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THE NOTION OF THE DIAMETER

OF MEREOLOGICAL BALL IN

TARSKI’S GEOMETRY OF SOLIDS

Abstract. In [3] Gruszczyński and Pietruszczak have obtained the full de-
velopment of Tarski’s geometry of solids that was sketched in [15, 16]. In
this paper1 we introduce in Tarski’s theory the notion of congruence of

mereological balls and then the notion of diameter of mereological ball. We
prove many facts about these new concepts, e.g., we give a characterization
of mereological balls in terms of its center and diameter and we prove that
the set of all diameters together with the relation of inequality of diameters

is the dense linearly ordered set without the least and the greatest element.

Keywords: Tarski’s geometry of solids; mereology; diameter of mereological
ball; congruence of mereological balls; point-free geometry

Introduction

Alfred Tarski in his paper [15, 16] proposed a method of axiomatization
of geometry without using the notion of point as primitive. As it was
shown in [3], with the adequate systems of Tarski’s postulates, three
different classes of relational structures can be distinguished. They are
called, according to [3], T⋆-structures, T′-structures and T-structures.
These structures are related to Euclidean geometry on different levels.

Considerations that are presented in this paper are based on the
theory of T⋆-structures, which we call Tarski’s geometry of solids. The
aim of Tarski’s theory of solids is fulfilled to the greatest extent by ge-

1 This is an English version of the first part of my PhD thesis [14], whose super-
visor was prof. Andrzej Pietruszczak.
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ometrical notions defined in these structures. For a detailed analysis of
different structures related to Tarski’s paper, the reader should see [3, 4].
However, for our purposes, we give in Section 1 a sketch of the theory
of T⋆-structures and we recall its main characteristics. The main result
concerning Tarski’s theory is that the notions of the mereological solid,
of the mereological ball and of the part-whole relation are isomorphic,
respectively, to the notions of the regular open set of the open ball and of
the relation of inclusion, which are defined in the point-based Euclidean
geometry. In this paper we expand this particular result by adding the
definition of the notion of congruence of mereological balls.

Before we proceed to the proper constructions, we present in Sec-
tion 2 two important theorems which we call constructional theorems.
These theorems characterise relations IT and ET in terms of operationsint and fr. With the use of these theorems we move consideration
from mereological balls to Euclidean geometry. Since all constructions
in this section (and generally, in this entire paper) are done in Hilbert’s
geometry, we describe in Appendix “Basic facts from geometry” the most
important axioms and facts of geometry. We hope that this will make it
easy for the reader to follow geometrical constructions that are presented
during all of proofs.

The most important and new definitions are introduced in Section 3.
As we show there, beside the notion of point, the relation of concentric-
ity of mereological balls defined by Tarski allows us also to define the
binary relation of congruence of mereological balls. According to this
definition, two balls are congruent iff both of them are between a pair
of concentric balls, being tangentially embraced by them. We show that
such a relation is an equivalence relation in the set of all mereological
balls. In consequence, for any mereological ball, the equivalence classes
of such a relation we call a diameter of this ball. About the diameter
of ball defined in such a way we prove numerous facts, most important
of which are expressed in Theorem 4.1. There is also a counterpart of
one of the Euclidean axioms which states that in any point there is a
mereological ball of a given diameter. This fact entails, in addition, that
any point allows us to generate a whole class of diameters, whereas any
diameter allows us to generate a whole set of points. At the end of the
Section 3, we give a characterization of mereological balls by the notion
of a diameter of a ball and the notion of a point.

In Section 4 we consider the set of equivalence classes of the relation
of congruence of mereological balls itself. For this purpose, we introduce
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two binary relations that allow us to compare diameters. These relations
are defined in terms of the relations of being a part and being an ingredi-
ens and they are called relations of inequalities of diameters. These rela-
tions have many properties following from the relation of inequality and
sharp inequality of segments, determined in the set of points. Thanks
to these properties, we can formulate theorem which characterizes the
set of all diameters. It states that this set, together with the relation of
inequality of diameters, is the dense linearly ordered set without greatest
and smallest element.

1. Tarski’s geometry of solids. T
⋆-structures

The universe of the discourse of Tarski’s geometry of solids is made of
space and its «pieces» which we call mereological solids. Among solids we
distinguish specific types which we call mereological balls (simply solids
and balls in the case it follows from the context that we refer to elements
of S and B, respectively). The relations between solids can be described
in terms of a binary relation which we will call, after Leśniewski [8],
ingrediens relation2. The notion of solid, ball and being an ingrediens
are the only primitive notions in geometry of solids. Let S be the set of
all solids, B be the set of all balls, and ⊑ be the relation of being an in-
grediens. We accepted that the relation ⊑ partially orders the set S, i.e.,
it is included in S×S and it is reflexive, antisymmetrical, and transitive:

∀x∈S x ⊑ x , (r⊑)

∀x,y∈S(x ⊑ y ∧ y ⊑ x =⇒ x = y), (antis⊑)

∀x,y,z∈S(x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z). (t⊑)

By the primitive relation ⊑ we introduce in the set S three auxiliary bi-
nary relations: ⊏, ©, and H, which we call, respectively, being a (proper)
part, overlapping, and disjointness:

x ⊏ y
df

⇐⇒ x ⊑ y ∧ x 6= y , (df ⊏)

x© y
df

⇐⇒ ∃z∈S(z ⊑ x ∧ z ⊑ y), (df ©)

x H y
df

⇐⇒ ¬∃z∈S(z ⊑ x ∧ z ⊑ y). (df H)

2 One object is an ingrediens of another iff it is either its (proper) part or is
identical with it (see [7, 8]). The relation of being an ingrediens is often called a part

relation, where the term ‘part’ allows for so called improper parts, i.e. whole objects.
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The relation ⊏ is irreflexive, asymmetric and transitive in S, i.e., we have:

¬∃x∈S x ⊏ x , (r⊏)

¬∃x,y∈S(x ⊏ y ∧ y ⊏ x), (as⊏)

∀x,y,z∈S(x ⊏ y ∧ y ⊏ z =⇒ x ⊏ z). (t⊏)

Moreover, the relation © is reflexive and symmetric, the relation H is
irreflexive and symmetric (see e.g. [9, 10, 11, 13]), and we have the fol-
lowing connections between relation ⊑ and relations ©, H, and ⊏ ; for
all x, y, z ∈ S:

x ⊑ y ⇐⇒ x ⊏ y ∨ x = y , (1)

x ⊏ y ⇐⇒ x ⊑ y ∧ y 6⊑ x ,

x ⊑ y ∧ y H z =⇒ x H z , (2)

x ⊑ y ∧ x© z =⇒ y © z .

Moreover, from theory of mereological structures we use the following
binary relation sum included in S× 2S:

x sum S
df

⇐⇒ ∀s∈S s ⊑ x ∧ ∀y∈S(

y ⊑ x =⇒ ∃s∈S s© y
)

. (df sum)

If x sum S, then we say that the solid x is a mereological sum (or
collective set) of all members of the (distributive) set S. From (df sum)
and (r⊑) we obtain:

¬∃x∈S x sum ∅ .

The pair 〈S,⊑〉 is a mereological structure in Tarski’s sense3, i.e., it
satisfies the following condition:4

∀S∈2S\{∅}∃1
x∈S x sum S ,

which says that for any non-empty set S of solids there exists exactly
one its mereological sum.

Notice that in all mereological structures, for any subset S of S and
any solid x ∈ S we have:

x sum S ⇐⇒ S 6= ∅ ∧ x = sup
⊑
S .

