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Abstract. The analysis of the biomass of oak (genus Quercus spp.) trees on the aboveground 
component composition based on regression equations having the additive biomass structure is 
fulfilled. Two trends of changes in the tree biomass structure are revealed: due to the mean January 
temperature and due to the mean annual precipitation. It was shown for the first time that both trends 
are mutually determined: the intensity of biomass trend in relation to the temperature is changing 
when depending on the level of precipitation, and the intensity of biomass trend in relation to 
precipitation level is changing during to a transition from the cold zone to the warm one and vice 
versa. 
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1. Introduction 

Information about forest tree biomass can easily be derived through allometric equations, as it 

is done for example for biomass stock per ha, especially in many-species forests (Dahlberg et 

al., 2004; Zeng et al., 2018; Usoltsev et al., 2019a), for greenhouse gas reporting (de Miguel 

et al., 2014), for analysis of national forest inventories data, in ecological studies (Marklund, 

1987; Riedel & Kändler, 2017), as well as in gas-exchange, nutrient and energy flow 

studying, forest growth and biomass allocation models (Zianis et al., 2005; Vonderach et al., 

2018).  

All above mentioned equations are usually internally contradictory, they are not 

harmonized by the biomass structure, i.e. they do not provide the additivity of component 

composition, according to which the total biomass of components (stems, branches, needles, 

roots) obtained by "component" equations would be equal to the value of biomass obtained by 

the total biomass equation (Kozak, 1970). The additivity methods can be divided into 

aggregative (Parresol, 2001) and disaggregative (Dong et al., 2015) approaches. It was 

recently showed that having in mind the result correctness, both approaches differ only 

slightly (Affleck & Diéguez-Aranda, 2016). The development of regional allometric models 
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of tree biomass sensitive to climate variables has shown both negative (Forrester et al., 2017) 

and positive (Zeng et al., 2017) results. The influence of climatic changes on the biomass of a 

particular tree species in the format of additive models according to transcontinental 

hydrothermal gradients was not been studied, with some single exceptions (Usoltsev et al., 

2019a, b). 

In the present study, the first attempt is made to simulate the changes in the additive 

component composition of tree aboveground biomass in oak forests on Trans-Eurasian 

hydrothermal gradients. In the simulation we used the database of the biomass of 530 sample 

trees (genus Quercus spp.), the distribution of sample plots of which in the territory of Eurasia 

is shown in Figure 1 (Usoltsev, 2016; Lakida et al., 2017). 

 
Figure 1. Distribution of sample plots with biomass measurements (kg) of 530 oak sample trees on the 

territory of Eurasia  
 

2. Materials and methods 

Of the above-mentioned two databases (Usoltsev, 2016; Lakida et al., 2017) containing data 

on biomass and dendrometric parameters, 530 trees were selected for the analysis, including 8 

species-vicariants of the genus Quercus spp. Their distribution by regions, tree species and 

mensuration indices is presented in Table 1.  

Each sample plot on which tree biomass estimating was performed is positioned 

relatively to the isolines of the mean January temperature (Fig. 2) and relatively to the isolines 

of mean annual precipitation (Fig. 3). The matrix of harvest data was compiled, in which the 

biomass component values and mensuration tree parameters were related with the 

corresponding values of mean January temperature and precipitation, then included in the 

regression analysis procedure. 
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Table 1. Distribution of the 530 oak sample trees by countries, regions, tree species and mensuration 
indices 

Regions Species of the 
genus Quercus spp. 

