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The numerical evidence is provided showing that the physical solutions, in a finite basis set, of
the optimized effective potential equations (OEP) in the context of the Kohn-Sham Density Func-
tional Theory (KS-DFT) can only be obtained by employing the proper regularization procedure
in the OEP method together with a judicious choice of basis sets used in the KS OEP calcula-
tions. The regularisation relies on the truncated singular value decomposition procedure to obtain
the pseudoinverse of the density-density response matrix. We are showing that this is a critical
aspect in determining the stable and numerically accurate solutions of the KS-OEP equations for
the exchange-only and correlated cases.

I. INTRODUCTION

There has been a strenuous interest in using the
orbital-dependent exchange-correlation functionals in the
context of the Kohn–Sham (KS) density functional the-
ory (KS-DFT)[1–19], since they have proven to provide
a systematic way to overcome the limitations of con-
ventional density-dependent approximations [20] such as
the presence of self-interaction error, qualitatively in-
correct exchange, and correlation KS potentials,[21, 22],
description of dispersion interactions [23, 24] and the
KS occupied-virtual energy-gaps.[25, 26]. In addition
to providing one of the most effective tools to develop
accurate XC KS-DFT potentials and functionals, they
are also emerging as an appealing tool for computa-
tional chemistry studies.[27–30] Nevertheless, the use
of explicit orbital-dependent functionals within the KS
scheme is significantly hindered by the fact that the KS
orbitals cannot be expressed directly as the function of
the electron density. For this reason, in the true self-
consistent KS scheme, the optimized effective potential
(OEP) method must be employed,[31] to determine the
associated local XC potential, which is formally defined
as the functional derivative of the XC functional Exc[ρ]
with respect to the electronic density ρ(r). For the
exchange-only case, the method has a long history, start-
ing by Sharp and Horton [32] to determine a multiplica-
tive exchange potential variationally, followed by practi-
cal realization proposed by Talman and Shadwick [33],
and it is identified as the exact exchange-only KS (EXX
or OEPx) potential. The OEPx method is exactly de-
fined in terms of occupied KS orbitals[1–4, 34, 35]. Many
OEPx approaches with different efficiency, accuracy or
numerical stability have been presented in literature [34–
48], followed by practical applications for both molecular
[29] and solid-state systems.[28, 30] The OEPx method
possesses many important features, e.g., it removes the
one-electron self-interaction error, its exchange potential

∗ szsmiga@fizyka.umk.pl

has a correct −1/r asymptotic behavior [33], is exact
in the homogeneous-electron-gas limit exhibits an inte-
ger discontinuity[49–51] upon addition of an infinitesimal
fraction of an electron to the highest occupied orbital and
obeys the exchange virial theorem[52, 53] , and then im-
proves many other KS quantities [3, 4, 7, 29, 34, 35].

For the correlation functional and fully self-consistent
correlated KS-OEP calculations, usually, the perturba-
tion theory is involved, most cases are restricted to the
use of second-order correlation. In such a case, the most
straightforward choice is the utilization of energy ex-
pression from the second-order Görling–Levy perturba-
tion theory (OEP-GL2)[54], which has the same form as
a functional defined from the many-body perturbation
theory (MBPT)[6, 55]. Alternatively the random-phase-
approximation correlation can be used[14, 17, 48, 56, 57].
The most successful forms of the KS-OEP correlation
functionals have emerged from the ab initio DFT ap-
proach of Bartlett et. al. [6, 8, 58] in which the OEP
correlated energy expressions are based on many-body
coupled-cluster and perturbation theories and are applied
to the KS system so that the systematic improvement
can be achieved, in analogy with wave-function-based
methods. Among the second-order ab initio DFT ap-
proaches, the OEP2-sc [8] method has proven to be one
of the most stable, providing very good results in many
investigated cases [8, 22, 59–63]. It provides reasonable
correlation and total energies, correlation KS-OEP po-
tentials and relaxed electron densities, correctly describes
self–interaction, has the correct long-range behavior and
provides good ionization potentials and excitation ener-
gies [59]. Most of the quantities obtained from OEP2–
sc calculations are often better than the corresponding
ab initio second-order Moller-Plesset (MP2)[64] and even
coupled-cluster singles and doubles (CCSD)[65] and cer-
tainly much better than the ones obtained using the ex-
isting standard density-dependent DFT functionals[22].
On the contrary, the OEP-GL2 approach leads to a large
overestimation of correlation effects[6, 8, 66–68], like cor-
relation energy, correlation potentials, or even correlated
density, and undoubtedly causes a problem with conver-
gence in many cases. [8, 22, 60, 61, 63, 69, 70] As an
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alternative to the OEP2-sc methods, the spin-resolved
(SR) modification of the OEP-GL2 method [70] can be
used to improve the OEP-GL2 performance[70–73].