Thus, there exists exactly one solid which is the mereological sum (and
so also supremum) of the set S. This solid we denote by s and we call

3 For detailed discussion of mereological structures, see e.g. [5, 6, 9, 10, 11, 12, 13].
4 A formula of the form p∃

1

x∈S ϕ(x)q says that in a set S there exists exactly one
solid x such that ϕ(x). This formula is an abbreviation for the following: p∃x∈S ϕ(x) ∧

∀x,y∈S

(

ϕ(x) ∧ ϕ(x/y) ⇒ x = y
)

q.
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it space:5 s := (ιx) x sum S = sup
⊑
S. (df s)

In [15, 16] Tarski implicitly (see [3, pp. 483–484]) assumed the fol-
lowing relationship between solids and balls:

∀x∈S∃S∈2B x sum S, (⋆)

i.e., every solid is a mereological sum of some non-empty set of balls.
The other postulates are related to the notions of geometry defined

in universe of solids. The notion of point is defined with the use of the
relation of concentricity of balls. To define this relation, we introduced
in the set B two auxiliary binary relations: the relation ET of external
tangency of balls and the relation IT of internal tangency of balls:

a ET b
df

⇐⇒ a H b ∧
∀x,y∈B(a ⊑ x H b ∧ a ⊑ y H b =⇒ x ⊑ y ∨ y ⊑ x), (df ET)

a IT b
df

⇐⇒ a ⊏ b ∧
∀x,y∈B(a ⊑ x ⊑ b ∧ a ⊑ y ⊑ b =⇒ x ⊑ y ∨ y ⊑ x). (df IT)

Next, with the use of relations ET and IT, we define in the set B two
ternary relations: the relation EDT of external diametrical tangency of
balls and the relation IDT of internal diametrical tangency of balls:

ab EDT c
df

⇐⇒ a ET c ∧ b ET c ∧
∀x,y∈B(a ⊑ x H c ∧ b ⊑ y H c =⇒ x H y), (df EDT)

ab IDT c
df

⇐⇒ a IT c ∧ b IT c∧
∀x,y∈B(x H c ∧ y H c ∧ a ET x ∧ b ET x =⇒ x H y). (df IDT)

With the use of the relations defined above, in B we can introduce the
binary relation ⊚ of concentricity of balls:

a⊚ b
df

⇐⇒
[

a = b ∨
(

a ⊏ b ∧ ∀x,y∈B(xy EDT a ∧ x IT b ∧ y IT b =⇒ xy IDT b)
)

∨
(

b ⊏ a ∧ ∀x,y∈B(xy EDT b ∧ x IT a ∧ y IT a =⇒ xy IDT a)
)]

.

(df ⊚)

Directly from (df ⊚) it follows that the relation ⊚ is reflexive and sym-
metric in B. Using the relation ⊚ we define the notion of point as the

5 The Greek letter ‘ι’ stands for the standard description operator. The expres-
sion p(ιx) ϕ(x)q is read “the only object x which satisfies the condition ϕ(x)”. To use
‘ι’ we first have to ensure both existence and uniqueness of the object that satisfies
ϕ, i.e., we have: ∃

1

x∈S ϕ(x).
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set of these balls that are concentric with a given ball. Let us denote the
set of all points by Π. Then, for any α ∈ 2B we have:

α ∈ Π
df

⇐⇒ ∃y∈B α = {x ∈ B : x⊚ y} . (df Π)

In the set of all points Π following Tarski we define the ternary relation
∆ of equidistance of two points from a third one. This relation allows us
to compare distances between points. For all points α, β, γ ∈ Π we put:

αβ ∆ γ
df

⇐⇒ α = β = γ ∨ ∃c∈γ¬∃a∈α∪β(a ⊑ c ∨ a H c). (df ∆)

The first specific postulate of the geometry of solids claims that:

〈Π,∆〉 is a Pieri’s structure. (P1)

According to [2], all Pieri’s structures are models of three-dimensional
Euclidean geometry in terms of point and equidistance relation. Thus,
in 〈Π,∆〉 we can introduce the natural topology of Euclidean space. Let
BOΠ by the family of all open balls and RO+

Π be the family of all non-
empty regular open sets in this topology. Of course, BOΠ ( RO+

Π.
The other specific postulates of the geometry of solids establish the

relation between solids and regular open sets in Euclidean topology. For
this purpose, we introduce an operation int : S → 2Π which assigns to
every solid the set of its interior points. For any x ∈ S we put:int(x) := {α ∈ Π : ∃a∈α a ⊑ x}. (df int)
Note that from (df int) and (t⊑) we obtain:

∀x,y∈S(x ⊑ y =⇒ int(x) ⊆ int(y)).

With the use of the operation int we can formulate two final postulates
of the geometry of solids. The first claims that the interior points of each
mereological solid is a non-empty regular open set in Euclidean topology

∀x∈S int(x) ∈ RO+
Π. (P2)

The second postulate says that each regular open set is an interior of
some solid:

∀U∈RO
+

Π

∃x∈S int(x) = U. (P3)

Definition 1.1. A structure 〈S,B,⊑〉 is a T⋆-structure iff 〈S,⊑〉 is a
mereological structure and 〈S,B,⊑〉 satisfies (⋆) and (P1)–(P3).
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In any T⋆-structure 〈S,B,⊑〉 for all x, y ∈ S we obtain:

x ⊑ y ⇐⇒ int(x) ⊆ int(y), (3)

x H y ⇐⇒ int(x) ∩ int(y) = ∅ . (4)

In [3] it is proved that the relation ⊚ is transitive in any T⋆-structure
〈S,B,⊑〉. Thus, ⊚ is an equivalence relation in the set B. So all points
can be identified with equivalence classes of the relation ⊚, i.e.:

Π := B/⊚ . (def ′ Π)

By reflexivity of the relation ⊚, for a given ball b we can consider a point,
whose element is b. Such a point is the equivalence class ‖b‖⊚. This class
we will denote by πb and called “the point generating by b”. So for any
b ∈ B we put:

πb := {a ∈ B : a⊚ b} =: ‖b‖⊚. (df πb)

From reflexivity, symmetry and transitivity of ⊚ it follows that:

∀b∈B b ∈ πb , (5)

∀a,b∈B(a⊚ b ⇐⇒ πa = πb), (6)

∀α∈Π∀b∈B(b ∈ α ⇐⇒ α = πb). (7)

Moreover, we can also introduce an operation fr : S → 2Π which
ascribes to each solid the set of its fringe points. For any x ∈ S we put:fr(x) := {α ∈ Π | ∀a∈α(a 6⊑ x ∧ a© x)}. (df fr)
Directly from (df int) and (df fr) we obtain that for any x ∈ S:int(x) ∩ fr(x) = ∅. (8)

For arbitrary different points α and β from Π we put:Bβ
α := {b ∈ B : b ∈ α ∧ β ∈ fr(b)} ,

i.e., Bα
β is the set of all mereological balls being elements of α and having

β as its fringe point. Moreover, we put

Sβα := {γ ∈ Π : γβ ∆ α},

i.e., Sβα is the sphere in 〈Π,∆〉 such that α is the center point of Sβα and
β is its element. Finally, for any open ball B ∈ BOΠ let Fr(B) be its
fringe. Then we put:

Bβα := (ιB) (B ∈ BOΠ ∧ Fr(B) = Sβα),



538 Grzegorz Sitek

i.e., Bβα is the open ball from BOΠ such that Sβα is its surface, in other
words, α is the center of Bβα and β lies on the surface of Bβα.

The most important properties, which are crucial for this paper, are
expressed in the following facts which are proved in [3] and which will
be used in this paper.

Fact 1.1 ([3, pp. 509]). For any different points α and β from Π for

some b ∈ B we have Bβ
α = {b} and int(b) = Bβα.

Fact 1.2 ([3, p. 510]). For any b ∈ B we have int(b) ∈ BOΠ and there

is β ∈ Π such that β 6= πb, Bβ
πb

= {b}, fr(b) = Sβπb
and int(b) = Bβπb

.

Fact 1.3 ([3, p. 510]). For any Euclidean ball B ∈ BOΠ there exists

exactly one mereological ball b ∈ B such that int(b) = B.

