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Abstract
Recent air temperature changes in the high Arctic (HA) have been investigated based on mean seasonal and annual data
calculated for the period 1951–2015 and for two sub-periods 1976–2015 and 1996–2015. Two kinds of air temperature data
(observational and reanalysis) have been used in the research. The observational data were compared with data taken from six
reanalysis products (20CRv2c, CERA-20C, ERA-Int, MERRA-2, NCEP-CFSRR, JRA-55). The scale of the HAwarming for the
period 1996–2015 relative to the reference period 1951–1990 reached 1.6 °C for annual mean and was greatest in autumn
(1.9 °C) and in winter (1.7 °C), while it was smallest in summer (0.9 °C). Evidently, the greatest warming was observed in the
Atlantic and Siberian climatic regions, while in the rest of the HA, the rate of warming was usually weaker than trends calculated
for the period 1976–2015. Air temperature tendencies in all study periods 1951–2015, 1976–2015 and 1996–2015 showed a
predominance of positive trends that were statistically significant at the level of 0.05. In the two latter periods, the rate of warming
was on average 2–3 times faster than for the entire study period. In the HA, there has not been a slowdown in the rate of warming
(“hiatus”) in the last two decades (in contrast to that which was noted for the Northern Hemisphere). Our results reveal that, in
most cases, the closest fit to observations was obtained for two reanalysis products (the ERA-Interim and JRA-55, since 1979)
and the six reanalysis average. Two new polar amplification (PA) metrics based on scaled and standardised values of surface air
temperature (SAT) reveal the non-existence of this phenomenon in the period 1951–2015. One of the metrics shows very small
PA in the periods 1976–2015 and 1996–2015.

1 Introduction

A myriad of papers published recently document large, and
sometimes even dramatic, environmental changes in the
Arctic (see, e.g. ACIA 2004; IPCC 2013) as a consequence
of its recent warming, which Overland et al. (2016) describe as
“unequivocal, substantial and ongoing”. The most spectacular
and important changes in terms of their consequences for both
the Arctic and global climate are those observed in the
cryosphere, and in particular in the extent and thickness of
sea ice. Suffice to say that, since 1979, the 10 lowest minimum
Arctic sea ice extents occurred in the period 2007–2017

(including the year 2012, when the lowest value—of only
3.41 million km2—was noted, see: http://nsidc.org/
arcticseaicenews/2012/09/arctic-sea-ice-extent-settles-at-
record-seasonal-minimum/). Land ice, including the
Greenland ice sheet, is also undergoing visible changes,
seen, among others, in great losses in ice mass and retreats
of termini of glaciers (see, e.g. Dowdeswell et al. 1997; Harig
and Simons 2012).

Studies that would improve our knowledge of the influence
of Arctic warming in terms of changes observed both in its
environment and in climate conditions at lower latitudes ur-
gently need good quality information on changes in the prin-
cipal climate variable, i.e. 2-m air temperature (hereinafter
SAT), in recent decades. To obtain such quality of informa-
tion, the collected instrumental data should fulfil the following
criteria: (a) the number of data series for each year, season and
month of the study period should be identical, which unfortu-
nately is not the rule in many works (see, e.g. Polyakov et al.
2003); (b) all data should be quality controlled and homoge-
neous; (c) if possible, should be taken directly from meteoro-
logical institutes (or other institutions) responsible for
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collecting data for the Arctic area; and (d) the network of
stations should be evenly distributed. Cowtan and Way
(2014) found that gridded air temperature datasets (Hadley
Centre and the Climatic Research Unit (HadCRUT, Morice
et al. 2012), NASA’s Goddard Institute for Space Studies
Surface Temperature Analysis (GISTEMP) product (Hansen
et al. 2010), the National Climatic Data Center (NCDC) prod-
uct (Smith et al. 2008)), all of which used station data (Global
Historical Climatology Network, GHCN) processed by auto-
mated homogenisation algorithms, may result in recent
warming in the Eurasian Arctic being underestimated due to
systematic downward adjustments to the raw data. Rapaić
et al. (2015) analysed 16 gridded databases (including 8 re-
analysis products) for the Canadian Arctic and found impor-
tant differences between them in terms of spatial distributions,
temporal variability, yearly cycle, etc. The greatest differences
were found for mountain and coastal regions, as well as for the
Canadian Arctic Archipelago. They suggest that care should
be taken in using these gridded products in local- or regional-
scale applications. Additionally, Way et al. (2017) recently
showed that data taken from a new land-only product devel-
oped within the Berkeley Earth Surface Temperatures (BEST)
project (Rohde et al. 2013), and which were not used by
Rapaić et al. (2015), reveal an underestimation of recent
warming in northern Canada when compared against data
taken from the Adjusted and Homogenized Canadian
Climate Dataset (ADHCCD) developed by Environment
Canada. They also stated that automated station adjustment
algorithms reduce air temperature changes in this region and
are sensitive to declines in the long-term observing network.
Their next very important conclusion is that for northern
Canada, as well for other Arctic regions with a sparse station
network, “there is still a need for manual homogenization
procedures to compensate for station relocations and variable
time of observations …”. This short review leads to the con-
clusion that the best solution in the study of SAT trends, in
particular for periods starting before 1979 (the onset of the
satellite era) in almost the entire Arctic (excluding the inner
part of the Arctic Ocean), where weather-station coverage is
limited (Przybylak 2000; Cowtan and Way 2014), is still to
use good quality homogenised data series from those stations.

For many years, Przybylak (1996, 2000, 2002, 2007, 2016)
has consequently used such data to study SAT changes in the
high Arctic (hereinafter HA) as delimited by climatic criteria
proposed in the Atlas Arktiki (Treshnikov 1985, see also
Fig. 1). This has made it possible to reliably estimate the
SAT changes in a large part of the HA (excluding Interior
Arctic and Greenland climatic regions) for the following full
period and incremental overlapping periods 1951–1990,
1951–1995, 1951–2000, 1951–2005 and 1951–2010.

The large warming of the HA, which has remained at a
constantly high level for more than two decades (since mid-
1990s), must be regularly monitored and that is why we

decided here to update the SAT history until 2015 using al-
most the same set of stations which Przybylak used in his
mentioned papers. In recent years, reanalyses have been a very
popular source of data for climate studies, and therefore, in the
present paper, we also used this kind of data taken from the six
newest different reanalysis products (see next section).
Serreze and Barry (2014) claim that, due to discrepancies in
reanalyses, it is necessary to take under consideration the av-
erages from multiple reanalysed data to properly analyse the
mean state of the Arctic climate system.

The main aim of the present paper is to identify directions
and scales of spatio-temporal SAT changes in the HA in the
long-term (1951–2015) and in the short-term (1996–2015)
that have resulted from the updating of instrumental series
up till 2015. The main focus is, however, on the latter period,
which we have described as the “recent rapid Arctic warming”
period (hereinafter RRAW). In addition, the important aim of
this paper is also to indicate which reanalysis products are
most reliable and accord most closely with our series of in-
strumental observations.

A list of all abbreviations used in this paper is provided in
Appendix S1. Some of the most important for the understand-
ing of the paper are also introduced in the text.

2 Area, data and methods

The monthly means of SAT (°C) for the period 1951–2015
from 37 meteorological stations located in HA (Fig. 1) were
taken for analysis. Seven auxiliary sub-Arctic sites were used
as a support in the spatial analysis. A comprehensive list of the
data sources, quality control and homogeneity details can be
found in previous works of Przybylak (1996, 2000, 2002).
The set of these stations fulfils all four of the above-
mentioned criteria necessary for reliable estimates of SAT
changes in the HA. SAT (°C) anomalies with respect to
1981–2010 climate normal and 1951–1990 long-term mean
have been calculated. The recent WMO climate normal
(1981–2010) has been used in order to compare observational
data for anomalies against reanalyses, and the earlier base
period (1951–1990) has been used to compare observational
data with the results provided in previous studies: Przybylak
(1996, 2000, 2002, 2007, 2016). In the next step, seasonal
(DJF, MAM, JJA, SON) and annual SAT anomalies were
averaged for each site, as well as for each climatic region
and the entire HA.