Ranges: Data 
number age, years diameter, cm 

Czech Republic, 
Switzerland 

 Q. robur L.   13÷104 4.0÷69.7 16 

Bulgaria 

Q. rubra L.,  
Q. robur subsp. pedunculiflora 
(K.Koch) Menitsky,  
Q. petraea (Mat.) Liebl.,  
Q.  frainetto Ten. 

17÷70 1.5÷29.5 49 

Hungary Q.  petraea (Mat.) Liebl.   68 15.8÷23.8 9 
The Ukraine Q. robur L.   6÷128 2.5÷50.5 370 
European part of  Russia Q. robur L.   12÷130 1.1÷46.9 66 
Russian Far East Q. mongolica Fisch. ex Ledeb. 56÷166 9.5÷34.5 7 

Japan   Q. serrata Murray,  
  Q. mongolica Fisch. ex Ledeb. 4÷40 1.1÷16.5 13 

 
 
Figure 2. 
Distribution of 
biomass harvest data 
of 530 oak sample 
trees on the map of 
the mean January 
temperature, °C 
(World Weather 
Maps, 2007) 
 
 
 

 
 
 

Figure 3. 
Distribution of 
biomass harvest data 
of 530 oak sample 
trees on the map of 
the mean annual 
precipitation, mm 
(World Weather 
Maps, 2007) 

 
 
It is known that a stem diameter is a main predictor that most explains the variation of 

tree biomass, and their relationship as the most common and biologically determined is 

described by the allometric function. Allometry determines how tree shape and function scale 

with each other, related through size. Allometric relationships help scale processes from the 

individual to the global scale and constitute a core component of vegetation models. 

Allometric relationships have been expected to emerge from optimization theory, yet they do 
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not suitably predict empirical data (Fischer et al., 2019). On the allometry basis, several 

theories are proposed: the pipe model (Huber, 1925, 1927; Shinozaki et al., 1964a, b), the 

functional equilibrium model (Davidson, 1969), the fractal model (West et al., 1999), the 

metabolic scaling theory (when scaling exponent is constant) (West et al., 1997), the theory of 

adaptive mass distribution (when scaling exponent changes dynamically with size) (Poorter et 

al., 2015) and some of their modifications (Enquist & Niklas, 2001, 2002). However, when 

calculating allometric models of tree biomass there is always a residual variance, reflecting, in 

particular, the discrepancy between the annual dynamics of the crown  mass, especially of the 

foliage, and the relative conservatism of a stem diameter, as an accumulator of its annual 

increments (Usoltsev, 1988), as well as differences of age status, soil and climatic conditions. 

Total tree height is not always available in field measurements, and it may sometimes 

be better not to involve it in biomass estimation procedure (Williams & Schreuder, 2000). In 

this study, the task is to extract the climatic component from the residual dispersion of a 

model obtained during to calculation of tree biomass by stem diameter. To the share of 

climatic factors was predominant in this "information noise", it is necessary to take into 

account in the model in addition to the diameter, also the tree age, which is a factor largely 

determining the structure of tree biomass (Nikitin, 1965).  

A negative relationship between the crown biomass of equal-sized trees and their age in 

forest stands is well known. Thus, the crown mass of the tree with a diameter of 12 cm at the 

age of 15 years exceeds that at the age of 35 years at the birch by 1.5-2.0 times, and at the 

aspen – by 2.4-4.4 times (Usoltsev, 1972) due to the age shift of the cenotic position of equal-

sized trees: at the age of 15 years such tree is the leader, and at the age of 35 years it is the 

depressed tree, a candidate for dying. The influence of age on stem biomass in comparison 

with other components is minimal due to the relative stability of the stem shape: with the 

same stem shape and the corresponding volume, its biomass changes with age mainly due to 

age-related changes in the basic density related to a decrease in the proportion of sapwood 

having a reduced dry matter content compared to the heartwood (Usoltsev, 1988). Tree age, 

all other conditions being equal, also affects the mass of roots in terms of root-shoot 

relationships (Kazaryan, 1969). 

We have in our database only 47 trees having both aboveground biomass and root one, 

represented by Central Europe, European part of Russia and Japan. Because of small root 

experimental data, we do not involve the biomass of roots into our additive biomass system. 