Fact 1.4 ([3, pp. 511 and 518]). The mapping int : S → RO+
Π is an

isomorphism from 〈S,B,⊑〉 onto 〈RO+
Π,BOΠ,⊆ 〉; so the mapping int|B

a bijection from B onto BOΠ.

On the basis of the above facts, the operation int transforms any
given mereological ball a into the open Euclidean ball Bαπa

, while the
operation fr transforms a into the Euclidean sphere Sαπa

.

2. Constructional theorems

Below we will prove two theorems characterising relations IT and ET in
terms of operations int and fr. We call these theorems constructional
theorems, since they are the basis of the proper constructions that will
be done in further part of this paper.

First, we will show that the interior points of mereological balls that
are internally tangent include themselves appropriately, and sets of their
fringe points have exactly one common point.

Theorem 2.1. For any a, b ∈ B:

a IT b ⇐⇒ int(a) ⊆ int(b) ∧ ∃1
γ∈Π

(

γ ∈ fr(a) ∩ fr(b)).
Proof. “⇒” Let a and b be any mereological balls such that a IT b. Let
Sa := fr(a), Ba := int(a), Sb := fr(b) and Bb := int(b). By (df IT),
a ⊏ b, hence int(a) ⊆ int(b), by (3).

Suppose towards a contradiction that Sa ∩ Sb = ∅ (see Figure 1).
Let L(πa, πb) be a straight line crossing centers of spheres Sa and Sb.
Straight line L(πa, πb) intersects the sphere Sa in points α, α′ and inter-



The notion of the diameter of mereological ball . . . 539

Sb

Sa

Sx

Sy

πb πaπy πxβ′ βγ′ γφαα′φ′

Figure 1. Assumption in the proof of Theorem 2.1

sect the sphere Sb in points β, β′. Since (Ba∪Sa) ⊆ Bb, so B(β′ αβ) and
B(β′ α′ β), where B is a ternary relation of betweenness (see Appendix,
p. 557). Furthermore, suppose that B(α′ αβ). By assumption points α
and β are distinct. Let γ be an arbitrary point such that B(αγ β). Let
πx := mid(α′, γ). Since B(α′ αβ) and B(αγ β). Then we have B(α′ αγ),
by Axiom O8 in Appendix on p. 557. Hence, by (df <) from Appendix,
we have α′ α < α′ γ. Moreover, by Fact A.4, we obtain α′ πa < α′ πx,
which means that B(α′ πa πx), by (df <).

Let us consider the Euclidean ball Bγπx
. We will show that Ba ⊆ Bγπx

.
Let φ be an arbitrary point such that φ ∈ Ba. Then we have πa φ < πa α

′,
thus [πa φ] < [πa α

′] and, by (mon<) in Fact A.5 in Appendix, we have:
[πx πa]+[πa φ] < [πx πa]+[πa α

′]. Since B(α′ πa πx), so [πx πa]+[πa α
′] =

[πx α
′]. By triangle inequality, for points πx, πa and φ we have: [πx φ] ¬

[πx, πa] + [πa φ]. Thus: [πx φ] ¬ [πx, πa] + [πa φ] < [πx πa] + [πa α
′] =

[πx α
′]. Hence, by transitivity of the relation ¬ it follows that [πx φ] <

[πx φ], thus πx φ < πx φ and consequently φ ∈ Bγπx
. Thus (i): Ba ⊆ Bγπx

.
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Now we will show that Bγπx
⊆ Bb. We will prove that B(β′ πx β).

Since B(α′ αβ) and B(αγ β), so B(α′ γ β), by (OB) on p. 558. Hence,
using B(α′πx γ), we have B(α′ πx β), by (OD) on p. 558. Since B(β′ α′ β),
so B(β′ πx β), by (OB). We will consider two logical possibilities.

First, suppose that πx = πb. Then, since B(α′ γ β) and B(β′ α′ β),
so α′ γ < α′ β and α′ β < β β′, by (df <). Hence α′ γ < β β′, by (t<)
on p. 559. Since πx = mid(α′, γ) and πb = mid(β, β′), so πx γ < πb β,
by Fact A.4. Let φ be an arbitrary point such that φ ∈ Bγπx

. Then
πx φ < πx γ and πx φ < πb β, by (t<), because πx γ < πb β. Moreover,
since πx = πb, so πb φ < πb β. Thus, φ ∈ Bb.

Second, suppose that πb 6= πx. Then, since B(β′ πb β) and B(β′ πx β),
so either B(β′ πx πb) or B(πb πx β), by (OC) on p. 558. Let φ ∈ Bγπx

and
suppose that B(β′ πx πb). By triangle inequality for points πb, φ and πx
we have: [πb φ] ¬ [πb πx] + [πx φ]. Since φ ∈ Bγπx

= Bα
′

πx
, so also πx φ <

πx α
′. Hence, by (mon<), we obtain: [πb πx] + [πx φ] < [πb πx] + [πx α

′].
We will show that B(α′ πx πb) and then we will be able to get [πb πx]+

[πx α
′] = [πb α

′]. We have B(β′ αβ) and B(β′ α′ β). Since α 6= α′, so ei-
ther B(β′ α′ α) or B(αα′ β), by (OC). Since B(α′ αβ), so ¬B(αα′ β), by
Axiom O3 in Appendix. Thus, we have B(β′ α′ α). But πa = mid(α′, α),
hence B(α′ πa α) and B(β′ α′ πa), by Axiom O8. Hence B(β′ α′ πx), by
Axiom O7, since B(α′ πa πx). Next, because B(β′ πx πb). So B(β′ α′ πb),
by (OD). Thus, B(β′ α′ πb) and B(β′ πx πb), but πx 6= α′. So B(β′ πx α

′)
or B(α′ πx πb), by (OC). Suppose that B(β′ πx α

′). Then B(β′ πx α
′), by

Axiom O2. Since B(β′ α′ πx), so B(πx α
′ β′), by Axiom O2. Therefore

¬B(α′ πx β
′), by Axiom O3. So we have a contradiction. Thus, we

finally get that B(α′ πx πb). Then for points πb, φ, and πx, by triangle
inequality we have [πb φ] ¬ [πb πx] + [πx φ] < [πb πx] + [πx α

′] = [πb α
′].

Hence [πb φ] < [πb α
′], by (t<), which means that πb φ < πb α

′. Since
B(β′ α′ πb), so πb α

′ < πb β
′, by (df <). And according to previous in-

equalities we have πb φ < πb β
′, by (t<). Moreover, because Bβ

′

πb
= Bb,

so we finally get (ii): Bγπx
⊆ Bb.

Now, choosing any point γ′ such that B(β′ γ′ α′) and then the point
πy = mid(γ′, α), we can construct the Euclidean ball Bγ

′

πy
which includes

the ball Ba and which is included in the ball Bb. Proof of these facts, by
symmetry of the construction with respect to the point πa, is analogous
to the proof that Ba ⊆ Bα

′

πx
⊆ Bb. Thus, we immediately have (c):

Ba ⊆ Bγ
′

πy
; and (d): Bγ

′

πy
⊆ Bb.
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Now, we will show that Bα
′

πx
* Bγ

′

πy
and Bγ

′

πy
* Bα

′

πx
(we will show

only that Bα
′

πx
* Bγ

′

πy
: the proof of the second fact is analogous). Let φ

and φ′ be arbitrary points such that: φ = mid(α, γ) and φ′ = mid(α′, γ′).

First, we will show that φ ∈ Bα
′

πx
. Since φ = mid(α, γ), so B(αφγ).

Hence B(α′ φ γ), by (OB), since B(α′ αγ). So φ ∈ Bα
′

πx
, since α′, γ ∈

(Bα
′

πx
∪Sα

′

πx
) and by the fact that any closed Euclidean ball is a convex set.

From B(β αα′) and B(απa α
′) it follows that B(β απa), by Axiom O8.