This makes us understand that the KS-OEP method
depends on the efficient approach for solving OEP in-
tegral equations. The numerical grid-based concept can
be used, but with limitations to the atomic and molec-
ular systems with high symmetry. In practical realiza-
tion, to ensure that KS-OEP calculations can be made
in the standard Gaussian basis sets for quantum chem-
ical applications, the linear combination of atomic or-
bitals (LCAO) OEP method is used [34, 35]. The finite
basis set implementation of the OEP approach incorpo-
rates a projection method[35, 74] for solving the required
integral equation, and by construction, all potentials
could be expanded in terms of auxiliary Gaussian func-
tions. Some computational difficulties have been faced in
the application of the LCAO OEP calculations, both to
the exchange-only energy functional[31, 41, 42, 45, 75–
81] and with correlation included[60, 82, 83] which is
a usual manifestation of the well-known instability as-
sociated with numerical solutions of Fredholm integral
equations of the first kind. [84]In order to obtain nu-
merical solutions of reasonable accuracy for this class
of equations (KS-OEP), cautious selection of Gaussian
basis sets is required, and what is even more impor-
tant is the utilization of the proper regularization tech-
niques in obtaining the inverse of the density-density re-
sponse matrix in the OEP procedure. Previous expe-
rience has shown that the use of the same basis set to
represent both the orbitals and potentials is desirable
and that the uncontraction of the basis set often min-
imizes numerical difficulties.[8, 31, 60, 61, 74] These is-
sues have been discussed extensively in the literature and
several schemes have been proposed for managing this
problem.[41, 42, 45, 75–82, 85] In addition, for correlated
OEP calculations, such as those considered in this work,
we must take care to ensure that the basis sets used are
suitable for the description of correlation effects akin to
those employed in standard wave function-based calcula-
tions.

Mixing the problems mentioned above of solving the
OEP equations, with the convergence issues in the case
of OEP-GL2 for some atomic and molecular systems
[66, 68, 86, 87] , together with the wrong choice of Gaus-
sian basis sets and the underestimation of the use of the
regularization procedure[82], introduces some confusion
in the context of the application of KS-OEP methods.
Therefore it still affects the lack of confidence in imple-
menting the KS-OEP methods and then in the quality of
the results. In this study, we provide numerical evidence
that the physically meaningful solutions of the KS-OEP
equations on a finite basis can only be obtained by em-
ploying the proper regularization procedure in the solu-
tion of the OEP equations.