Root biomass data are high labour-consuming, and therefore they determined by researchers 

not at all sample plots, often without specifying the method of their estimation. The analysis 
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of the world data of underground tree biomass has showed that due to the imperfection of 

methods to estimate fine root biomass, the total underground biomass of trees and stands may 

be underestimated two to five times (Usoltsev, 2018).  

We limited ourselves to the calculation of the coefficient of determination and the 

standard error. We have not calculated additional characteristics of the equation adequacy, 

such as the mean prediction error, the relative mean prediction error, the mean absolute error, 

and the relative mean absolute error, since they all are derived from the determination 

coefficient. 

The disaggregation method of two-step proportional weighing, based on the principle 

"from general to particular" is developed as an alternative to the independent (without 

additivity) fitting approach. It has been implemented in two versions: as a sequential (Zheng 

et al., 2015) and parallel (Zhang et al., 2016) disaggregating additive systems of equations for 

aboveground biomass (Fig. 4). According to the structure of the disaggregation model of a 

two-step additive equation system (Zheng et al., 2015), the aboveground biomass Pa, 

estimated by an initial equation, is divided into biomass components by means of proportional 

weighting the corresponding component initial equations (see: Dong et al., 2015; Usoltsev et 

al., 2019a, b). 

The coefficients of the regression equations of all two steps are  evaluated 

simultaneously, that ensures the additivity of the biomass of all components (Dong et al., 

2015). Since the regression coefficients in the designed model were calculated on the log-

transformed data, a corresponding correction is introduced in the equations to eliminate the 

displacements caused by the logarithmic transformation of the variables (Baskerville, 1972). 

 
Figure 4. The pattern of the disaggregating two-step proportional weighting additive model of 

sequential (left) and parallel (right) schemes. The schemes show relationship between each 
biomass component, where lines from left to right indicate disaggregation and from right to 
left indicate summation (Zheng et al., 2015; Zhang et al., 2016) 

 
We adhered to the concept that there is only one definite variant of stand (and tree) 

biomass structure corresponding to a given structure of taxonometric parameters 

(morphological structure) of a tree stand, determined by local forest growth conditions 
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(Usoltsev, 2007). If in some region we find a forest stand of the same morphological 

structure, then the structure of its biomass is likely to be the same, provided there were no 

anthropogenous and other abiotic influences. But as the range of expansion of woody species 

(genus), this compliance will be increasingly violated as a result of increasing the diversity of 

forest growth conditions. This change in the diversity of forest environment has geographical 

causes and in the regression multiple model is expressed by an increase in residual dispersion 

(“information noise”). In terms of biogeography, the increase of variability of this residual 

variance as a consequence of increasing diversity of forest environment, is most likely due to 

climate variables, such as temperature and precipitation, which are included in our models as 

additional independent variables. 

3. Results 
 

Based on the above, the following structure of the regression model is suggested: 
 
lnPi = a0i +a1i (lnA) +a2i (lnD)+a3i (lnD)2+a4i [ln(T+20)]+a5i (lnPR)+a6i [ln(T+20)](lnPR),   (1) 
 
where Pi is biomass in dry condition of i-th component, kg; A is tree age, yrs; D is stem 

diameter at breast height, cm; i is the index of biomass component: aboveground (a), crown 

(c), foliage (f), branches (b), stem above bark (s), stem wood (w) and stem bark (bk); Т is 

mean January temperature, °С; РR is mean annual precipitation, mm.  