So B(πa αβ), by Axiom O2. Hence B(πa αγ), by Axiom O8, since
B(αγ β). Therefore B(πa αφ), by Axiom (08), because B(αφγ). Next,
we have B(αα′ β), by Axiom O2, since B(αα′ β′). Hence B(αα′ γ′), by
Axiom O8, because B(α′ γ′ β′). Therefore αα′ < αγ′, (df <). More-
over, since πa = mid(α, α′) and πy = mid(α, γ′), so απa < απy, by
Fact A.4. Hence B(απa πy), by (df <). So B(πy πa α), by Axiom O2.
Since B(πy πa α) and B(πa αφ), so B(πy αφ), by (OA) on p. 558. Hence
πy α < πy φ, by (df <). Finally, since Bγ

′

πy
= Bαπy

, so φ /∈ Bγ
′

πy
.

Thus, we have (a): Bα
′

πx
* Bγ

′

πy
; and, by symmetry of the construc-

tion, we also have (b): Bγ
′

πy
* Bα

′

πx
. By Fact 1.4, we have mereological

balls x and y such that int(x) = Bα
′

πx
and int(y) = Bγ

′

πy
. So, by (i)

and (ii), Ba ⊆ Bγπx
⊆ Bb, and, by (c) and (d), Ba ⊆ Bγ

′

πy
⊆ Bb. Hence

a ⊑ x ⊑ b and a ⊑ y ⊑ b. But from (a) and (b) it follows that x 6⊑ y
and y 6⊑ x, which is a contradiction with a IT b. Thus fr(a) ∩ fr(b) 6= ∅.

To prove that there is exactly one point γ such that γ ∈ fr(a) ∩ fr(b)
let us suppose towards a contradiction that there exists point δ 6= γ such
that δ ∈ fr(a) ∩ fr(b). Then, by Fact A.10 we have Ba\Bb 6= ∅ and
Bb\Ba 6= ∅, so Ba * Bb and Bb * Ba. Hence a 6⊑ b and b 6⊑ a, which
is a contradiction with a ⊑ b. Thus, we finally get int(a) ⊆ int(b) and
there is exactly one γ ∈ Π such that γ ∈ fr(a) ∩ fr(b).

“⇐” Suppose that int(a) ⊆ int(b) and there is exactly one γ ∈ Π
such that γ ∈ fr(a)∩fr(b). Let Sa = fr(a), Sb = fr(b), Ba = int(a), and
Bb = int(b). Let x and y be arbitrary mereological balls and suppose
that a ⊑ x ⊑ b and a ⊑ y ⊑ b. We put Sx := fr(x), Sy := fr(y),
Bx := int(x), and By := int(y).

First, we will show that points γ, πa, πb, πx, and πy are collinear and
then we will show how they are ordered on a common straight line. By
assumption we have Sa ∩ Sb = {γ}. Let us suppose that γ /∈ Sa ∩ Sx.
Then either γ /∈ Sa or γ /∈ Sa. Since γ ∈ Sa, so by (df fr) there exists a
mereological ball c ∈ γ such that cHx or c ⊑ x. Suppose that cHx. Since
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a ⊑ x, so a ⊑ x H c and a H c, by (2). Hence it follows that γ /∈ fr(a), by
(df fr). So we obtain a contradiction. Now, suppose that c ⊑ x. Then
c ⊑ b, by transitivity of ⊑, since x ⊑ b. Hence γ ∈ int(a), by (df int).
Thus, γ ∈ fr(a) ∩ int(a), which is a contradiction with (8). Therefore
γ ∈ Sa ∩ Sx. We can repeat analogous reasoning for spheres Sa and Sy
and as a result we will obtain that γ ∈ Sa∩Sy. Now, suppose that there
exists a point δ 6= γ such that δ ∈ Sa∩Sx. Then, Ba * Bx and Bx * Ba,
by Fact A.10. Thus, a 6⊑ x and x 6⊑ a, which is a contradiction with
a ⊑ x. Therefore Sa ∩Sx = {γ}. Analogous reasoning we can repeat for
spheres Sa and Sy and as a result we will obtain that Sa ∩ Sy = {γ}.
Thus, Sa ∩ Sb = {γ}, Sa ∩ Sx = {γ}, and Sa ∩ Sy = {γ}. By definition
of a straight line in Pieri’s structure, for some straight lines L, K, and
M we have that: πa, πb, γ ∈ L, πb, πx, γ ∈ K, and πb, πy, γ ∈ M .

Thus, πb, γ ∈ L, πb, γ ∈ K, and πb, γ ∈ M . Hence K = L = M ,
by Fact A.1. Therefore points πa, γ, πb, πx, and πy are collinear. By
assumptions that a ⊑ x ⊑ b and a ⊑ y ⊑ b, and by (3), we have
Ba ⊆ Bx ⊆ Bb and Ba ⊆ By ⊆ Bb. Hence γ πa < γ πx and γ πa < γ πy,
since γ ∈ Sa ∩ Sx ∩ Sy ∩ Sb. So B(γ πaπx) and B(γ πa πy), by (df <).
Since γ 6= πa, so either B(πa πx πy) or B(πa πy πx), by (OE) on p. 558.
So taking into consideration that B(γ πaπx) and B(γ πa πy) we have:
B(γ πx πy) or B(γ πy πx), by (OA). Now suppose that B(γ πx πy). Then,
γ πx < γ πy, by (df <). We will show that Bx ⊆ By.

Let φ be an arbitrary point in Bx. Then πx φ < πx γ. Hence [πx φ] <
[πx γ] and [πy πx]+[πx φ] < [πy πx]+[πx γ], by (mon<). For πy, φ, and πx,
by triangle inequality we have: [πy φ] ¬ [πy πx] + [πx φ]. Hence [πy φ] <
[πy πx] + [πx γ], by previous inequality and by (t<). Since B(γ πx πy), so
[πy πx] + [πx γ] = [πy γ]. In consequence [πy φ] < [πy γ]. So πy φ < πy γ.
Hence φ ∈ By. Using reasoning analogous to that which was used for
B(γ πy πx)’, we will get By ⊆ Bx. Thus, either Bx ⊆ By or By ⊆ Bx. So
finally we get either x ⊑ y or y ⊑ x, which proves that a IT b.

Now, we will show that sets of interior points of mereological balls
that are externally tangent are disjoint and the sets of their fringe points
have exactly one common point.

Theorem 2.2. For any a, b ∈ B:

a ET b ⇐⇒ int(a) ∩ int(b) = ∅ ∧ ∃1
γ∈Π

(

γ ∈ fr(a) ∩ fr(b)).
Proof. “⇒” Let a and b be any mereological balls such that aETb. By
(df ET) we have a H b. Hence (∗): int(a) ∩ int(b) = ∅, by (4).
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Figure 2. Assumption in the proof of Theorem 4.8

Now, we will show that fr(a) ∩ fr(b) 6= ∅. Suppose towards a contra-
diction that fr(a) ∩ fr(b) = ∅ (see Figure 2). Let L(πa, πb) be a straight
line crossing points πa and πb. Straight line L(πa, πb) crossing the sphere
Sa := fr(a) in points α and α′ and the sphere Sb := fr(b) in points β and
β′. Moreover, suppose that B(πa απb) and B(πa β πb). Since Sa∩Sb = ∅,
so α 6= β. Let γ be an arbitrary point such that B(β γ α) and let γ′ be
an arbitrary point such that B(πa α

′ γ). Then, let πx := mid(γ, α′) and
πy := mid(α, γ′). In an analogous way as in the proof of Theorem 2.1,
for Euclidean balls Ba, Bγπx

, and Bγ
′

πy
we can prove that (i): Ba ( Bγπx

;

(ii): Ba ( Bγ
′

πy
; (iii) Bγπx

* Bγ
′

πy
; (iv): Bγ

′

πy
* Bγπx

.

We will show that also (v): Bb ∩ Bγπa
= ∅; and (vi) Bb ∩ Bδγ′ = ∅.