II. THEORY

In the KS-OEP method, the KS XC potential vOEP
xc =

δExc/δρ corresponds to a given orbital-dependent en-
ergy expression Exc = Exc[{ϕpσ}, {εpσ}], where {ϕpσ}
and {εpσ} are sets of KS orbitals and eigenvalues, re-
spectively, obtained through the self-consistent solution
of the KS equations[

−1

2
∇2 + vs,σ(r)[ρ]

]
ϕpσ(r) = εpσϕpσ(r) , (1)

with the local effective KS potential

vs,σ[ρ](r) = vext(r) + vJ(r) + vxc,σ(r) , (2)

where vext is the external (nuclear) potential, vJ is the
classical Hartree potential and

ρ(r) =
∑
σ

ρσ(r) =
∑
i,σ

|ϕiσ(r)|2 (3)

being the electron density. All through this section, we
use the convention to label with σ the spin degrees of
freedom and with i, j the occupied KS orbitals, with a, b
the unoccupied ones, with p, q, r, s the general (occupied
or unoccupied) ones. It is useful and a common practice
in orbital-dependent approaches to divide the XC energy
functional as Exc = Ex+Ec, separating the exchange and
the correlation contributions. The exchange energy func-
tional has the form of the usual Hartree-Fock exchange
energy

Ex[{ϕqτ}] = −1

2

∑
σ

∑
ij

(iσjσ|jσiσ) , (4)

with (pσqσ|rσsσ) being two-electron integrals in the Mul-
liken notation computed from KS orbitals.

For the correlation part, we will limit ourselves to
the ab initio DFT functionals and expressions obtained
from the second-order Görling–Levy perturbation the-
ory (GLPT) energy functional,[54] which has exactly the
same form as a functional defined from the many– body
perturbation theory (MBPT)[6, 55] and defines the OEP-
GL2 method

E(2)
c =

1

2

∑
στ

∑
ijab

|(iσaσ|jτ bτ )|2

εiσ + εjσ − εaτ − εbτ
(5)

− 1

2

∑
στ

∑
ijab

(iσaσ|jτ bτ )(iσbσ|jτaτ )
εiσ + εjσ − εaτ − εbτ

+
∑
σ

∑
ia

|fσ
ia|2

εiσ − εaσ

with fσ
pq = εpσδpq − ⟨pσ|K̂ + vxc|qσ⟩ being the Fock

matrix elements defined in terms of the KS spin orbitals.
We also will present results for the OEP2-sc method, in
which the KS orbitals undergo a semi-canonical transfor-
mation that makes the second-order energy expression
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invariant with respect to orbital rotations (mixing of oc-
cupied or virtual orbitals among themselves).[8, 60].

For a given orbital- and eigenvalue-dependent XC en-
ergy functional (Exc) the OEP equation for the XC KS
potential can be written as [1, 3, 4, 6, 32, 33, 36]∫

Xσ(r, r
′)vOEP

xc,σ (r′)dr′ = Λxc,σ(r) , (6)

which is an integral equation (Fredholm of the first kind)
with the inhomogeneity given by

Λxc,σ(r) =
∑
p

{∫
ϕpσ(r)

∑
q ̸=p

ϕqσ(r)ϕqσ(r
′)

εpσ − εqσ

∂Exc

∂ϕpσ(r′)
dr′

+
∂Exc

∂εpσ
|ϕpσ(r)|2

}
(7)

where

Xσ(r, r
′) = 2

∑
ia

ϕiσ(r)ϕaσ(r)ϕiσ(r
′)ϕaσ(r

′)

εiσ − εaσ
, (8)

is the static KS linear response function. The explicit
form of the OEP XC potential corresponding to the
functionals of Eq. 4 and 5 can be found elsewhere
[6, 8, 71, 83, 88] In practice, to solve the OEP equations
Eq. (6) and calculate the OEP exchange and correlation
potentials we employ the finite–basis set procedure, of
Refs. [31, 34, 35, 74], which directly transforms the OEP
equation into an algebraic problem. This is done by ex-
panding the exchange and correlation potential and the
KS linear response function Eq. (8) on an auxiliary, or-
thonormal, M-dimensional basis set {gp(r)}Mp=1 as

vOEP
xc,σ (r) =

M∑
p=1

cσpgp(r), (9)

and matrix representation of the response function reads

Xσ(r, r
′) =

∑
pq

(X)pq,σg
∗
p(r)gq(r

′), (10)

where

(X)pq,σ=

∫
g∗p(r)Xσ(r, r

′)gq(r
′)dr′dr

=
∑
ia

(
(ia|p)(ia|q)∗

εi − εa
+ c.c.