According to the theory of adaptive mass distribution, the scaling exponent (or 

exponent at the stem diameter in the allometric model) is not a constant, and in log-log 

coordinates the relationship has the nonlinear form (Poorter et al., 2015). To account for this 

nonlinearity, the stem diameter in the model (1) is introduced in the form of a second-order 

logarithmic polynomial: 

                                                 lnPi = f  [(lnD), (lnD)2].                                              (2) 

 

Since the mean January temperature in the northern part of Eurasia has negative values, 

the corresponding independent variable is modified to the form (T+20) to be subjected to 

logarithmic procedure. The schematic map of the isolines of mean January temperature, rather 

than the mean annual temperature, is used, since climate warming is most pronounced in the 

cold half of the year (Golubyatnikov & Denisenko, 2009; Laing & Binyamin, 2013; Felton et 

al., 2016). In this regard, a similar parallel trend of another level is interesting: according to 

the report of National Oceanic and Atmospheric Administration (2017), warming in the 

Arctic is twice as fast as in other parts of the Earth, and “the Arctic is on the front lines of 
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climate change” (https://www.noaa.gov/explainers/changing-arctic-greener-warmer-and-

increasingly-accessible-region) (Blunden et al., 2018). 

Characteristic of equations (1) is obtained by regression analysis, and after correcting on 

logarithmic transformation by Baskerville (1972) and anti-log transforming is given in Table 

2. 

 
Table 2. Characteristics of equations (1) 

B
io

m
as

s 
co

m
po

ne
nt

  
Regression coefficients of the model 

 
adjR2* SE* 

Pa 3.49E-09 А 0.1098 D 1.9591 D 0.0823(lnD) (T+20)5.6803 PR 2.6737 (T+20)-0.8555(lnPR) 0.989 1.22 
Pc 2.10E-11 А -0.3144 D 1.7957 D 0.1310 (lnD) (T+20)6.5197 PR 3.5835 (T+20)-1.0249(lnPR) 0.911 1.71 
Ps 3.32E-08 А 0.2115 D 1.9960 D 0.0733 (lnD) (T+20)4.8111 PR 2.2139 (T+20)-0.7165(lnPR) 0.987 1.25 
Pf 9.41E-07 А -0.5925 D 1.6748 D 0.0862 (lnD) (T+20)4.3379 PR 1.8895 (T+20)-0.6925(lnPR) 0.871 1.67 
Pb 3.47E-13 А -0.1857 D 2.0212 D 0.0966 (lnD) (T+20)6.9935 PR 4.0371 (T+20)-1.0841(lnPR) 0.901 1.84 
Pw 4.00E-08 А 0.3001 D 2.2722 D 0.01875(lnD) (T+20)4.4532 PR 2.0392 (T+20)-0.6545(lnPR) 0.984 1.28 
Pbk 2.17E-13 А 0.1331 D 1.3506 D 0.1655 (lnD) (T+20)8.7348 PR 3.9457 (T+20)-1.3086(lnPR) 0.960 1.40 
* adjR2 – coefficient of determination adjusted for the number of parameters; SE – equation standard 
error. 

All regression coefficients of equations (1) are characterized by the Student’s 

significance level of 0.05 and better [including at variables (lnD) and (lnD)2], and the 

resulting equations are adequate to the original values presented in the available database.  

Unlike of our previous result on larch tree biomass (Usoltsev et al., 2019a), where the 

combined effect of temperature and precipitation was not statistically significant (Student’s 

test takt is from 0.08 to 1.33, which is below the standard value t05 = 1.96), this model includes 

synergism [ln(T+20)](lnPR), which is significant (takt is from 2.04 to 6.49, which is higher 

than the standard value t05 = 1.96) for all biomass components. When using a 3D-

interpretation, this means a «propeller-shaped» surface of biomass in dependence upon 

temperature and precipitation, which was previously confirmed by the example of tree 

biomass of two-needled pines (Usoltsev et al., 2019b).     

The designed initial equations (1) are then modified to the additive form according to 

the early published algorithm (see: Dong et al., 2015; Usoltsev et al., 2019a, b), structure of 

which is shown in Figure 4 (left), and the final form of the transcontinental additive model of 

the component composition of oak tree biomass is shown in Table 3.  