Indeed, to prove (v) suppose, towards a contradiction, that there exists
a point χ such that χ ∈ Bb and χ ∈ Bγπx

. Then πx χ < πx γ and πb χ <
πb β. Since B(πb β γ) then, by (df <), we have πb β < πb γ and by (t<)
we obtain πb χ < πb γ. Thus, we have: [πx χ] < [πx γ] and [πb χ] < [πb γ].
Hence, by (a2), we have: [πx χ] + [πb χ] < [πx γ] + [πb γ]. By triangle
inequality for points πx, πb and χ we have: [πx πb] ¬ [πx χ]+[χπb], hence,
be previous inequality and by (t<) it follows that: [πx πb] < [πx γ]+[πb γ].
From B(πa γ πb), by (df +), it follows that [πx γ]+[πb γ] = [πx πb]. Hence,
we have: [πx πb] < [πx πb], which is a contradiction with (irr<). In an
analogous way we can prove (vi).

Summarizing, by (i), (iii), (v) we have ($): Ba ( Bγπx
and Bγπx

∩Bb =

∅, but Bγπx
* Bγ

′

πy
. And, by (ii), (iv) and (vi), we have ($$): Ba ( Bγ

′

πy

and Bγ
′

πy
∩Bb = ∅, but Bγ

′

πy
* Bγπx

.

Now let c1, c2 ∈ B be any mereological balls such that int(c1) = Bγπa

and int(c2) = Bδγ′ . Then, by ($) and ($$), a ⊏ c1Hb, but c1 6⊑ c2 and a ⊏
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c2 H b, but c2 6⊑ c1. Hence ¬ a ET b, by (df ET), which is a contradiction
with the main assumption. Hence, we finally get ∃1

γ∈Π

(

γ ∈ fr(a)∩fr(b)).

“⇐” Suppose that int(a) ∩ int(b) = ∅ and ∃1
γ∈Π

(

γ ∈ fr(a) ∩ fr(b)).
Let Sa := fr(a), Sb := fr(b) and Ba := int(a), Bb := int(b). Sinceint(a) ∩ int(b) = ∅, so a H b, by (4).

Now, let x and y be any mereological balls and suppose that (i)
b ⊑ x H a and (ii) b ⊑ y H a. Let Sx := fr(x), Sy := fr(y) and Bx :=int(x) and By := int(y). First, we will show that points γ, πb, πx, πy
are collinear. By assumption we have γ ∈ Sa ∩ Sb. We will show that
γ ∈ Sx. Suppose towards a contradiction that γ /∈ Sx. Then, by (df fr),
there exists a mereological ball c ∈ γ such that c H x or c ⊑ x. If c H x,
then by assumption (i) we have b ⊑ x H c, then, by (2) we have c H b.
Hence, again by (df fr), we obtain γ /∈ Sb, which is a contradiction with
assumption. So, suppose that c ⊑ x. Then, by assumption (i) we have
c ⊑ x H a and by (2) we obtain c H a. Hence, by (df fr), it follows that
γ /∈ Sa, which is also a contradiction with assumption. In an analogous
way we obtain for the sphere Sy that γ ∈ Sy.

So γ ∈ Sb ∩ Sx and γ ∈ Sb ∩ Sy. Moreover, Sb ∩ Sx = {γ} = Sb ∩ Sy.
Indeed, to prove the first equality suppose, towards a contradiction, that
there exists a point δ such that δ 6= γ and δ ∈ Sb ∩ Sx. By the fact that
any closed Euclidean ball is a convex set, it follows that for any φ such
that B(δ φ γ): φ ∈ Bb and φ ∈ Bx. Hence Ba ∩Bx 6= ∅, and then a© x,
which is a contradiction with assumption. We can repeat analogous
reasoning for spheres Sb and Sy. Hence Sa∩Sb = Sb∩Sx = Sb∩Sy = {γ}.
So, by definition of a straight line in Pieri’s structure, for some straight
lines L,K,M : πa, πb, γ ∈ L, πb, πx, γ ∈ K, and πb, πy, γ ∈ M .

Since πb, γ ∈ L, πb, γ ∈ K, and πb, γ ∈ M , so K = L = M , by
Fact A.1 and consequently we have that points πa, γ, πb, πx, and πy are
collinear. Now, we will show how they are ordered on a common straight
line.

Since γ 6= πx 6= πb, so either B(γ πx πb), or B(πx πb γ), or B(πx γ πb),
by Axiom O4. Suppose that B(γ πx πb). Then πb πx < πb γ and as a
consequence we have πx ∈ Bb. Let φ ∈ Bx be an arbitrary point such
that φ 6= πx. Then, for points πb, πx and φ by triangle inequality we
have: [πb φ] ¬ [πb πx] + [πx φ]. Since γ ∈ Sx, so [πx φ] < [πx γ]. Hence
[πx φ] + [πb πx] < [πx γ] + [πb πx], by (mon<). So [πb πx] + [πx φ] <
[πb πx] + [πx γ], by (comm+) on p. 560. Since B(γ πx πb, ), so by (df +)
it follows that [πb πx] + [πx γ] = [πb γ]. Thus, [πb πx] + [πx γ] < [πb φ] ¬
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[πb πx] + [πx φ] < [πb γ]. Hence, by triangle inequality for points πb, πx,
and φ and by (t<), it follows that [πb φ] < [πb γ]. Thus, πb φ < πb γ and
φ ∈ Bb, which means that Bx ( Bb. Hence x ⊑ b and x© b, which is a
contradiction with assumption.

So, suppose that B(πx γ πb). Since we have B(πa γ πb), so B(πb γ πx)
and B(πb γ πa), by Axiom O2. Hence either B(γ πx πa) or B(γ πa πx), by
(OE). Suppose that B(γ πx πa). Then we have πa πx < πa γ and it follows
that πx ∈ Ba, and consequently we have x© a, which is a contradiction
with the main assumption. Now, if B(γ πa πx), then πx πa < πx γ and
consequently πa ∈ Bx and we again have x©a: a contradiction. Thus, we
finally get B(πx πb γ) and, by Axiom O2, we have B(γ πb πx). Similarly,
since πb 6= πy 6= γ, so either B(γ πy πb) or B(πy πb γ) or B(πy γ πb), by
Axiom O4. Thus, in an analogous way, we prove that B(γ πb πy).

So, we have B(πx πb γ) and B(γ πb πy). Therefore B(πb πx πy) or
B(πb πy πx), by (OE). Since points γ, πx, πy are collinear, so by definition
of a straight line in Pieri’s structure we obtain Sx ∩ Sy = {γ}.

Thus, in an analogous way as in the proof of the fact that Bx ( Bb,
we get in this case following: Bx ( By or By ( Bx. Hence, it follows
that for mereological balls x and y either x ⊑ y or y ⊑ x, and we finally
get a ET b.

3. The notion of congruence of mereological balls

Before we defined the notion of the congruence of mereological balls we
will make an observation leading to the way in which we can define this
notion in T⋆-structures. For this purpose, let us consider mereological
balls a and b such that a ⊚ b and a ⊏ b. By Fact 1.4, the operationint transforms the balls a and b onto the Euclidean balls Ba and Bb
which have a common center. Let us denote this center by γ. Hence
γ = πa = πb. Since a ⊏ b, we additionally have Ba ⊂ Bb, by (3).
Let us consider Euclidean balls Bc, Bc′ such that: Sc ∩ Sa = {α} and
Sc ∩ Sb = {α′}, and Sc′ ∩ Sa = {β} and Sc′ ∩ Sb = {β′}.

It is easy to show that the Euclidean balls Bc and Bc′ defined in such
manner have the same diameter in geometrical sense. Indeed, we will
prove something more.
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Figure 3. Construction in the proof of the Lemma 3.1

Lemma 3.1. Suppose that mereological balls a, b, c, and c′ satisfy the

following condition:

c⊚ c′ ∧ a ET c ∧ b ET c ∧ a IT c′ ∧ b IT c′. (⋄)

Let fr(c) ∩ fr(a) = {α}, fr(c) ∩ fr(b) = {β}, fr(c′) ∩ fr(a) = {α′} andfr(c′) ∩ fr(b) = {β′}. Then:

πc α ≡ πc β, πc α
′ ≡ πc β

′ and αα′ ≡ β β′.