)
, (11)

and

(rs|q) =
∫

dr′ϕs(r
′)ϕ∗

r(r
′)gq(r

′) .

is the overlap integral of the orbitals ϕs(r
′), ϕr(r

′) and
the orthonormal auxiliary Gaussian function gq(r

′). This
step allows turning the solution of Eq. (6) into an alge-
braic problem in which the expansion coefficients (cp) are
obtained from the solution of OEP equation in the form

(X)qp,σc
σ
p = Yq , (12)

and Yq is defined by the choice of the form of ex-
change and correlation functionals, e.g., OEPx, OEP-
GL2, OEP2-sc. For the explicit expressions of Yq, see
Refs. [6, 8, 60].

In addition, to ensure the correct −1/r asymptotic be-
havior of the whole XC potential the Slater [89] or Fermi-
Amaldi (FA) [90] potential is added to the vOEP

xc,σ

vOEP
xc,σ (r) = vσSlater/FA(r) +

M∑
p=1

cσpgp(r) , (13)

where the expansion coefficients cσp are determined from
the solution of the OEP equation Eq. (12).

In practice, the matrix representation of the response
function X is ill-conditioned[31, 74]. This is due to the
fact that any functions orthogonal to the product func-
tions ϕi(r)ϕa(r) could be added to the expansion but
should have zero weight in the OEP solution, forcing a
computed zero with its numerical inaccuracies. To ac-
commodate this, we use the singular-value decomposi-
tion (SVD) procedure to obtain the pseudoinverse of the
density-density response matrix, (X−1)qp [35, 69, 74].
That is achieved by the following two-step procedure.
In the first step, the real symmetric matrix X is diag-
onalized through an orthogonal transformation U , i.e.,
X = UΩU−1 where Ω is a diagonal matrix that con-
tains the ωp eigenvalues and U contains the eigenvec-
tors. In the second step, the pseudoinverse is calculated
by X−1 = UΩ−1U−1 where each element of the diag-
onal Ω−1 is the reciprocal 1/ωp of the corresponding
eigenvalue when the eigenvalue is greater than a specified
threshold (SVD cutoff) and is set to zero if the eigenvalue
is smaller than or equal to the threshold. This replace-
ment with zero is similar to excluding the eigenfunctions
with zero eigenvalues, i.e., constant functions, from the
representation given by Eq. (9).

This regularization is the critical aspect and an essen-
tial step in determining the stable solutions of the OEP
equations in the finite-basis set representation.[8, 59, 69,
71]. Usually the SVD cutoff of 10−6 is chosen for LCAO
OEP calculations to achieve a compromise between con-
vergence and numerical stability.[29, 60, 71, 91]

III. COMPUTATIONAL DETAILS

All OEP calculations have been performed using lo-
cally modified ACES II package [92] where the finite-basis
set implementation of OEP [34, 35, 74] is implemented.

As mentioned above, in most cases, we use the same
basis set to represent both the orbitals and the XC OEP
potential, which has been shown to give reasonable accu-
racy of results[93]. The only exception from that is made
for two cases in Table I of the current work (rows de-
noted as cc-pVTZ/P1 and cc-pVTZ/P2) where we have
performed the calculations using the identical computa-
tional setup as in Ref. 82 with auxiliary basis set taken
from Table I of the aforementioned work. All details
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about the basis set used in the present work are given
in the text. As noted before, the numerical instability
in the solution of OEP equations [31, 42, 60, 76, 77, 79–
81, 83, 85] were minimized by employing a truncated SVD
method for the construction of the pseudo-inverse of the
linear response function in the OEP procedure. This reg-
ularization is an essential step in determining stable so-
lutions of the OEP equation which in combination with
the proper choice of basis set, ensures stable and phys-
ically sound solutions, avoiding in particular variational
collapse observed in Ref. 82. Finally, we underline that
in all LCAO OEP calculations, we have employed FA po-
tential as a seed potential in Eq. (13) (N is a number of
electrons).