Besides observational datasets, six global reanalysis prod-
ucts were also used as an estimation of Arctic SAT variability
in the period 1951–2015, i.e. 20CRv2c (Compo et al. 2011),
CERA-20C (Laloyaux et al. 2016), ERA-Int (Dee et al. 2011),
JRA-55 (Kobayashi et al. 2015), MERRA-2 (Gelaro et al.
2017) and NCEP-CFSR (Saha et al. 2010). We have not used
all currently existing reanalyses, but only a few newer ones

76 R. Przybylak, P. Wyszyński



(Fujiwara et al. 2017). They were then compared with obser-
vations. Of all the reanalyses used in the paper, only ERA-Int
and JRA-55 assimilate SAT from land (Simmons et al. 2017;
Zhou et al. 2018). It must be noted that not all of them fully
cover the analysed period. Table S1 presents the basic charac-
teristics of the reanalyses used in our study.

More details about assimilated data, methods of data assim-
ilation, forecast model specifications, selected physical
parametrisations, boundary conditions, etc. may be found in
many published and on-line comprehensive reanalyses

comparison tables, e.g. Reanalyses.org (https://reanalyses.
org/atmosphere/comparison-table), Dee et al. (2016, https://
climatedataguide.ucar.edu/climate-data/atmospheric-
reanalysis-overview-comparison-tables) and Fujiwara et al.
(2017).

In order to compare reanalyses to observations, the nearest
gridpoint to the coordinates of each meteorological station
was chosen. Choosing the nearest gridpoint is a method com-
monly used in a reanalysis evaluation procedure (e.g. Klaus
et al. 2018). However, Cullather et al. (2016) indicate that
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Fig. 1 Location of meteorological stations (dots) used in the study. Key: Thick line indicates border of high Arctic (HA) after Treshnikov (1985); thin
lines indicate borders of climatic regions
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“there is a ‘representativeness’ error associated with the point
measurements, since the gridded analysis is intended to esti-
mate the average state of a grid volume”. The same calcula-
tions as for observations were performed for the reanalysed
values.

Seasonal and annual linear SAT trends were calculated for
the periods 1951–2015, 1976–2015 and 1996–2015, as well
as fit statistics, i.e. correlation coefficients (r) and root mean
square errors (RMSE, °C) between observational and
reanalysed values on the basis of the least-squares regression
method (Wilks 2011). For spatial analysis, the ordinary
kriging interpolation technique has been applied as it provides
only small errors in the distribution of SAT anomalies in the
Arctic (Dodd et al. 2015).

Furthermore, our results have been compared with three
commonly used, recently gridded datasets, i.e. CRUTEM4
(Jones et al. 2012), HadCRUT4 (Morice et al. 2012) and
BEST (Rohde et al. 2013) for the Arctic (defined as the 60–
90° N latitudinal belt), as well as for the whole Northern
Hemisphere (Morice et al. 2012; Rohde et al. 2013).
CRUTEM4 contains land air temperature anomalies on a
5 × 5° grid, while HadCRUT4 are the combined land temper-
ature anomalies (CRUTEM4) and marine temperature anom-
alies (SSTanomalies from HadSST3, Kennedy et al. 2011) on
a 5 × 5° grid. In the case of the BEST dataset, its primary
product—an analysis of summary air temperatures over
land—has been utilised in this paper. Furthermore, we utilised
BEST land + ocean, which combines the Berkeley Earth land-
surface temperature field with a re-interpolated version of the
HadSST3 ocean temperature field. We used the version where
temperature anomalies in the presence of sea ice are extrapo-
lated from land-surface air temperature anomalies; for more
details, see Rohde et al. (2013). Spatial resolution of BEST
product is a 1 × 1° latitude–longitude grid.

Besides the entire study period (1951–2015), we decided to
also distinguish two sub-periods (1976–2015 and 1996–2015)
for analysis of different aspects of SAT changes (anomalies,
trends, etc.). The former period represents the second phase of
global warming (the first [1920–1940] is known as the early
twenty century warming [ETCW]) and is referred to here as
contemporary global warming [hereinafter CGW] and the lat-
ter represents most adequately the RRAW period. Both of
these starting years are very well known in the literature (see
Przybylak 2000, 2007; IPCC 2013; http://cdiac.ess-dive.lbl.
gov/trends/temp/jonescru/jones.html). The regime shift
detection algorithm (Rodionov 2004) utilised on our Arctic
SAT series confirms the occurrence of a rapid change in mean
annual SATs in 1995 (by 1.33 °C), as well as in spring and
autumn (see Fig. 2). In addition, the next shift was found also
for the year 2005, but was slightly smaller (1.28 °C). The latter
shift was also noted for seasonal values, except spring.

From Fig. 1, it is clearly seen that long-term series of
instrumental SAT are not available for two climatic regions:

the interior Arctic region and the Greenland region.
Therefore, these areas of the HA are generally excluded
from the analysis presented in the paper. Only probable
locations of isolines describing SAT anomalies and trends
were drawn using dashed lines for the mentioned climatic
regions. This decision was taken because Martin et al.
(1997) found that air temperature changes in 1961–1990
obtained from drifting stations were “consistent with the
land station observations, and suggest, now that the NP
[North Polar drifting stations – authors’ suppl.] tempera-
tures are no longer being acquired, that the land stations
might be used as a proxy for these observations”. A similar
conclusion is also presented by Rigor et al. (2000) based on
analysis of SAT derived from a gridded dataset called
POLES (Polar Exchange at the Sea Surface) for the period
1979–1997. These data were estimated from the optimal
interpolation of inputs from different buoys (International
Arctic Buoy Programme, IABP), manned Soviet North Pole
drifting ice stations, coastal land weather stations and ship
reports. For the Greenland region, we have also drawn a
probable run of isolines (dashed lines) using available
SAT characteristics for coastal stations. We decided to do
this because trends calculated for the Greenland interior for
the periods 1951–2015, 1976–2015 and 1996–2015 using
our method were similar to areally averaged seasonal and
annual trends for the whole Greenland region (meant as the
latitudinal/longitudinal range from 59.78 to 83.63° N and
from 73.26 to 11.31° W) received from 88 monthly temper-
ature series (including coastal and interior ice cap automatic
weather stations) taken from the BEST dataset (not shown).

Polar (Arctic) amplification (PA), described recently in de-
tail by Davy et al. (2018), was calculated in the paper using
seven methods (metrics); among them, we propose two new
ones based on scaledmean SATanomalies (PA6) and trends of
standardised SAT anomalies (PA7) (see Table 1 for details),
because we agree with the suggestion of Davy et al. (2018)
saying that the magnitude of the variability in comparable
areas (here the Arctic and the Northern Hemisphere) should
also be taken into account.

Standardisation of SAT for HA and NH was made accord-
ing to the following formula (Wilks 2011):

SATSD ¼ SAT−SATMEANð Þ=SD
Where SATSD is the standardised monthly mean anomaly,
SAT is the non-standardised variable, SATMEAN is the arith-
metic mean and SD is the standard deviation from the time
series. Calculated linear trends for SATSD values allowed us to
construct the PA7 metric. Note that PA7 is based on
standardised SATs, and PA6 is scaled to the magnitude of
the variability where non-standardised mean SAT anomaly is
simply divided by the SD of the time series (Table 1). Finally,
we calculated the ratio between HA and NH.
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In all metrics (except PA2, which uses differences between
sets of SAT data instead of their ratios), values greater than 1.0
denote the occurrence of PA, while lower than 1.0 mean a
greater increase of NH SAT than HA SAT. We propose to call
this phenomenon “non-polar amplification” (hereinafter N-
PA).