Proof. Let Sa := fr(a), Sb := fr(b), Sc := fr(c), Sc′ := fr(c′), Bc :=int(c) and Bc′ := int(c′) (see Figure 3). Since α ∈ Sc and β ∈ Sc, so
αβ ∆ πc, and consequently πc α ≡ πc β. Similarly, since α′ ∈ Sc′ and
β ∈ Sc′ , so by πc = πc′ we obtain πc α

′ ≡ πc β
′. Next, since Sc ∩ Sa =

{α} and Sc ∩ Sb = {β}, so by definition of a straight line in Pieri’s
structure, there are straight lines L and L′ such that πc, α, πa ∈ L and
πc, β, πb ∈ L′. Since Sc′ ∩ Sa = {α′} and Sc′ ∩ Sb = {β′}, so there are
also straight lines K and K′ such that πc, α

′, πa ∈ K and πc, β, πb ∈ K′.
Hence πc, πa ∈ L, πc, πa ∈ K, πc, πb ∈ L′, and πc, πb ∈ K′.

Hence, by Fact A.1, we have L = K and L′ = K′. We also have
B(πc αα

′). Indeed, suppose towards a contradiction that B(πc α
′ α).

Then, by (df <) on p. 559, we have πc α
′ < πc α, which means that

Bc′ ⊆ Bc. Thus c′ ⊏ c. So we have a contradiction with (⋄). In an
analogous way we obtain B(πc β β

′).
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Thus, we have B(πc αα
′), B(πc β β

′), πc α ≡ πc β, and πc α
′ ≡ πc β

′,
So, by fact (C4′), we obtain αα′ ≡ β β′.

The property of the relation ⊚ expressed in Lemma 3.1 shows the
way in which it can be used to define the relation of the congruence
of mereological balls. For this purpose we will use as the definition of
constructed relation the condition (⋄) expressed in this lemma. After
these considerations, let us adopt the following definition of the relationdiam ⊆ B×B of congruence of mereological balls:

adiam b
df

⇐⇒ ∃c, c′∈B(c⊚ c′ ∧ a ET c ∧ b ET c ∧ a IT c′ ∧ b IT c′).
(df diam)

According to (df diam), we will say that the mereological balls a and b
are congruent iff we find a pair of concentric balls c and c′ in which the
balls a and b are externally tangent to ball c and internally tangent to
ball c′.

Now, we will prove that the relation diam defined in such a way is
an equivalence relation in the set of all mereological balls.

Theorem 3.2. The relation diam has following properties:

(i) for any a ∈ B we have adiama,

(ii) for all a, b ∈ B, if adiam b, then bdiama,

(iii) for all a, b, c ∈ B, if adiam b and bdiam c, then adiam c.

Proof. Ad (i) Let a ∈ B. Let Sa := fr(a) and Ba := int(a). Let α
be an arbitrary point such that α ∈ Sa and let L(πa, α) be the straight
line crossing center of the sphere Sa and point α. Straight line L(πa, α)
intersects the sphere Sa in point α′ 6= α, so B(α′ πa α). By Axiom O5,
there exists a point γ ∈ L(πa, α) such that B(πa αγ). Hence and by
B(α′ πa α) we have B(α′ αγ), by (OA). Hence and by B(α′ πa α) we
obtain B(απa α

′) and B(γ αα′), by Axiom O2, and we have B(γ πa α
′),

by (OB).
First, let us consider the sphere Sαγ whose center is the point γ and

going through α. Since B(πaαγ), we have [πa γ] = [πa α] + [γ α], by
Fact A.6. Since α ∈ Sa and α ∈ Sαγ , so by Fact A.8(i) we have that
Sa ∩ Sαγ = {α} and Ba ∩ Bαγ = ∅. Hence, by Theorem 4.8, we have
that for mereological ball c such that int(c) = Bαγ and fr(c) = Sαγ , (a):

aETc. Now, let us consider the sphere Sα
′

γ . Since points α′, πa and γ are
collinear, so by definition of a straight line in Pieri’s structure we have
that Sa ∩Sα

′

γ = {α′}. Let φ be an arbitrary point such that φ ∈ Ba. By
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triangle inequality, for points γ, πa and φ we have: [γ φ] ¬ [γ πa]+[πa φ].
Since α′ ∈ Sa, so [πa φ] < [πa α

′] and by (mon<) (see Fact A.5) we have:
[γ πa]+[πa φ] < [γ πa]+[πa α

′]. From B(γ πa α
′) we have [γ πa]+[πa α

′] =
[γ α′] and by previous inequalities we obtain [γ φ] < [γ α′], by (t<) (see
Fact A.5). Hence γ φ < γ α′, which means that φ ∈ Bα

′

γ . So, we have

Sa ∩ Sα
′

γ = {α′} and Ba ⊆ Bα
′

γ .
Hence, by Theorem 2.1, for mereological ball c′ such that int(c′) =

Bα
′

γ and fr(c′) = Sα
′

γ = {α′} we have (b): aITc′. Since the point γ is the

center of Euclidean balls Bαγ and Bα
′

γ , so {c, c′} ⊆ γ. Hence (c): c⊚ c′.

We also have γ α < γ α′, by (df <), since B(γ αα′). Hence Bαγ ⊆ Bα
′

γ

and we obtain (d): c ⊏ c′. By (a)–(d) and (df diam), we finally get
adiama.

Ad (ii) Directly from definition.
Ad (iii) Suppose that adiam b and bdiam c. We will show how to

construct a pair of mereological balls that satisfy the condition defin-
ing the relation diam for balls a and c (see Figure 4). According to
assumption and (df diam), for some mereological balls x, x′ we have:

x⊚ x′ ∧ a ET x ∧ b ET x ∧ a IT x′ ∧ b IT x′,

and for some mereological balls y, y′ we have:

y ⊚ y′ ∧ b ET y ∧ c ET y ∧ b IT y′ ∧ c IT y′.

Hence, by theorems 4.8 and 2.1, for mereological balls a and b we have:fr(a) ∩ fr(x) = {α} and fr(a) ∩ fr(x′) = {α′},fr(b) ∩ fr(x) = {β} and fr(b) ∩ fr(x′) = {β′},

and for mereological balls b and c we have:fr(b) ∩ fr(y) = {γ} and fr(b) ∩ fr(y′) = {γ′},fr(c) ∩ fr(y) = {δ} and fr(c) ∩ fr(y′) = {δ′}.

By Lemma 4.1 we have αα′ ≡ β β′ and γ γ′ ≡ δ δ′. Let fr(a) := Sa,fr(b) := Sb, fr(c) := Sc, fr(x) := Sx, fr(x′) := Sx′ . Since points α, πa,
α′ are collinear and {α, α′} ⊆ Sa, so by (df mid) (see Appendix) we have
(i): πa := mid(α, α′). Analogously, for spheres Sb and Sc we have (ii):
πb := mid(β, β′), (iii): πb := mid(γ, γ′), and (iv): πc := mid(δ, δ′).