vFA
xc (r)= − 1

N

∫
ρ(r′)

|r− r′|
dr′ (14)

Moreover, the tight convergence criteria were enforced
in the KS-OEP procedure i.e., at the convergence point,
the gradient of the total electronic energy with respect
to variations of the cσp coefficients in Eq. (13) was less
than 10−9. Finally, the cutoff for truncated SVD was
set to 10−6, and results were carefully checked to ensure
convergence with respect to this parameter.

IV. RESULTS

To start our discussion, first in Tab. I, we report the
results obtained for OEPx, OEP-GL2, and OEP2-sc for
He atom and several basis sets listed in the first col-
umn of Tab. I. The second column contains the total
energies (in Hartree, sign reversed) obtained within the
given method with FA guiding potential (see Eq. (13))
and SVD regularization turned on. One can note that
for these settings, all methods converged without prob-
lems, regardless of the utilized basis set. Additionally,
we observe that at the OEPx level, we can converge to
numerical results (2.8617 Ha) with the proper choice of
basis set (UGBS[94] and 20S10P2D). This is not a sur-
prising result, because the FA guiding potential provides
the exact solution of the OEPx equation for this sys-
tem. Thus, the remaining part of Eq. (13) is exactly
zero. A similar situation can also be observed in the
case of OEP-GL2 and OEP2-sc methods. In the for-
mer method, the results for the 20S10P2D and uncon-
tracted aug-cc-pVQZ basis sets (2.9078 Ha and 2.9085
Ha) are in line with the numerical data (2.9099 Ha) from
Ref. 66, showing the numerical stability of the LCAO
OEP procedure. In turn, for OEP2-sc method for the
20S10P2D basis set gives almost the same total energy
as in the case of the second-order Moller-Plesset method
i.e., 2.8970 Ha. A similar situation was observed for the
uncontracted aug-cc-pVQZ basis set. This behavior is
not surprising for the He atom and was already observed
in some studies[70–72]. One important fact to note is
that the stable solution was also obtained for the basis

set reported in Table I of Ref. 82, which have been spe-
cially designed to recover near-degeneracy of the highest
occupied molecular orbital (HOMO) and lowest unoccu-
pied molecular orbital (LUMO) in the case of OEP-GL2
method leading to a variational collapse of this methods.
This is the first important finding of the present study,
showing that with proper regularization, i.e. in our case,
the truncated SVD, one can obtain physically meaningful
OEP solutions.

The third column of Tab. I reports the total energy
differences calculated concerning data in the second col-
umn for the case where the guiding FA potential is not
included in the Eq. (13). Therefore, in this situation, the
OEP procedure must fully catch the XC potential for a
given orbital-dependent functional. One can note that
for OEPx and OEP2-sc methods, the total energy dif-
ference error is exactly zero. Unfortunately, this is not
the case for the OEP-GL2 method, where the error is be-
tween 10−5 Ha for the smallest basis set used and 10−9

Ha for the largest variant. This is traced back to the
overestimation of the correlation effects in the OEP-GL2
method, which is even more pronounced with the lack of
FA guiding potential. Nonetheless, these errors are suffi-
ciently small at the convergence threshold for the largest
basis set.

The fourth and fifth columns of Tab. I provide the
same data for the case where SVD regularization of the
density-density response matrix was switched off. In this
situation, the convergence is only reached for the OEPx
method with FA guiding potential. As was noted be-
fore, this is not surprising because the FA potential is
the exact OEP solution for two-electron systems in the
singlet state[95]. The neglection of the FA term leads to
divergence of the OEPx method regardless of the basis
set used. Again it confirms the necessity of using regu-
larization in solving the LCAO OEP KS equations.