3 Results and discussion

3.1 Instrumental observations

The structure of the presented analysis of recent changes in
SAT in the HA until 2015 is similar to those used in previous
analyses of that kind presented by Przybylak (1996, 2000,
2002, 2007, 2016). Summarising those results briefly, it must
underlined that in the HA, after 1975 (start of NH warming,
including sub-Arctic), warming was not seen until the mid-
1990s. As a result, trends in SAT from 1951 until 1995 were
still mainly decreasing (Przybylak 2000, see also Table S2).
The abrupt rise in SAT in the mid-1990s, first documented by
Przybylak (2007), changed this pattern significantly. For the
periods 1951–2000, 1951–2005 and 1951–2010, trends in
SAT were mainly increasing in all seasons and climatic

regions, except the Baffin Bay region (hereinafter BAFR)
during the first two mentioned periods (Table S2).

For the purposes of the present paper, we have updated all
SAT series until 2015 to check if strong warming is still con-
tinuing in the HA and, if so, how this fact has influenced the
observed magnitude and spatial distribution of trends. As was
said earlier, the great and dramatic warming in the HA began
in the mid-1990s, and therefore, to quantitatively estimate the
scale of this warming, we decided to calculate SAT anomalies
from 1996 to 2015 in reference to 1951–1990, which was also
used as the reference period in all previous works (Przybylak
2000, 2002, 2007, 2016) and is thus very convenient for com-
parison purposes (Table 2).

Areally averaged SAT in HA in the RRAW period 1996–
2015 was as much as 1.55 °C warmer than in the reference
period. The greatest warming occurred in autumn (by 1.95 °C)
and winter (by 1.70 °C), while the smallest was in summer (by
0.90 °C) (Table 2). Seasonal and annual anomalies calculated
for this period were about 2 times greater than those calculated
for the period of CGW, i.e. 1976–2015. The recent HA
warming is of the same magnitude as the warming observed
over lands based on the HadCRUT4 gridded product in the
latitude band 60–90° N (Arctic 3), while it is markedly warm-
er (by almost 0.6 °C for the annual values) than the area that
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Fig. 2 Regime shifts of the HA temperature series detected by the
Rodionov test for a–d seasonal and e annual means in the period 1951–
2015 with significance level p = 0.05 determined by Student’s t test. (Cut-

off length was 10). Shifts were detected after data prewhitening procedure
by the IP4 (inverse proportionality with 4 corrections) method (see
Rodionov 2006), but original data are plotted



also encompasses the oceans (Arctic 2, see Table 2). Ocean
data included in the BEST dataset slightly lowered SAT (com-
pare Arctic 4 and Arctic 5), but both these versions of data
revealed a slightly smaller warming (by 0.2 °C) in the 1995–
2015 period than that noted in HA (Table 2).

The annual values for HA warming in the RRAW period
were as much as 2.5 times greater than the warming of the
Northern Hemisphere (NH 1) and were slightly greater than in
the CGW period (see Table 2). In the cold half-year, the ratio
even reached 3:1 in the former period, while in the latter, it
ranged between 2.4 and 2.8 (to 1). This effect is usually called
polar (or Arctic) amplification (Serreze and Francis 2006;
Cowtan and Way 2014; Davy et al. 2018). Besides this meth-
od used to calculate PA (PA1 in Table 1), we also used six
others (PA2–PA7), including two new metrics (PA6 and PA7)
proposed by us in this paper, which were calculated based on
scaled and standardised values of HA and NH 1 SATs. All the
old metrics (PA1–PA5) show a clear increase in PAwith time.
In the RRAW period, their values range between 2 and 4 in
terms of PA1 and PA3–PA5 metrics (see Table 1). These re-
sults are close to that presented by Davy et al. (2018)—see
their Figure 2. A clearly greater PA is observed in winter and
autumn compared to summer and spring (Table 1).

Davy et al. (2018) calculated PA using four metrics (of
which, we also use three: PA2, PA4, PA5 in our Table 1)
and eight different datasets: two observational and six reanal-
ysis. They conclude that all metrics used by them showed
increasing values of PA from around 1990 to the present.
For this reason, here, we do not present results for the six
reanalysis products used by us, because exactly the same set
of reanalyses was used by Davy et al. (2018).

As is well seen from the analysis of Table 1, and from a
review of the literature, all metrics calculated based on non-
standardised values confirm the existence of large PA. On the
other hand, metrics based on scaled and standardised values
(PA6 and PA7 in Table 1) most often reveal a lack of PA and
even the existence of N-PA. In light of the PA6 metric, in all
three study periods, N-PA dominates, while in the PA7 metric,
this is mainly seen in the period 1951–2015 (Table 1). In two
more recent periods (1976–2015 and 1996–2015), a very
slight domination of PA is observable. Standardised SAT
anomalies of HA and NH 1 run very close to each other in
the period 1951–2015 (Fig. 3), and this is in agreement with
the calculation of PA using the new metrics, and PA6 and PA7
in particular.

The greatest warming in the RRAW period (by 1.65 °C)
was noted in the Atlantic region (hereinafter ATLR), with its
maximum in winter (by 2.16 °C) and minimum in summer (by
0.81 °C) (Table 2). An identical magnitude of warming in
terms of annual means was also noted in the Canadian region
(hereinafter CANR). However, here, a greater warming than
in the ATLR was observed in summer and autumn, and a
smaller one in winter and spring. Of all climatic regions, theTa
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markedly smallest warming occurred in the BAFR (only by
1.33 °C), although there was a similar pattern of changes in all
seasons to that in the ATLR. It is, however, interesting to note
that the summer SAT rise in the period 1996–2015 was greater
in the BAFR than in the ATLR. Of all the climatic regions, the
BAFR saw the greatest rate of winter and spring warming in
the most recent two decades in comparison to the CGWperiod
(Table 2).

The spatial distribution of seasonal and annual anomalies
of SAT in the HA in the RRAW period relative to the period
1951–1990 is shown in Fig. 4. Annual SAT anomalies exceed
1.5 °C in almost the entire Arctic, except southern continental
and coastal parts of the Eurasian continent and southern areas
stretching fromHudson Bay to JanMayen Island. The greatest
warming (> 2.5 °C) was observed between Svalbard and
Franz Joseph Land. This area also had the greatest winter
warming (> 3.5 °C) and spring warming (> 2.5 °C) (Fig. 4).
The great winter warming in this area was also more recently
noted among others by Alexeev et al. (2017), Jung et al.
(2017) and Kohnemann et al. (2017). Graham et al. (2017)
found that, in the period of interest, a significantly greater
frequency and duration of Arctic winter warming events (see
their Fig. 3c) was observed, and in particular after 2004. Thus,
one reason for this warming was the change in atmospheric
circulation towards a greater frequency of inflow of warm air
masses from the south to the Barents Sea (Simmons and Poli
2015; Alexeev et al. 2017; Yurova et al. 2018). Several other

driving factors should also be mentioned, such as the well-
documented retreat of Arctic sea ice in this time (increased
absorption of solar radiation by water newly free of sea ice,
Perovich et al. 2008), in particular large in the Barents–Kara
seas, being the effect of significant inflow of oceanic heat
(increase of advection and temperature of the Atlantic water,
Walczowski et al. 2012; Jung et al. 2017). In autumn, the
greatest warming occurred over the Arctic Ocean (> 2.5 °C)
with the maximum in its central part (> 3.0 °C), while the
smallest usually occurred in areas lying near the southern
boundary of the HA. Warming was most evenly distributed
in summer, and as a result, anomalies range mostly around
1.0 °C (Fig. 4).