Since β, β′, γ, γ′ ∈ Sb, so by (i) and (iii) we have β β′ ≡ γ γ′. So, we
obtain αα′ ≡ β β′, β β′ ≡ γ γ′, and γ γ′ ≡ δ δ′. Hence αα′ ≡ δ δ′, by
(t≡). Let us consider the segment πa πc and let K be its bisector. Let
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Figure 4. Construction in the proof of transitivity of the relation diam
φ ∈ K be any point such that: φ ∈ Ba ∪ Sa ∪ Bc ∪ Sc. Let L(φ, πa)
be the straight line crossing φ and πa and let L(φ, πc) be the straight
line crossing φ and πc. Since the straight line L(φ, πa) is crossing the
center of the sphere Sa, it intersects the sphere Sa in points χ and χ′.
Similarly, since the straight line L(φ, πc) crossing center of the sphere
Sc, so it intersects the sphere Sc in points ψ and ψ′. Moreover, suppose
that B(πa χφ) and B(πc ψ φ). By Fact A.7, we have φπa ≡ φπc. Since
αα′ ≡ δ δ′, so by (i), (iv) and Fact A.3 we have πa α ≡ πc δ. Next, since
χ, α ∈ Sa and ψ, δ ∈ Sc, so we also have πa χ ≡ πa α and πc ψ ≡ πc δ.
Hence, by (t≡), we have: πa χ ≡ πc ψ. Since φπa ≡ φπc, by B(πa χφ)
and B(πc ψ φ), we have φχ ≡ φψ, by (C4′). Thus, χψ ∆ φ. So, by
definition of a sphere in Pieri’s structure, we finally get χ, ψ ∈ Sχφ.

Again, using above ordering, we have: [πa φ] = [φχ] + [πa χ] and
[πc ψ] = [φψ] + [πc ψ]. Hence, by Fact A.8(i), we have Sχφ ∩ Sa = {χ},
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Bχφ ∩Ba = ∅, Sψφ ∩Sc = {ψ}, and Bχφ ∩Bc = ∅. By Fact 1.4, there exists

exactly one mereological ball z such that int(z) = Bχφ and fr(z) = Sψχ .
Hence, by Theorem 4.8, we have (a): a ET z; and (b): c ET z.

Now, we will construct a mereological ball which is concentric with
ball z. From B(πa χφ) and B(πc ψ φ) we have B(φχπa) and B(φψ πc),
by Axiom O2. Next, since πa = mid(χ, χ′) and πc = mid(ψ, ψ′), so
B(χπa χ

′) and B(ψ πc ψ
′), and, by Axiom O7, we obtain B(φχχ′) and

B(φψ ψ′). Let us observe that αα′ ≡ χχ′ and ψ ψ′ ≡ δ δ′, which means
by αα′ ≡ δ δ′ and (t≡) that χχ′ ≡ ψ ψ′. Hence, by B(φχχ′) and
B(φψ ψ′) we have φχ′ ≡ φψ′, by (C4). Thus χ′ ψ′ ∆φ and, by definition

of a sphere in a Pieri’s structure, we have χ′, ψ′ ∈ Sχ
′

φ . Hence, we have:

Sχ
′

φ ∩ Sa = {χ′}, and Ba ⊆ Bχ
′

φ , Sχ
′

φ ∩ Sc = {ψ′}, and Bc ⊆ Bχ
′

φ .

By Fact 1.4, there exists exactly one mereological ball z′ such thatint(z′) = Bχ
′

φ and fr(z′) = Sχ
′

φ . Hence, by Theorem 2.1 we obtain (c):

aITz′; and (d): cITz′. Since Euclidean balls Bχφ and Bχ
′

φ have a common
center point φ, so z, z′ ∈ φ. Thus, (e): z ⊚ z′.

In result, by (a)–(e), we have: z ⊚ z′, a ET z, c ET z, a IT z′, and
c IT z′. Hence adiam c, by (df diam).

In further consideration, for any b ∈ B, its equivalence class of the
relation diam will be denoted as db. So, we put:db := ‖b‖diam. (df db)
Hence for all a, b ∈ B we have:da = db ⇐⇒ adiam b .

Let D be the set of all equivalence classes of the relation diam, i.e.:D := {‖a‖diam : b ∈ B}. (df D)

Elements from the set D will be denote by variables ‘x’, ‘y’, ‘z’ etc.
According to these considerations, for all b ∈ B and x ∈ D we have:

b ∈ x ⇐⇒ x = db . (9)

Now, we can adopt the following definition of the diameter of mereolog-
ical ball:
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Definition 3.1. The diameter of any mereological ball is its equivalence
class of the relation diam.

The set D of all equivalence classes of the relation diam will be
called the set of diameters.

4. Properties of the relation diam and the class D
The first property of the relation diam described below shows the ad-
equacy of its definition. We will show that the images under operationint of the mereological balls of the same diameter in the sense of the
relation diam have the same diameter in the geometrical sense.

Theorem 4.1. For all a, b ∈ B and all α ∈ fr(a), β ∈ fr(b):da = db ⇐⇒ πa α ≡ πb β.

Proof. “⇒” Let a, b ∈ B and let α ∈ fr(a) and β ∈ fr(b). Suppose
that da = db. Then adiam b and, by Lemma 3.1, for α′ ∈ fr(a) and
β′ ∈ fr(b) we have πa α

′ ≡ πb β
′. Since α ∈ fr(a) and β ∈ fr(b), so

πa α ≡ πa α
′ and πb β ≡ πb β

′. Hence, by (t≡), we have πa α ≡ πb β.
“⇐” Let a and b be an arbitrary mereological balls and suppose that

α ∈ fr(a) and β ∈ fr(b). Moreover, suppose that πa α ≡ πb β. Let L be
a bisector of the segment πa πb. Let γ be a point lying on the straight
line L such that γ /∈ Sa ∪Ba ∪ Sb ∪Bb. Then, the straight line L(γ, πa)
is crossing a sphere Sa in points δ, δ′ and the straight line L(γ, πb) is
crossing a sphere Sb in points φ, φ′. Moreover, suppose that B(πa δ γ)
and B(πb φ γ). Since α, δ ∈ fr(a) and β, φ ∈ fr(b), so taking spheres Sδγ
and Sδ

′

φ and then using an analogous construction to the one that was
used to prove transitivity of the relation diam for mereological balls c
and c′ such that fr(c) = Sδγ and Sφγ , we obtain: c ⊚ c′, a ET c, b ET c,
a IT c′, and b IT c′, which means that adiam b, thus da = db.
Fact 4.2. For any a, b ∈ B, if a ⊏ b, then da 6= db.
Proof. Let α ∈ fr(x) and β ∈ fr(y), and suppose that a ⊏ b. Then, by
(3) and (antis⊑), we have int(a) ( int(b). Hence, of course, πa α < πb β
and by (df <) we have πa α 6≡ πb β. Hence, by Theorem 4.1, we haveda 6= db.

According to (df Π), a point in T⋆-structure is any set of mereological
balls concentric to a given ball. The next fact says that in each point and



552 Grzegorz Sitek

for any element of the set D there exists a mereological ball of diameter
equal to that element. This fact expresses in terms of geometry of solids
the Euclidean postulate about the possibility of constructing a circle
with any radius around each point.

Fact 4.3. For all α ∈ Π and x ∈ D there is b ∈ α such that db = x.

Proof. Let α ∈ Π and x ∈ D. Suppose that x ∈ x. Then, by Fact 1.2,
there is β ∈ Π such that β 6= πx and {x} = Πβ

πx
:= {b ∈ B : b ∈ πx ∧

β ∈ fr(b)}. So β ∈ fr(x). Let γ be the point such that αγ ≡ πx β. Since
β 6= πx, so α 6= γ and, by Fact 1.1, for some b ∈ B we have {b} = Bγ

α. So
b ∈ α and γ ∈ fr(b). But by (7), we have α = πb. Thus, by Theorem 4.1,
we have db = dx = x.

Fact 4.3 allows to show some connection between classes Π and D.
For this purpose, for any non-empty set of mereological balls X ∈ 2B\{∅}
we assign the set d[X ] of diameters of these balls, i.e., we put:d[X ] := {x ∈ D : ∃b∈X db = x}.

Directly from Fact 4.3 we obtain:

Fact 4.4. For any α ∈ Π we have d[α] = D.