For the OEP-GL2 method with and without FA guid-
ing potential, the results are diverging, being in line with
the one reported in Ref. 82. One important fact to note
here is that the variational collapse is observed in all ba-
sis sets we employed in our calculations. In the case of
OEP2-sc, we observe similar behavior. In both cases,
the calculations diverge. Although the construction of
OEP2-sc is based on different choices of H0 in second-
order perturbation theory[8], it leads to the same numer-
ical problems as the one encountered for the OEP-GL2
method when regularization of (Xσ)pq is omitted.

To conclude, we first note that to avoid variational
collapse reported in the literature[82] of all tested OEP
methods, one needs to employ the SVD regularization of
the density-density response matrix. Secondly, to obtain
OEP results that are close to their numerical counter-
parts, one needs to utilize a sufficiently large basis set.

To support the second conclusion we report in Tab.
II the total energies obtained with numerical[66, 98] and
LCAO OEP implementation[34, 35] for several closed-
and open-shell atoms at OEPx and OEP-GL2 level of
theory. In the case of LCAO OEP code, for the He atom,
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TABLE I. The OEP results for the He atom as obtained using
various basis sets and methods. The second column contains
the total energies (in Ha, sign reversed) obtained within the
given method with FA guiding potential and SVD regular-
ization turned on. The third and following columns contain
the total energy differences calculated concerning data in the
second column.

Basis set SVD=ONa SVD=OFFb

FA NONE FA NONE
OEPx

cc-pVTZc 2.8612 0 0 diverge
cc-pVTZ/P1d 2.8612 0 0 diverge
cc-pVTZ/P2e 2.8612 0 0 diverge
aug-cc-pVQZf 2.8615 0 0 diverge
UGBSg 2.8617 0 0 diverge
20S10P2Dh 2.8617 0 0 diverge

OEP-GL2
cc-pVTZ 2.9052 10−5 diverge diverge
cc-pVTZ/P1 2.9052 10−5 diverge diverge
cc-pVTZ/P2 2.9052 10−6 diverge diverge
aug-cc-pVQZ 2.9085 10−8 diverge diverge
UGBS 2.8801 10−9 diverge diverge
20S10P2D 2.9078 10−9 diverge diverge

OEP2-sc
cc-pVTZ 2.8949 0 diverge diverge
cc-pVTZ/P1 2.8949 0 diverge diverge
cc-pVTZ/P2 2.8949 0 diverge diverge
aug-cc-pVQZ 2.8976 0 diverge diverge
UGBS 2.8752 0 diverge diverge
20S10P2D 2.8970 0 diverge diverge

a the SVD cutoff was set to 10−6

b the SVD procedure was omitted
c uncontracted basis set from Ref. 96
d uncontracted basis set from Ref. 96 was used for the orbitals

and basis set from Table I of Ref. 82 (Potential 1) for
representing the XC potential

e uncontracted basis set from Ref. 96 was used for the orbitals
and basis set from Table I of Ref. 82 (Potential 2) for the XC
potential

f uncontracted basis set from Ref. 97
g universal gaussian basis set from Ref. 94
h even-tempered basis set from Ref. 6

we have employed the aug-cc-pV6Z[99] basis set to solve
OEP equations, whereas for Li and Be, we have used aug-
cc-pCVQZ[100–102] basis set. For all other systems, we
utilized the aug-cc-CV5Z[96, 103] basis set. In all cases,
the basis sets were fully uncontracted to provide the best
possible representation of KS orbitals and XC potential
within the LCAO OEP procedure.