Since about the mid-1990s, the rate of warming in the HA
has become greater than the increasing rate of SAT in the NH
(Fig. 5). Earlier, such a situation occurred in the 1950s, the
period ending the warming phase of the Arctic which began in
the 1920s (the so-called early twentieth century warming). In
the twenty-first century, the SAT in the HA reached and even
exceeded the level of the warming that occurred in the 1930s
and 1940s—the greatest warming of the twentieth century. In
this 15-year period, the rate of warming in the HA is slightly
more than twice as great as in the NH. It is interesting to note
that together with the warming, a decrease in variability of
both seasonal and annual means of SAT is observed
(Table S3). The greatest SAT decrease in variability between
the periods 1951–2015 and 1996–2015 occurred in spring and

Table 2 Mean seasonal and
annual SAT anomalies (°C) in the
Arctic and its climatic regions
from the periods 1976–2015 and
1996–2015 relative to 1951–1990
mean

Area 1976–2015 1996–2015

DJF MAM JJA SON YEAR DJF MAM JJA SON YEAR

ATLR 1.09 1.15 0.42 0.86 0.88 2.16 1.80 0.81 1.74 1.65

SIBR 0.69 1.03 0.37 1.19 0.83 1.18 1.87 0.71 2.35 1.54

PACR 1.09 1.05 0.68 1.18 1.03 1.44 1.70 0.93 2.25 1.60

CANR 1.03 0.79 0.59 1.14 0.91 1.85 1.39 1.03 2.22 1.65

BAFR 0.46 0.25 0.39 0.48 0.41 1.84 1.27 1.04 1.17 1.33

Arctic 1 (HA) 0.87 0.85 0.49 0.97 0.81 1.70 1.61 0.90 1.95 1.55

Arctic 2 (land +
ocean)

0.74 0.80 0.46 0.55 0.62 1.34 1.14 0.83 1.10 0.96

Arctic 3 (land only) 0.92 1.03 0.43 0.97 0.84 1.66 1.68 0.79 1.89 1.52

Arctic 4 (land +
ocean)

0.88 0.88 0.36 0.81 0.74 1.49 1.47 0.68 1.62 1.32

Arctic 5 (land only) 0.89 0.89 0.40 0.80 0.75 1.44 1.45 0.74 1.51 1.30

NH 1 (land + ocean) 0.36 0.38 0.33 0.35 0.36 0.57 0.62 0.59 0.63 0.61

NH 2 (land + ocean) 0.39 0.41 0.32 0.38 0.38 0.65 0.67 0.57 0.70 0.65

Key: Arctic 1—areally averaged temperature based on data from 37 Arctic stations, Arctic 2—areally averaged
temperature for 60–90° N latitude band (HadCRUT4, land + ocean, after Morice et al. 2012, updated), Arctic 3—
areally averaged temperature for 60–90° N latitude band (CRUTEM4, land only, after Jones et al. 2012, updated),
Arctic 4—areally averaged temperature for 60–90° N latitude band (BEST, land + ocean, after Rohde et al. 2013,
updated), Arctic 5—areally averaged temperature for 60–90° N latitude band (BEST, land only, after Rohde et al.
2013, updated), NH 1 (land + ocean)—areally averaged temperature for Northern Hemisphere (HadCRUT4, after
Morice et al. 2012, updated), NH 2 (BEST, land + ocean)—areally averaged temperature for Northern
Hemisphere (BEST, after Rohde et al. 2013, updated)
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autumn (by 0.3 °C for HA). A decrease in variability between
these periods was noted also for the NH (Table S3). The best
fit with observational data (Arctic 1) is provided by Arctic 3
(CRUTEM4, land only), whereas Arctic 5 (BEST, land only)
underestimates recent warming for the whole Arctic (Fig. 5),
similarly as was revealed for northern Canada (Way et al.
2017).

In the RRAW period, very large increases in both seasonal
and annual means were observed in the ATLR and the
Siberian region (hereinafter SIBR), while in the rest of the
Arctic, the rate of warming was usually weaker than trends
for the CGW period. In particular, there was a large fall in the
rate of warming in spring, with near-zero trends (BAFR and
CANR) and even a negative trend (− 0.34 °C/10 years) in the
Pacific region (hereinafter PACR) (Table 3). In the entire
study period (1951–2015), all seasonal and annual trends in
all climatic regions and for the entire HA are positive and,
except for winter and spring in the BAFR, statistically signif-
icant. The greatest rate of warming in this time occurred in
winter and autumn (0.38 °C/10 years), while the smallest was
in summer (0.19 °C/10 years) (Table 3). The PACR saw the
greatest warming (0.39 °C/10 years), while the smallest was in
the BAFR (only 0.17 °C/10 years). Magnitudes of trends of
mean annual SAT for the HA for the three analysed periods

(1951–2015, 1976–2015 and 1996–2015) show significant
increasing values, from 0.32 °C/10 years for the first period,
through 0.68 °C/10 years in the second period, to 0.86 °C/
10 years for the last period (Table 3). The greatest trend inten-
sification between the first and the later periods occurred in
winter (3.6 times) and summer (3.3 times). It is interesting to
note that SAT trends in the NH increased significantly be-
tween the periods 1951–2015 and 1976–2015, but then show
a small decrease from 0.24–0.26 °C/10 years (1976–2015) to
0.22–0.25 °C/10 years (1996–2015). As a result, PA (calcu-
lated here as the ratio between annual SAT trends) almost
doubled, from 2.4 in 1951–2015 to 3.9 in 1996–2015 (see
PA3 in Table 1). It is also interesting to note that lands in the
northern latitudes (Arctic 3) show almost the same rate of
warming in the periods 1951–2015 and 1976–2015 as those
in HA, while in the period 1996–2015, they display an even
greater one. When ocean areas are included (Arctic 2), SAT
trends in the HA in all study periods (particularly in the period
1976–2015) are markedly greater than those calculated for the
Arctic 2 (see Table 3).

The inclusion of the data from the period 2011–2015 in the
calculations changed the trends of areally averaged SAT for all
the Arctic and for individual climatic regions (Table S2).
Generally, trends are greatest in the period 1951–2015 in
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Fig. 4 Spatial distribution of mean a–d seasonal and e annual SATanomalies (°C, relative to 1951–1990mean) in the Arctic from the period 1996–2015



comparison to the five previously analysed shorter periods
(1951–1990, 1951–1995, 1951–2000, 1951–2005 and
1951–2010). Such a pattern of steady increase in magnitudes
of trends, when 5-year series of data were successively added,
is particularly well seen for the HA as a whole both for its
annual and seasonal values, except for winter, when the down-
ward trend of SAT was greater in 1951–1995 than in 1951–
1990 (Table S2). In all climatic regions, such a steady rising
tendency of SAT is also observed almost constantly for annual
values and for autumn. In summer and winter, rising magni-
tudes of trends are noted in almost all climatic regions, except
PACR, while SAT trends in the period 1951–2015 are greatest
in spring only in ATLR and SIBR (Table S2). The greatest
change in trends in the six study periods was noted in the
BAFR. Until 2000, trends here were downward and even
statistically significant in some seasonal and annual values.
Upward trends in all seasons for the period 1951–2010 were
noted for the first time here but were statistically significant
only in autumn. In 1951–2015, statistically significant trends
were also calculated for summer and for the year (Table S2).