 
Table 3. Final three-step additive model of оak tree biomass 

 Pа = 3.49E-09 А 0.1098 D 1.9591 D 0.0823 (lnD) (T+20) 5.6803 PR 2.6737 (T+20) -0.8555(lnPR) 
Step 

1 Pc = 1 × Pa 1303.6 А 0.5259 D 0.2003 D -0.0577(lnD) (T+20) -1.70867 PR -1.3696(T+20) -0.3084(lnPR) 

https://www.noaa.gov/explainers/changing-arctic-greener-warmer-and-increasingly-accessible-region
https://www.noaa.gov/explainers/changing-arctic-greener-warmer-and-increasingly-accessible-region
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Ps = 1 × Pa 0.0008 А-0.5259 D -0.2003 D 0.0577(lnD) (T+20) 1.70867 PR 1.3696(T+20) 0.3084(lnPR) 

Step 
2а 

Pf = 1 × Pc 30.038 А 0.4068 D 0.3464 D 0.0104(lnD) (T+20) 2.6556 PR 2.1476(T+20) -0.33916(lnPR) 

Pb = 1 × Pc 0.0333 А -0.4068 D -0.3464 D -0.0104(lnD) (T+20) -2.6556 PR -2.1476(T+20) 0.33916(lnPR) 

Step 
2b 

Pw = 1 × Ps 230.8 А -0.1669 D -0.9216 D 0.1468(lnD) (T+20) 4.2816 PR 1.9065(T+20) -0.6541(lnPR) 

Pbk = 1 × Ps 0.0043 А 0.1669 D 0.9216 D -0.1468(lnD) (T+20) -4.2816 PR -1.9065(T+20) 0.6541(lnPR) 
Next, it is necessary to find out whether the additive model obtained is enough adequate 

and how its characteristics relate to the adequacy of initial equations. To do this, the first and 

the second models are tabulated on the empirical measurement data and the calculated values 

of biomass are compared with the empirical ones using the coefficient of determination. The 

comparison results shown in Figure 5, indicate that the adequacy of the two systems of 

equations are close to each other. 

Due to the high complexity of obtaining the age of trees in comparison with the stem 

diameter measuring, one use specially designed equation or table that reflects the relationship 

of the tree age with the stem diameter. To this end, the equation (3) is calculated: 

 

A = exp{-1,6598+0,6774(lnD)+2,2621[ln(T+20)]+0,9003(lnPR)-0,4865[ln(T+20)](lnPR)}; 

adjR2 = 0,747; SE = 1,42.                                                                                               (3) 

 

Using the result of tabulating eq. (1) by the given values A, D, T and PR, 3D-

dependences of biomass components on temperature T and precipitation PR for trees aged 

100 years with D = 24 cm and H = 22 m were designed (Fig. 6). 

To estimate climate-related changes in the total biological productivity of oak stands, 

the above equations, calculated only for aboveground tree biomass, are not sufficient. 

Because of the small experimental data of root biomass, we calculated the roots-to-shoot ratio 

in dependence upon the defining variables, having in mind the available 47 data. Of the 

morphology-caused variables, only age is statistically significant, and the following equation 

is obtained 

 

Pr/Pa =exp{-21,6606-0,8536(lnA)-2,7020[ln(T+20)]+4,7564(lnPR)};  

adjR2 =0,856; SE =1,20,                                                                                   (4)  
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where Pr  is tree root biomass, kg. Equation (4) may be used in a rough estimation of 

underground biomass on tree and forest levels.   
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Figure 5. The ratio of the harvest biomass and its values obtained by calculating the initial (a) and additive (b) models of the larch tree biomass 
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Figure 6. Dependence of oak tree biomass upon the January mean temperature (Т) and precipitation 

(РR). Designations: Pa, Ps, Pf, and Pb are correspondingly biomass: aboveground, stems, 
foliage, and branches, kg  

 
The obtained models of oak tree biomass make them possible to establish quantitative 

changes in the structure of tree biomass due to climatic changes, in particular, the mean 

temperature of January and mean annual precipitation. The percentage change in the structure 

of biomass is associated with the ratio of these two climatic variables.  