At the exchange-only level of theory (OEPx method),
the agreement between both approaches is almost per-
fect. The mean absolute error (MAE) and mean abso-
lute relative error (MARE) of the LCAO OEPx method
calculated with respect to the numerical counterpart give
MAE=0.1 mHa and MARE=0.002%, respectively. More-
over, the mean error (ME) shows that we always ap-
proach the numerical results from above, possibly mean-
ing that at the complete basis set limit (CBS), we can ap-
proach the perfect correspondence of results. In the case

of the OEP-GL2 method, the situation is slightly worse.
Here the MAE and MARE (computed w.r.t. OEP-
GL2 numerical data) yield 5.1253 mHa and 0.0063%,
respectively, meaning that the impact of the basis set
used in the correlated OEP calculation is more pro-
nounced. Thus the CBS limit is harder to achieve (con-
firmed by ME). Finally, we note that for all investi-
gated atoms, the LCAO OEP-GL2 method converged
without any significant problem. One exception is only
for Be atom[8, 22, 66, 68], which due to its nature
(quasi-degeneracy of (1s)2(2s)2 and (1s)2(2p)2 ground
state configurations[104]), does not converge, oscillat-
ing around some local minima. This is a well-known
fact, reported and discussed many times in the previous
works[8, 22, 60, 66, 68, 70, 88].

TABLE II. Total ground-state energies (in Ha, sign reversed)
obtained for a few atoms with the OEP-GL2 and OEPx
methods. The bottom lines report the mean error (ME),
mean absolute error (MAE), and mean absolute relative error
(MARE) calculated with respect to numerical OEP-GL2 and
OEPx data, respectively. The numerical OEP-GL2 results
have been taken from Ref. 66 whereas numerical OEPx data
have been generated using the exact code[98].

OEP-GL2 OEPx
Atom Numerical LCAO Numerical LCAO
He 2.9099 2.9097 2.8617 2.8617
Li 7.4818 7.4805 7.4325 7.4325
Be 14.6965 14.6948a 14.5724 14.5724
N 54.6216 54.6206 54.4034 54.4032
Ne 129.0265 129.0223 128.5454 128.5452
Na 162.3195 162.3081 161.8566 161.8564
Mg 200.1286 200.1190 199.6116 199.6115
P 341.3382 341.3300 340.7150 340.7150
Ar 527.6608 527.6515 526.8122 526.8121

ME[mHa] -5.2153 ME[mHa] -0.1000
MAE[mHa] 5.2153 MAE[mHa] 0.1000
MARE[%] 0.0063 MARE[%] 0.0002

a From perturbative calculation based on the OEPx density.

To support our findings for the total energies, we also
analyzed the quality of the ionization potentials obtained
from our LCAO OEP KS calculations. In Tab. III, we
report the ionization potentials (in Ha) obtained from
the highest occupied molecular orbital (HOMO) orbital
energies of the neutral atoms from numerical and LCAO
implementations of OEPx and OEP-GL2 methods. The
findings are very similar to the ones reported for total
energies. Both OEP-GL2 and OEPx methods provide
very close results to their numerical counterparts, yield-
ing MAE of about 0.0599 Ha (MARE = 0.0109%) and
1.7323 Ha (MARE = 0.0063%), respectively. These re-
sults indirectly also confirm the quality of XC poten-
tials obtained within the LCAO OEP procedure since
the HOMO energy is very sensitive to the quality of
the XC potential[63, 72, 105, 106]. We have to stress
here, then in the case of the OEP-GL2 method, like in
the OEPx method[31, 35, 107], the correlated HOMO
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condition[72] must be incorporated to correct HOMO en-
ergies obtained within the LCAO OEP procedure.

TABLE III. Ionization potentials (in Ha) obtained from the
HOMO orbital energies of the neutral atoms from OEP-GL2
and OEPx methods. The ME, MAE, and MARE are calcu-
lated with respect to numerical OEP-GL2 and OEPx data, re-
spectively. The numerical OEP-GL2 results have been taken
from Ref. 66 whereas numerical OEPx data have been gener-
ated using the exact code[98].