In the period 1951–2015, trends in SAT in the HA were
positive throughout the research area (Table 3, Fig. 6). The
greatest increases in mean annual SAT (0.4–0.5 °C/10 years)
occurred mainly over the Arctic Ocean, northern Alaska with
the Beaufort Sea and the area stretching from Svalbard to
Severnaya Zemlya, but with a maximum (> 0.5 °C/10 years)
over Svalbard (Fig. 6). Trends smaller than 0.3 °C/10 years are
only noted in a small fragment of the European Arctic, but

mainly in the southern parts of Greenland, BAFR and Baffin
Island, as well as over the Hudson Bay area. In comparison to
the period 1951–2010, in the study period, the rate of warming
increased by about 0.1 °C/10 years mainly in the ATLR and
SIBR, while in other parts of the Arctic, smaller increases or
no change in trends was noted (compare Fig. 10.17 in
Przybylak 2016 with Fig. 6). Thus, geographically, the largest
trends moved from being in the PACR and western CANR in
1951–2010 to being in north-eastern ATLR (and particularly
to the region between Svalbard, Franz Joseph Land and
Novaya Zemlya) in 1951–2015. The spatial pattern of SAT
trends in the HA is now closer to future climate scenarios,
which locate greatest warming in the latter area (see
Koenigk et al. 2013 or Fig. 11.15 in Przybylak 2016). The
markedly greatest areally averaged rate of warming in the
annual cycle was noted in the cold half-year. However, only
in winter between Svalbard and Franz Joseph Land and over
north-eastern Alaska were SAT trends greater than 0.7 °C/
10 years observed (Fig. 6). The smallest trends in this season
(< 0.4 °C/10 years) occurred in continental parts of the
Eurasian Arctic and southern parts of seas neighbouring them,
as well as in southern parts of Greenland and BAFR and
south-eastern CANR. Autumn is a second season which had
the same average rate of warming as winter (0.38 °C/10 years,
see Table 3). The greatest SAT increase (> 0.5 °C/10 years)
occurred mainly over the Arctic Ocean and the northern part
of the CANR, while the smallest (< 0.2 °C/10 years) occurred
over southern Greenland and surrounding seas on both sides
(Fig. 6). Of all seasons, in accordance with expectations, the
smallest increase in SAT in 1951–2015 (from 0.1 °C/10 years
to 0.3 °C/10 years) was noted in summer. The largest warming
(> 0.2 °C/10 years) occurred in the area stretching from
Chukotka Peninsula to Labrador Peninsula, while the smallest
(< 0.1 °C/10 years) was in separate areas located in Greenland,
Baffin Land and Severnaya Zemlya (Fig. 6).

From the results presented above, we can conclude that the
slowdown in SAT trends in the recent two decades (also de-
scribed often as a warming “hiatus”), noted for NH (IPCC
2013; Fyfe et al. 2016), is not present in the entire HA (see
Arctic 1–Arctic 5 in Table 3). On the other hand, a clear
slowdown in SAT trends is observed in the period 1996–
2015 in the Pacific region (in comparison to the period
1976–2015), and in particular in the Canadian region, where
SAT trends in recent period are the smallest (0.29 °C/10 years
versus 0.61 °C/10 years [1976–2015] and 0.34 °C/10 years
[1951–2015]). Karl et al. (2015) reveal that global trends are
higher than those reported by the IPCC (2013), especially in
recent decades, and that the SAT trend in 2001–2015 is the
same as in 1951–2000. Thus, according to them, this excludes
the existence of a “slowdown” in global SAT. In conclusion,
we must say that the discussion is still open concerning the
existence or non-existence of a “hiatus” in global SAT in the
recent two decades.
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3.2 Reanalyses

In the slightly more than 20-year period of availability of
reanalysis products (starting from Kalnay et al. 1996; Kistler
et al. 2001), they have developed significantly, as has their use
in climate and climate change analyses. Also for the Arctic,
which is the area of analysis presented in present paper, there
are quite a lot of papers evaluating the possibility of using
reanalyses to study climate and climate change in the region
(see, e.g. Vízi and Przybylak 2006; Bromwich et al. 2007;
Jakobson et al. 2012; Przybylak et al. 2013, 2016; Lindsay
et al. 2014; Rapaić et al. 2015; Way and Bonnaventure 2015;
Cullather 2017; Diaconescu et al. 2017; Wegmann et al. 2017;
Klaus et al. 2018). The relative advantage of using reanalysis
products for the Arctic and also the Antarctic, as opposed to
using them for lower latitudes, results from the fact that in
polar regions the network of meteorological stations is signif-
icantly sparser than at lower latitudes, while, due to the com-
mon presence of cryosphere in different forms (from ice sheets
to sea ice), the processes are more complicated. The history of
development of reanalysis products is extremely dynamic; see
for example the review by Lindsay et al. (2014) or Fujiwara
et al. (2017), which also gives a short description of the ma-
jority of recent versions of reanalyses, including data coverage
(see also Section 2 in the present paper). Recently, a very good
and comprehensive overview of the significance of reanalyses
for climate sciences has also been presented by Cullather et al.

(2016) in the white paper entitled: Systematic Improvements of
Reanalyses in the Arctic (SIRTA).

Having good quality SAT data for the HA for the period
1951–2015, we decided to use the newest versions of reanal-
ysis products to check if their present quality is better than
when older versions were utilised. For example, Vízi and
Przybylak (2006) showed that NCEP/NCAR (i.e. NCEP-R1)
reanalysis SAT values (1961–1990) for the Canadian Arctic
(area > 55° N) were, for the majority of months (except
March–June), more than 2 °C lower (in October and
November even more than 5 °C lower) than SAT data from
the Global Historical Climatology Network (GHCN) and
Adjusted Historical Canadian Climate Database (AHCCD).
The recent analysis made by Lindsay et al. (2014) for the
whole Arctic defined as latitude band 60–90° N (period
1980–2009) using the NCEP/NCAR and NCEP/DOE
reanalyses (i.e. NCEP-R1 and NCEP-R2, respectively) re-
veals smaller biases (negative − 1.5 to − 2 °C for April–
October and small positive for winter months) than that pre-
sented by Vízi and Przybylak (2006). Lindsay et al. (2014)
also documented that three other reanalyses (CFSR, MERRA
and JRA-25) have biases ranging usually between − 1 and
1 °C. They also found such small biases from May to
October for the 20CR, but winter months are 4–6 °C warmer
than observations taken from the Climate Research Unit
(Brohan et al. 2006). All reanalysis products used by
Lindsay et al. (2014) show a warming bias in winter, while

Table 3 Seasonal and annual SAT trends (°C decade−1) in the Arctic

Area Trends °C/10 years

1951–2015 1976–2015 1996–2015

DJF MAM JJA SON YEAR DJF MAM JJA SON YEAR DJF MAM JJA SON YEAR

ATLR 0.46 0.45 0.17 0.32 0.35 1.24 0.80 0.42 0.77 0.81 2.59 1.38 0.62 1.08 1.40

SIBR 0.31 0.48 0.15 0.50 0.36 0.57 1.02 0.42 1.23 0.83 1.53 2.07 0.92 2.25 1.67

PACR 0.48 0.37 0.26 0.45 0.39 0.43 0.56 0.26 0.86 0.51 1.42 − 0.34 0.45 0.80 0.56

CANR 0.41 0.25 0.23 0.44 0.34 0.60 0.53 0.46 0.89 0.61 0.63 0.03 0.34 0.38 0.29

BAFR 0.26 0.08 0.16 0.20 0.17 0.81 0.61 0.61 0.59 0.64 0.74 0.00 0.79 0.21 0.37

Arctic 1 (HA) 0.38 0.33 0.19 0.38 0.32 0.73 0.70 0.43 0.87 0.68 1.38 0.63 0.62 0.94 0.86

Arctic 2 (land + ocean) 0.30 0.31 0.20 0.21 0.24 0.63 0.42 0.40 0.48 0.38 1.25 0.69 0.64 0.46 0.74

Arctic 3 (land only) 0.38 0.40 0.17 0.37 0.33 0.80 0.72 0.38 0.84 0.69 1.61 0.94 0.50 1.05 1.00

Arctic 4 (land + ocean) 0.35 0.34 0.14 0.32 0.29 0.61 0.62 0.33 0.74 0.58 1.07 0.65 0.43 0.90 0.74

Arctic 5 (land only) 0.35 0.34 0.16 0.31 0.29 0.54 0.57 0.35 0.64 0.53 0.87 0.57 0.42 0.69 0.61

NH 1 (land + ocean) 0.13 0.15 0.13 0.14 0.14 0.21 0.24 0.25 0.26 0.24 0.10 0.22 0.24 0.29 0.22

NH 2 (land + ocean) 0.15 0.16 0.12 0.15 0.15 0.25 0.26 0.24 0.30 0.26 0.18 0.24 0.23 0.33 0.25