In Figure 7 it is shown the change in the tree biomass (Δ, %) with an increase in 

temperature by 1°C in different ecoregions, characterized by different values of temperature 

and precipitation. It is assumed that climate change does not affect precipitation, which 

changes only geographically (by regions), and the temperature as a result of the expected 

climate change increases by 1°C at different territorial (zonal) temperature levels, designated 

as -15Δ...0Δ. Figure 7 shows the general pattern of increase of all the biomass components in 

moderate dry areas (PR = 400 mm) and decrease in water-rich areas (PR = 700-900 mm) with 

an increase in temperature by 1°C in all temperature zones of Eurasia.  

In Figure 8 it is shown the change of tree biomass (Δ, %) with the increase in 

precipitation by 100 mm in areas characterized by different values of temperature and 

precipitation. It is assumed that the January temperature changes only geographically, and 

precipitation as a result of the expected climate change increases by 100 mm at different 
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territorial levels of precipitation, designated as 400Δ...900Δ. Figure 8 shows the common 

pattern of increase of the all biomass components with an increase in annual precipitation by 

100 mm in all temperature zones of Eurasia and in all regions that differ in precipitation, with 

exception of foliage biomass that is decreasing in the regions of warm and moderate 

temperatures (from 0°C to -1°C). 

  

  
Figure 7. Change of tree biomass with (+) (surface 1) and (-) (surface 2) when temperature increasing 

by 1°C due to the expected climate change at different territorial levels of temperature and 
precipitation. Symbols Δa, Δs, Δf and Δb on the ordinate axes mean the change (± %) of 
biomass of aboveground, stems, foliage and branches, respectively, with the temperature 
increase by 1°C and at the constant precipitation 
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Figure 8. Change of tree biomass with (+) (surface 1) and (-) (surface 2) when precipitation increasing 
by 100 mm due to the expected climate change at different territorial levels of temperature 
and precipitation. The symbols Δa, Δs, Δf and Δb along the ordinate axes represent the 
change (± %) of aboveground, stems, needles and branches biomass, respectively, with 
precipitation increase by 100 mm and at the constant mean temperatures of January 

 

4. Discussion 

Analysis of the 3D-surfaces in Figure 6 allows us to draw some nontrivial conclusions. As we 

can see there, all of the biomass components vary according to approximately one overall 

scheme, but in different proportions. The dependence, common to all of the components: in 

cold climatic zones (T = –15◦C), any increase in rainfall leads to corresponding increase in the 

biomass value, and in moderate warm zones (T = 0◦C), leads to a decrease in foliage biomass 

value, to a slight decrease in branch biomass and remains unchanged in the aboveground and 

stem biomass.  

Correspondingly, in water-rich areas (PR = 900 mm), the rise in temperature causes a 

decrease of biomass values, and in moderate dry areas (PR = 400 mm), in their increase. This 

pattern is opposite to the previously constructed analogous models for the aboveground 

biomass of two-needled pines (Usoltsev et al., 2019b) and larches (Usoltsev et al., 2019а). 

Perhaps this contradiction is due to the smaller ranges of temperature and precipitation in the 

areas occupied by oak stands, compared with pine and especially with larch ones, as well as 

due to biological features of coniferous and deciduous species. The regularities for pines and 

larches were previously confirmed by other authors on the local level (Glebov & Litvinenko, 

1976) and some regional levels (Molchanov, 1976; Polikarpov & Chebakova, 1982). 