OEP-GL2 OEPx
Atom Numerical LCAO Numerical LCAO
He 0.893 0.892 0.918 0.918
Li 0.198 0.198 0.196 0.196
Be 0.367 0.359a 0.309 0.309
N 0.499 0.499 0.571 0.571
Ne 0.656 0.655 0.851 0.851
Na 0.191 0.191 0.182 0.182
Mg 0.305 0.301 0.253 0.253
P 0.385 0.384 0.392 0.392
Ar 0.557 0.556 0.591 0.591

ME[mHa] -1.7006 ME[mHa] -0.0493
MAE[mHa] 1.7323 MAE[mHa] 0.0599
MARE[%] 0.0063 MARE[%] 0.0109

a From perturbative calculation based on the OEPx density.

As the last point of our analysis, we investigate the con-
vergence of the total energies of all investigated atoms
with respect to the SVD cutoff parameter (the eigen-
values of density-density response matrix (see Eq. (11))
ωp < 10−SVDC are set to zero). In Fig. 1 and Fig. 2,
we report two representative examples for He and Mg
atoms obtained in various uncontracted basis sets and
with FA guiding potential. In the case of the He atom
and OEPx method, the convergence is reached regard-
less of the SVD cutoff parameter since, as was noted,
FA potentials can be considered as exact exchange po-
tential for two-electron systems. One can also note that
for sufficiently large basis sets (i.e., 20S10P2D and aug-
cc-pV6Z), we can reach almost numerical accuracy (error
less than 10−4 Ha). In the case of the OEP-GL2 method,
in turn, for SVDC > 16, the calculation diverges for un-
contracted cc-pVTZ and 20S10P2D basis sets. Again this
is the manifestation of the necessity of incorporating the
SVD regularization in all LCAO OEP KS calculations.

For the Mg atom at OEPx and OEP-GL2 level of the-
ory, the calculations diverge for SVDC > 5 or 6 depending
on the basis set used. This indicates that for a relatively
small basis, the SVD regularization is essential to ob-
tain a stable solution within the given basis set. In most
cases, it is sufficient to remove from the density-density
response matrix all eigenvalues below 10−6. This value
for the SVD cutoff parameter was already recommended
in several studies[29, 31, 74]

A different situation is encountered for the He atom
with the uncontracted aug-cc-pV6Z basis set, where sta-
ble convergence is reached up to SVDC = 20. A similar
situation occurs for the Mg atom with an uncontracted

FIG. 1. Total energy difference between numerical and LCAO
OEP(x and GL2 respectively) data for He atom in the func-
tion of SVD cutoff parameter (ωp < 10−SVDC are set to zero
in density-density response matrix (see Eq. (11)). All basis
sets are fully uncontracted.
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FIG. 2. Total energy difference between numerical and LCAO
OEP(x and GL2 respectively) data for Mg atom in the func-
tion of SVD cutoff parameter (ωp < 10−SVDC are set to zero
in density-density response matrix (see Eq. (11)). All basis
sets are fully uncontracted.
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aug-cc-pCV5Z basis set. This might actually indicate
that when the basis set is sufficiently large (close to the
CBS limit), one can obtain a stable solution of the OEP
method without employing any regularization procedure
in the LCAO OEP calculations. This is a very interesting
finding. To confirm this observation, we have performed
the OEP calculations in the same basis set with switched-
off regularization for the OEP-GL2 method obtaining the
same results as previously.
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V. CONCLUSIONS

By performing several finite basis set LCAO OEP cal-
culations, for a set of atoms, we have shown that the
physical solutions of the OEP equations in the context of
KS-DFT at the exchange-only and correlation level, can
be only obtained by employing the truncated SVD regu-
larization procedure together with a proper choice of the
basis sets. Regularization is the critical aspect in deter-
mining the stable and accurate solutions of the KS-OEP
equations. And to obtain the OEP KS results that are
close to their numerical counterparts, the utilization of
a sufficiently large basis set is necessary. We have also
shown that with this truncated SVD regularization we
can avoid variational collapse reported in the literature
[82] of all tested OEP methods. Finally, our results prove
that LCAO OEP KS calculations can be safely used in
test and routine applications.
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