Key: Arctic 1—areally averaged temperature based on data from 37 Arctic stations, Arctic 2—areally averaged temperature for 60–90° N latitude band
(HadCRUT4, land + ocean, after Morice et al. 2012, updated), Arctic 3—areally averaged temperature for 60–90° N latitude band (CRUTEM4, land
only, after Jones et al. 2012, updated), Arctic 4—areally averaged temperature for 60–90° N latitude band (BEST, land + ocean, after Rohde et al. 2013,
updated), Arctic 5—areally averaged temperature for 60–90° N latitude band (BEST, land only, after Rohde et al. 2013, updated), NH 1 (land + ocean)—
areally averaged temperature for Northern Hemisphere (HadCRUT4, after Morice et al. 2012, updated), NH 2 (BEST, land + ocean)—areally averaged
temperature for Northern Hemisphere (BEST, after Rohde et al. 2013, updated). Trends statistically significant at the level 0.05 are shown in italics
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Fig. 6 Spatial distribution of a–d seasonal and e annual SAT trends (°C decade−1) in the Arctic in 1951–2015



in the rest of the year, there is mainly a negative bias (see their
Figure 1b). On the other hand, Liu et al. (2008) found a
warming bias in mean annual values using reanalyses
NCEP-R1 and ERA-40.Warming biases for summer and win-
ter for the Canadian Arctic (except Baffin Island) for 1980–
2004 using five global reanalysis products (ERA-Int, JRA-55,
MERRA, CFSR and GMFD) are also presented by
Diaconescu et al. (2017). Way and Bonnaventure (2015)
found that mean absolute errors between observational and
reanalyses data for the Labrador–Ungava region are ± 1 and
± 0.5 °C onmonthly and annual timescales, respectively. They
estimated that the ERA-Interim (ERA-Int) and Modern-Era
Retrospective Analysis for Research and Applications
(MERRA) reanalyses are the most suitable for filling gaps in
the observational data, i.e. both reanalyses are close to obser-
vations in the region they studied.

In the present paper, reanalysis products are compared with
observations for mean annual and seasonal values (with anal-
ysis also for sub-periods), and not only for the entire HA, but
also for the five distinguished climatic regions. Changes in the
year-to-year run of mean annual SAT values taken from dif-
ferent reanalyses and observations are analysed for the entire
HA (Fig. 7) and for climatic regions (not shown). It is very
clearly seen that there is quite a good fit between data from
reanalyses and observations, in particular after 1979, when
satellite data were incorporated for reanalyses. Average annual
values from all available reanalyses and observations shown
in Fig. 7b, and also for seasons in Table 4, reveal mean biases
of less than ± 0.2 °C for the period 1951–2015. In the cold
half-year, reanalyses are too cold (by 0.2 °C), while in sum-
mer, the fit is perfect. The worst results were received for the
first period (1951–1957) and the last (2011–2015), when dif-
ferences in all seasons (except summer) range between − 0.4
and − 0.9 °C. The great bias in the first period can be attributed
to availability of only two reanalysis products (20CR and
CERA-20C), which assimilated only surface data, i.e. SLP,
SST-Sea Ice and wind. We did not expect such large biases
for the latter period. Analysis showed that negative large
biases calculated for this period were caused mainly by the
negative biases observed in MERRA-2 after 2005 (Fig. 7),
which were particularly large in the CANR and SIBR
(Fig. 8). This is probably connected with the fact that in the
MERRA-2 product, in comparison to the previous version
described as MERRA, a significant amount of new satellite
data was assimilated (see Fig. 1 in McCarty et al. 2016 or
https://gmao.gsfc.nasa.gov/research/science_snapshots/
MERRA2_obs_sys_ts.php). The greater spread between data
from reanalyses in the Canadian Arctic in this time was also
noted by Rapaić et al. (2015). They wrote that “Declining
station networks, increased automation, and the inclusion of
new satellite data streams in reanalyses are potential contrib-
uting factors to this phenomenon.” On the other hand,
Cullather et al. (2017) found that the MERRA-2 reanalysis

shows a better fit with observations (period 2008–2012) over
central Greenland (Summit Station, 73° N, 38° W) than the
five other reanalyses used by them. Also opposite to our re-
sults are the signs of differences: outside Greenland the biases
are negative, while in central Greenland, they are such only in
summer. In the latter area, positive biases dominate, ranging
mainly between 1 and 2 °C (see Fig. 4 in Cullather et al.
2017).

A large improvement in the quality of reanalyses data in
comparison to observations can be observed for the period
1958–1978, when, instead of separate data from reanalyses,
their mean values are used (compare a with b of Fig. 7). The
best fit between mean annual values of SAT in the HA taken
from reanalyses and observations is for 1979–2010 (see Fig.
7). The seasonal and annual mean values of differences calcu-
lated as the mean of the six available reanalyses on the one
hand and mean observations on the other are 0.0 °C (Table 4).
Generally, a very good correspondence between year-to-year
courses of mean annual and seasonal SAT between reanalyses
and observations is also seen when data are averaged for the
climatic regions (not shown). The worst fit is most often ob-
served for the BAFR, particularly in the cold half-year and
before 1979.

Detailed analyses of differences for all reanalysis products
using mean annual 10-year values are presented in Fig. 8 for
the entire HA and all climatic regions and in Fig. 9 for all
seasons, but only for the entire HA. On the other hand, results
of calculations of differences for all climatic regions and all
seasons are shown in Fig. S1. Again, it is clearly seen that
including satellite data in the reanalyses markedly improved
their quality and reliability. However, the attached documen-
tation also allows us to check which reanalysis products show
the best fit with data taken from observations and which show
the worst. In the pre-satellite period, JRA-55 and 20CRv2c
products usually have negative and positive biases, respective-
ly. Thus, it seems to be a reasonable solution to use average
values (both for the entire HA and for all climatic regions)
from both reanalyses for this period (see Figs. 8 and 9, Fig.
S1), in particular for winter and autumn. In summer, biases are
rather small (usually for the entire HA and for most of the
climatic regions, except the CANR, they are lower than ±
0.3 °C). Relatively small biases have also been observed in
spring, when for the entire HA the range of ± 0.5 °C was
exceeded only in the decade 1951–1960 for data from
20CRv2c (Fig. 9). In data averaged for climatic regions, biases
in this season rarely exceed 1.0 °C (Fig. S1). In the satellite
period, biases calculated for seasons and all studied regions
are very small and usually lower than ± 0.3 °C, except for data
taken from MERRA-2 (Figs. 8 and 9, Fig. S1). Large cold
biases of SAT values taken from MERRA-2 for the period
2001–2015 are generally observed in all seasons (except sum-
mer) and also in all climatic regions.
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To estimate which reanalysis products are the best in com-
parison to SAT observations from the HA, correlation coeffi-
cients (r) and RMSE statistics have been calculated based on
data from the period 1981–2010, for which reanalyses have
available data (see Fig. 10). The results again confirm that
using mean values from all available reanalyses is the best
solution to study climate and climate change aspects in the
HA. Coefficients of correlation both for mean annual and
seasonal values for the entire HA are close to r = 1.00 and
the RMSE is below 0.1 °C for annual and summer means,
slightly above 0.1 °C for spring and near 0.2 °C (for autumn

and in particular winter) (see Fig. 10). Cullather et al. (2017)
investigated average annual SAT cycle in the area 60–90° N
using 10 reanalysis products for the common period 1980–
1993 and also found that biases are the greatest in winter
months. In accordance with expectations, for climatic regions,
the above statistics are slightly worse than for the entire HA,
but still very good. Correlation coefficients never fall below
r = 0.9 and occur below r = 0.95 only once—in winter in
SIBR. For individual reanalyses (excluding the three starred
reanalyses also calculated for before the satellite era), correla-
tion coefficients never fall below r = 0.8 for the entire HA
(Fig. 10) and, in the case of climatic regions, only for
MERRA-2 for winter (not shown). The best fit with observa-
tions was found for data taken from JRA-55 and ERA-Int and
the worst from MERRA-2. It is clear how assimilation of
satellite data improved quality of reanalyses when we com-
pare the above statistics for the same reanalysis products
(20CRv2c, CERA20C and JRA-55) for the two periods
1981–2010 and 1958–1980 (see Fig. 10). When pre-satellite
data are included, correlation coefficients are usually 0.2–0.3
lower than the same calculations made for 1981–2010, and
RMSEs are about 2 times greater. Here we must stress that our
results are only valid for SAT (i.e. 2-m air temperature) and
cannot be utilised for the free atmosphere. Results presented
by Jakobson et al. (2012) show that different sets of reanalyses
show best fit with observations (the mean profile averaged
over the 29 soundings up to 900m, see their Figure 2) in lower
near-surface atmosphere (NCEP-CFSR, NCEP-DOE) and
above 200 m (ERA-Int, MERRA). They also stated that none
of the five reanalyses analysed by them was successful in
reproducing the shape of the temperature profile.