Using the data of above- and underground biomass of 600 sample trees of eight larch 

species (genus Larix spp.) growing throughout China, the allometric model including the stem 

diameter and height as independent variables, was developed. After introduction into the 

allometric model the indices of the mean annual temperature and precipitation, as additional 

independent variables, it was established that the temperature increase by 1°C leads to an 

increase in the aboveground biomass of equal-sized trees by 0.9% and to a decrease in the 

underground one by 2.3%, and an increase in precipitation by 100 mm causes a decrease in 

the above- and underground phytomass by 1.5 and 1.1%, respectively (Zeng et al., 2017). Our 

results confirm the data by Zeng et al. (2017) related to the change in the aboveground 

biomass of larch trees with the increase in temperature by 1°C, but only partly, namely in the 

areas of low precipitations. With the increase in precipitation by 100 mm, we obtain the 

opposite result from Zeng's conclusion, namely an increase rather than a decrease in 

aboveground tree biomass. As had been mentioned above, this contradiction may be due to 
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the smaller ranges of temperature and precipitation in the areas occupied by oak stands, as 

well as due to biological features of coniferous and deciduous species. 

In another study devoted to European forests (Forrester et al., 2017), there was no 

statistically significant effect of temperature and precipitation on the tree biomass of the most 

components. The reasons may be the following: a small range of temperature and 

precipitation variations within Europe, a study of species groups instead of a single species, 

the introduction of too many variables and their combined effects into the model, and the use 

of meta-data instead of harvest biomass indices. 

The study of the regional variability of the allometric models of aboveground biomass 

of trees of Masson pine in southern China showed that diameter at breast height, together with 

the long-term average of growing season temperature, total growing season precipitation, 

mean temperature of wettest quarter, and precipitation of wettest quarter, had significant 

effects on values of aboveground biomass. Excessive precipitation during the growing season 

and high mean temperature in the wettest quarter reduced the aboveground biomass, while a 

warm growing season and abundant precipitation in the wettest quarter increased it (Fu et al., 

2017). Thus, the reaction of pine biomass to the increase in precipitation in the subtropical 

conditions of China in the wettest quarter is negative, and in the wettest quarter at extremely 

high temperatures is positive. A similar differentiated reaction of biomass and net primary 

production to temperature and precipitation was shown earlier on the example of stands of 

two-needled pines in Eurasia (Usoltsev et al., 2019c). Apparently, any response of forests to 

climate change is species-specific and reflects the biological and ecological specificities of 

each tree species. 

Our model obtained and the patterns shown are hypothetical: they reflect the long-term 

adaptive responses of forest stands to regional climatic conditions and do not take into 

account the rapid trends of current environmental changes, which place serious constraints on 

the ability of forests to adapt to new climatic conditions (Alcamo et al., 2007). Although 

modelling at the global level shows that the productivity of forest cover is mainly determined 

by temperature, other factors (salt stress, length of vegetative period, imbalance between air 

and soil temperatures, frost drought) limit the productivity to a much larger extent than just 

temperature. Besides, some experiments show clearly that the water status affects stomata 

opening and closing in very much degree, and our understanding of the adaptation to water 

shortage is still patchy (Schulze et al., 2005).  

 

5. Conclusions 



 
 

16 
 

Thus, we have made the first attempt to simulate changes in the component composition 

of the aboveground biomass of oak trees by trans-Eurasian hydrothermal gradients, that 

revealed the presence of non-trivial regularities. The analysis of the aboveground biomass of 

oak trees on the basis of the component composition, using regression model method, showed 

changes in the structure of the biomass of trees, both in connection with the average 

temperature of January and average annual precipitation, namely: the intensity of changes in 

biomass due to temperature varies depending on the level of site moisture, and the intensity of 

changes in biomass due to the level of moisture changes during the transition from cold to 

warm temperature belts.  The adequacy of the obtained regularities is determined by the level 

of variability 87-99 % explained by the proposed regression models. 

The obtained model of oak tree biomass make it possible to establish quantitative 

changes in the biomass structure due to climatic changes, in particular, the mean temperature 

of January and mean annual precipitation. The proposed additive model, adapted for use in 

the forest area of Eurasia, is designed for a more accurate assessment of the carbon-depositing 

ability of oak forests. However, this is a solution to the problem only in the first 

approximation, because it is based on a limited amount of harvest data. 
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