

where we defined

Cα,t =
∑
j

cjα (t)Fj, Dt =
∑
jk

ωjk (t)AkFj, e(t) =
∑
jk

ωjk (t)bjk (A.49)

and applied Hermiticity of [ωjk(t)] in order to get the ρD∗
t term. Now, we notice that the two

remaining terms at the right hand side of equality (A.44) have essentially the same structure
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and differ from the first term only by order of matrices ρ, Fµ and Fν so they can be transformed
by applying nearly exactly the same steps. After some easy algebra, we obtain

d2∑
j,k=1

d2−1∑
µ,ν=1

Ωjk
µνωjk (t)FνFµρ=

∑
α

[
C∗
α,tCα,t−D∗

t −Dt+ e(t)
]
ρ (A.50)

for the second term, as well as

d2∑
j,k=1

d2−1∑
µ,ν=1

Ωjk
µνωjk (t)ρFνFµ = ρ

∑
α

[
C∗
α,tCα,t−D∗

t −Dt+ e(t)
]

(A.51)

for the third one. Now, we insert (A.48), (A.50) and (A.51) back into (A.44) which becomes

Nt (ρ) =−i [Kt,ρ] +

(∑
α

Cα,tρC
∗
α,t

)T

− 1
2
[Dt−D∗

t ,ρ]

− 1
2

∑
α

{
C∗
α,tCα,t,ρ

}
(A.52)

after some effort.
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