In general, the results presented above are in line with the
opinion of Serreze and Barry (2014) that, due to discrepancies
in reanalyses, it is necessary to take under consideration many
reanalysed data as an average in order to properly analyse the
mean state of the Arctic climate system. That is why we pres-
ent below the spatial distribution of differences between mean
reanalyses data only and SAT observations in HA from the
pre-satellite period (1951–1978, Fig. S2) and the satellite pe-
riod (1979–2015, Fig. S3). Differences in annual and seasonal
values of SAT are significantly greater in 1951–1978 than in
1979–2015. The second important feature between the study
periods is the occurrence of different spatial distributions of
biases (Figs. S2 and S3). In the pre-satellite period, annual
biases range from − 0.5 °C (Svalbard, Franz Joseph Land
and Novaya Zemlya and surroundings seas, as well as south-
ern parts of Greenland and BAFR) to 0.5 °C (north-eastern
CANR). The reason probably lies in the inadequate reproduc-
ibility of reanalyses of vigorous and changeable atmospheric
circulation and its influence on SAT in these areas. In 1979–
2015, mean reanalyses are slightly too cold, with a maximum
(− 0.1 °C) in central SIBR and northern Greenland and
northern CANR. In both periods, the greatest biases are

Table 4 Differences in seasonal and annual SATanomalies (°C, relative
to 1981–2018 mean) between mean reanalysis and observations in the
Arctic in selected periods

Period DJF MAM JJA SON Year

1951–2015 − 0.2 − 0.1 0.0 − 0.2 − 0.1
1951–1957 − 0.6 − 0.7 − 0.1 − 0.6 − 0.5
1958–1978 − 0.2 0.1 0.1 − 0.3 − 0.1
1979–2010 0.0 0.0 0.0 0.0 0.0

2011–2015 − 0.9 − 0.6 − 0.2 − 0.4 − 0.5

These differences were obtained by subtracting observational data from
mean reanalysis values
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Fig. 7 Year-to-year courses of annual SAT anomalies (°C, relative to
1981–2010 mean) in the Arctic in 1951–2015 based on a individual
reanalyses and bmean reanalysis and observations. Dashed lines indicate
± 2SD of SAT (°C) calculated for observational data from 1951 to 2015.
Digits shown on sub-figure (b) indicate the number of reanalyses taken
for averaging in particular periods: 1951–1957, 1958–1978, 1979–2010,
2011–2015



observed in winter, and the smallest in summer. In spring and
autumn, they are more or less similar. Similar results were

found by Way and Bonnaventure (2015) for the Labrador–
Ungava region.

Fig. 8 Decadal differences of
annual SAT anomalies (°C,
relative to 1981–2010 mean) be-
tween observations and
reanalyses in a–f the Arctic re-
gions in 1951–2015. These dif-
ferences were obtained by
subtracting observational data
from reanalysis values. Note that
the last period includes a 15-year
mean

Fig. 9 Decadal differences in a–d
seasonal SAT anomalies (°C,
relative to 1981–2010 mean) be-
tween observations and
reanalyses in the Arctic in 1951–
2015. These differences were ob-
tained by subtracting observa-
tional data from reanalysis values.
Note that the last period includes a
15-year mean
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In winter, the greatest biases (usually double those of annual
values) of SAToccurred in the same areas where they were also
detected for the annual means (see Figs. S2 and S3). In summer,
biases are close to 0.0 °C across the entire area of HA, with the
main exception of some areas in CANR. In both periods, positive
biases were noted, reaching maximally 0.5–1.0 °C in the pre-
satellite period and only 0.05 °C in the satellite period.

Themagnitude of biases connected with calculations of SAT
trends for the three study periods using averaged data from all
available reanalyses is shown in Table 5 (left part). For the
entire HA, trends for mean annual SAT (reanalyses minus ob-
servations) differ slightly from 0.06 °C/10 years (1951–2015)
to only 0.01 °C/10 years (RRAW period). The worst results are
seen for the climatic regions, where for some periods the

Fig. 10 a Correlation coefficients
(r) and b root mean square error
(RMSE, °C) of seasonal and
annual values between individual
reanalyses and observations for
the common period of 1981–2010
in the Arctic. Asterisks indicate
statistics for 1958–1980 for the
three longest reanalyses
(20CRv2c, CERA20C, JRA-55)
which are performed by assimila-
tion of conventional data only. All
correlation coefficients are statis-
tically significant at the level 0.05

Table 5 Differences in seasonal and annual SAT trends (°C decade−1) between mean reanalysis and observations in the Arctic and its climatic regions

Region Period DJF MAM JJA SON YEAR DJF* MAM* JJA* SON* YEAR*

ATLR 1951–2015 0.21 0.14 0.07 0.08 0.13 0.20 0.13 0.04 0.06 0.11

1981–2010 − 0.17 − 0.11 − 0.18 − 0.13 − 0.14 − 0.11 0.09 − 0.16 − 0.09 − 0.11
1976–2015 − 0.03 0.01 − 0.04 − 0.02 − 0.02 − 0.05 0.06 − 0.10 − 0.07 − 0.06
1996–2015 − 0.10 − 0.02 0.17 0.17 0.06 − 0.17 − 0.09 − 0.07 − 0.06 − 0.10

SIBR 1951–2015 0.10 0.03 0.01 0.12 0.05 0.11 0.05 − 0.03 0.12 0.05

1981–2010 − 0.07 0.17 − 0.06 − 0.14 − 0.03 − 0.01 0.46 − 0.04 − 0.06 0.02

1976–2015 − 0.15 0.06 0.05 − 0.04 − 0.01 − 0.11 0.22 − 0.03 − 0.03 − 0.01
1996–2015 − 0.48 − 0.37 0.06 0.00 − 0.19 − 0.27 − 0.15 − 0.21 0.03 − 0.16

PACR 1951–2015 − 0.08 0.03 0.03 0.25 0.05 − 0.08 0.00 − 0.01 0.23 0.03

1981–2010 − 0.28 − 0.04 0.09 0.19 0.00 − 0.25 0.09 0.10 0.23 0.03

1976–2015 − 0.33 − 0.05 0.14 0.28 0.02 − 0.34 − 0.09 0.04 0.25 − 0.03
1996–2015 0.04 0.17 0.45 0.48 0.30 0.03 − 0.28 0.08 0.32 0.11

CANR 1951–2015 − 0.05 − 0.05 − 0.06 0.00 − 0.04 − 0.02 − 0.03 − 0.09 0.00 − 0.04
1981–2010 − 0.29 − 0.17 − 0.01 − 0.25 − 0.18 − 0.15 0.11 0.01 − 0.16 − 0.09
1976–2015 − 0.30 − 0.16 0.06 − 0.20 − 0.15 − 0.22 − 0.10 − 0.01 − 0.17 − 0.14
1996–2015 − 0.31 − 0.11 0.39 − 0.05 − 0.02 − 0.06 − 0.21 0.11 − 0.01 − 0.04

BAFR 1951–2015 0.08 0.07 0.06 0.11 0.08 0.09 0.03 0.02 0.09 0.07

1981–2010 − 0.14 − 0.24 − 0.17 − 0.10 − 0.17 − 0.04 0.19 − 0.16 − 0.07 − 0.11
1976–2015 − 0.01 − 0.10 − 0.03 − 0.02 − 0.04 0.03 − 0.03 − 0.13 − 0.08 − 0.08
1996–2015 − 0.24 − 0.27 0.19 − 0.01 − 0.08 − 0.18 − 0.34 − 0.19 − 0.28 − 0.24

HA 1951–2015 0.05 0.04 0.02 0.11 0.06 0.06 0.04 − 0.01 0.10 0.04

1981–2010 − 0.19 − 0.08 − 0.07 − 0.09 − 0.10 − 0.11 0.19 − 0.05 − 0.03 − 0.05
1976–2015 − 0.17 − 0.05 0.03 0.00 − 0.04 − 0.14 0.01 − 0.05 − 0.02 − 0.06
1996–2015 − 0.22 − 0.12 0.25 0.12 0.01 − 0.13 − 0.21 − 0.05 0.00 − 0.09

These differences were obtained by subtracting observational data from mean reanalysis values. Asterisks indicate mean reanalysis trends calculated
excluding the MERRA-2 dataset
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differences in trends exceed even ± 0.1 °C/10 years. The same
is observed in the case of mean seasonal values. In particular,
large differences occurred for the RRAW period in winter (−
0.22 °C/10 years) and summer (0.25 °C/10 years). Also for this
period, the worst results were usually obtained for seasonal
SAT trend differences calculated for climatic regions (see
Table 5, left part). Seasonal and annual values of trends calcu-
lated using average SAT from five reanalyses (without data
from MERRA-2) usually got closer to those calculated from
observations, in particular for the shortest analysed period, i.e.
the RRAW (Table 5, right part). This is, of course, a result of the
fact that the MERRA-2 reanalysis shows the greatest differ-
ences with other reanalyses since 2005.

Analysis of trend differences between SAT trends calculat-
ed using mean annual data for HA taken from individual re-
analysis and observations from the CGWand RRAW periods
reveals that the best approach to observations is provided by
the following reanalyses: JRA-55 and ERA-Interim and, in
the CGW period, also CERA-20C and NCEP-CFSR (see
Table S4). Generally, similar conclusions must be formulated
based of SAT trends of mean annual values averaged for par-
ticular climatic regions (Table S5). MERRA-2 again shows
markedly different results than other reanalyses. The trend of
mean annual SAT in the CGW period (0.31 °C/10 years) is
about 2.0–2.5 smaller than in all other series of data, while in
the RRAW period, the trend (− 0.08 °C/10 years) is drastically
different than other ones, which ranged from 0.78 °C/10 years
(20CRv2c) to 1.42 °C/10 years (CERA-20C). Lindsay et al.
(2014) found that the following reanalyses are more consistent
with observations: CFSR, MERRA and ERA-Interim. Two of
them were also included in the group of best reanalyses in this
paper. We used the newest versions of two reanalyses:
MERRA-2 (instead of MERRA used by Lindsay et al. 2014)
and JRA-55 (instead of JRA-25). Based on our results and the
results presented by Lindsay et al. (2014), we must conclude
that the quality and reliability of data available in MERRA-2
version is now worst, while the opposite must be concluded
for JRA-55: Now, this new version is one of the best among
the available reanalyses.

4 Conclusions and final remarks

The main results obtained from our investigations can be
summarised as follows.

1. Detailed research into air temperature tendencies in the
Arctic based on instrumental data for the periods 1951–
2015, 1976–2015 and 1996–2015 revealed the predomi-
nance of positive trends, statistically significant at the lev-
el of 0.05.

2. In the CGWand RRAW periods, the rate of warming was
on average 2–3 times greater than that of the entire study

period. This is particularly true for mean annual values for
the entire Arctic, and also for seasonal means (DJF,
MAM, etc.) for the period 1976–2015. This means that,
in the HA, a slowdown in rate of warming (a “hiatus”) in
the recent two decades (noted for the NH) is not present.

3. In the RRAWperiod, very large increases in both seasonal
and annual means were observed in the ATLR and SIBR,
while in the rest of the Arctic, the rate of warming was
usually weaker than trends for the CGW period. In partic-
ular, there was a large fall in the rate of warming in spring,
with near-zero trends (BAFR and CANR) and even a
negative trend (− 0.34 °C/10 years, PACR).

4. The scale of warming in the RRAW period relative to the
reference period 1951–1990 ranges from 1.3 °C (BAFR)
to 1.7 °C (ATLR). The average anomaly for the entire HA
reached 1.6 °C. The greatest warmings were for autumn
(1.9 °C) and winter (1.7 °C), while the smallest was in
summer (0.9 °C).

5. The quality of reanalysis products significantly im-
proved when satellite data were assimilated (i.e. since
1979). As a result, trends in SAT calculated using
reanalyses data for the last 30–40 years are closer to
trends from observations than they are for longer pe-
riods. For 1951–2015, reanalyses usually overestimate
Arctic warming, while for the last two to four decades,
they show similar or smaller warming than that calcu-
lated from observations.

6. Our results also reveal that generally two reanalysis prod-
ucts: the ERA-Interim and JRA-55 are the closest to the
observational data for both recent periods (CGW and
RRAW). For the first period, a very good fit with obser-
vations is also observable for CERA-20C and NCEP-
CFSR. However, data averaged from all six reanalyses
reveal the best fit with observations. Therefore, although
all the individual reanalyses mentioned above can be used
as a good substitute for the observational data, we suggest
and give preference to using averaged data from
reanalyses.

7. Great PA (2–4 times greater increase in SAT in HA in the
period 1996–2015 in comparison to NH, according to
PA1 and PA3–PA5 metrics) was found. However, in light
of the new metrics proposed in this paper (PA6 and PA7),
using scaled and standardised SAT data in calculations of
anomalies and trend changes, respectively, the existence
of PAwas generally not confirmed. We found generally a
close fit between standardised series of HA and NH in the
entire period 1951–2015,

8. In the study of long-term SAT trends (for periods starting
before 1979 and ending in the present times) in almost the
entire Arctic (except the interior Arctic region), but in
particular for local- and regional-scale applications, it is
still better to use good quality homogenised data series
from weather stations than data from gridded climate
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datasets and reanalysis products. On the other hand, for
the interior Arctic region, due to the lack of long-term
observational data, based on results obtained for other
parts of the Arctic, we suggest using the JRA-55 as well
as averaged data from many reanalyses, and for the
shorter period (since 1979) to also use the ERA-Interim
(see Fig. 10).

A brief history of the development of reanalyses reveals
that their quality and reliability has significantly improved
in this time. The first versions of reanalyses, similar to gen-
eral circulation models and regional climate models, sup-
plied climatic information for the Arctic that was far re-
moved from the reality described by instrumental observa-
tions. A growing number of data more reliably describing
the Arctic climate system (SST, sea ice, state of the atmo-
sphere and land surface) have been incorporated into the
reanalyses, in particular after 1979 (e.g. satellite data and
meteorological data from automatic stations operating in
buoys and drifting stations in the central Arctic). This new
data input markedly corrected mainly the SAT available in
the recent versions of the reanalyses. The results presented
in the paper are a good example confirming this statement.
On the other hand, other meteorological variables, includ-
ing different climate indices, in particular those describing
extremes, are still poorly represented in the majority of
available reanalysis products (for details, see Diaconescu
et al. 2017). Reanalyses are also not able to correctly capture
vertical temperature changes up to about 900 m in the Arctic
(see Jakobson et al. 2012). This means that in the last
20 years, although great achievements in improving reanal-
ysis products have been made, they still do not allow for a
reliable and comprehensive description of most of the
variables needed to character ise the state of the
atmosphere in the Arctic. Thus, there is still a lot of work
to do to improve Arctic reanalyses. Cullather et al. (2016) in
sections 5 and 6 in their paper present some suggestions for
future work which should be undertaken in order to improve
new versions of the reanalyses for the Arctic.
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