Fact 4.4 says that every point from Π «generates» whole class D.
Also every element of D generates the set Π. For this purpose, for any
non-empty set of mereological balls X ∈ 2B \ {∅} we assign the set π[X ]
of all points generates by these balls, i.e., we put:

π[X ] := {α ∈ Π : ∃a∈X πa = α}.

Fact 4.5. For any x ∈ D we have π[x] = Π.

Proof. Let α ∈ Π. Then, by Fact 4.3, for some a ∈ α we have da = x.
So a ∈ x, by (9). Moreover, α = πa, by (7). Thus, α ∈ π[x].

Let us observe that without additional assumptions it is impossible
to generate the element x of D by whole set Π in manner described
above. It is so because the only «information» that is included in the set
Π about the class x is that the ball of diameter x exists in each point
of Π, without distinguishing any point from D.

The fact below is concerned with pairs of mereological balls which
generate one another the fringe points. We will show that in such a case
these balls have the same diameter.
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Fact 4.6. For any a, b ∈ B, if πa ∈ fr(b) and πb ∈ fr(a), then da = db.
Proof. Let a, b ∈ B, πa ∈ fr(b), and πb ∈ fr(a). Let α ∈ fr(a) and β ∈fr(b). Then β πa ∆ πb and απb ∆ πa. So β πb ≡ πa πb and απa ≡ πb πa.
Hence β πb ≡ απa, by (t≡). Hence da = db, by Theorem 4.1.

Fact 4.7. For any different points α, β ∈ Π there are a ∈ α and b ∈ β
such that da = db and a ET b.

Proof. Let α and β be any different points. Let γ = mid(α, β) and
let us consider spheres Sγα and Sγβ . Since γ ∈ Sγα and γ ∈ Sγβ , so by
Fact A.8(i) we have αγ ≡ β γ. Hence, by Theorem 4.1 it follows that
for balls a, b ∈ B such that fr(a) = Sγα and fr(b) = Sγβ holds da = db.
Since B(αγ β), so [αβ] = [αγ] + [γ β] and by Fact A.8, (i) we obtain
Sγα ∩ Sγβ = {γ} and Bγα ∩ Bγβ = ∅. Hence a ET b, by Theorem 2.2.

Lemma 4.8. For any a, b ∈ B there are balls a′ ∈ da and b′ ∈ db such

that a′ ET b′.

Proof. Let a, b ∈ B. Let fr(a) = Sa, int(a) = Ba and fr(b) = Sb. Let
α ∈ Sa and let L(πa, α) be a straight line crossing center of the sphere Sa
and point α. Let γ be an arbitrary point lying on straight line L(πa, α)
such that: B(πa αγ) and (γ α ≡ πb β). Let us consider the sphere Sαγ .
For a construction analogous to the one in the proof of reflexivity of the
relation diam we obtain Sa ∩ Sαγ = {α} and Ba ∩ Bαγ = ∅. Thus, by
Fact 1.4 and Theorem 2.2, for mereological ball c such that int(c) = Bαγ
we have aET c. Since γ α ≡ πb β, we have dc = db, by Theorem 4.1.

As the class da was considered as diameter of a given mereological
ball a, it is natural to consider the point πa as its center. It seems
that these two notions are sufficient to unambiguously characterise each
mereological ball in the universe of solids. Therefore we obtain:

Theorem 4.9. For any a, b ∈ B: if πa = πb and da = db, then a = b.

Proof. Let a and b be any mereological balls. Suppose that πa = πb
and da = db. Let Ba = int(a) and Bb = int(b). Let α ∈ fr(a) and
β ∈ fr(b). Since da = db, so πa α ≡ πb β, by Theorem 4.1. From axioms
of Pieri’s structures it follows that: (i) ∀α,β,γ∈Π(αβ ∆ γ ⇐⇒ αγ D βγ)
and (ii) ∀α,β,γ∈Π(αβ ∆ γ ⇐⇒ Bαγ = Bβγ ) (see [2, pp. 4 and 12]). By
assumption we have πa α ≡ πa β. So we have αβ∆πa, by (i) and (df ≡).
Hence Ba = Bαπa

= Bβπa
= Bb, by assumptions and (ii). Thus, Ba = Bb.

Hence a = b, by (3) and (antis⊑).



554 Grzegorz Sitek

By means of relations ⊏ and ⊑ inD we define two binary relations <d
and ≤d which allows to compare diameters. For any x,y ∈ D we put:x <d y df

⇐⇒ ∃a∈x∃b∈y a ⊏ b , (df <d)x ≤d y df
⇐⇒ ∃a∈x∃b∈y a ⊑ b . (df ≤d)

By (df ⊏), (df ≤d), (df <d) and by Fact 4.2 it follows that:

<d = ≤d \ id,

that is, for any x,y ∈ D:x <d y ⇐⇒ x ≤d y ∧ x 6= y. (10)

Proof. ”⇒” Suppose that x <d y. By (df <d) there are a ∈ x and
b ∈ y such that a ⊏ b. Then da 6= db, by Fact 4.2. So x 6= y. Moreover,
we have a ⊑ b. Hence x ≤d y, by (df ≤d).

”⇐” Suppose that (a) x ≤d y and (b) x 6= y. Then (c): x ∩ y = ∅,
by (b). Moreover, from (a) for some a ∈ x and b ∈ y we have a ⊑ b.
But from (c) we have a 6= b. Thus, a ⊏ b. So x <d y, by (df <d).

We can also show that relations <d and ≤d are characterized by
relations of inequality of segments.

Fact 4.10. For all a, b ∈ B and for all α ∈ fr(a) and β ∈ fr(b):da ≤d db ⇐⇒ πa α ¬ πb β.

Proof. Let a, b ∈ B and suppose that α ∈ fr(a) and β ∈ fr(b).
“⇒” Suppose that da ≤d db. By (df ≤d) for some x, y ∈ B we

have x ∈ da, y ∈ db, and x ⊑ y. Hence, by (3), for Euclidean balls
Bx := int(x) and By := int(y) we have Bx ⊆ By. Let γ ∈ Sx := fr(x)
and δ ∈ Sy := fr(y). Then πx γ ¬ πy δ. Since x ∈ da and y ∈ db,
so dx = da. Therefore db = dy. So πx γ ≡ πa α and πy δ ≡ πb β, by
Theorem 4.1. Hence πa α ¬ πb β, since πx γ ¬ πy δ.

“⇐” Suppose that πa α ¬ πb β. Let γ be a point such that πa γ ≡
πb β. Then, of course, πa α ¬ πa γ and consequently Ba ⊆ Bγπa

. Hence,
for mereological ball c such that int(c) = Bγπa

we have a ⊑ c. Hence,
by (df ≤d), we obtain da ≤d dc. Since πa γ ≡ πb β, so db = dc, by
Theorem 4.1. In consequence da ≤d db.



The notion of the diameter of mereological ball . . . 555

From Fact 4.10 it follows that the relation ≤d has all properties of
the relation ¬ defined by (df ¬) (see Appendix). Thus, the relation ≤d
partially orders D, i.e., for all x,y, z ∈ D we have:x ≤d x, (r≤d)

(x ≤d y ∧ y ≤d x) =⇒ x = y, (antis≤d)

(x ≤d y ∧ y ≤d z) =⇒ x ≤d z . (t≤d)

Notice that, by (10) and Fact 4.10, we obtain:

Fact 4.11. For any a, b ∈ B and for any α ∈ fr(a) and β ∈ fr(b):da <d db ⇐⇒ πa α < πb β.

From Fact 4.11 it follows that the relation <d has all properties of the
relation < defined by (df <) (see Appendix). Thus, the relation <d is
irreflexive, asymmetric, and transitive in class D, i.e., for all x,y, z ∈ D
we have:

¬ x <d x, (irr<d)x <d y =⇒ ¬ y <d x, (as<d)

(x <d y ∧ y <d z) =⇒ x <d z. (t<d)

Moreover, from the law of trichotomy for segments (a1) it follows
that for all x,y ∈ D we have:x ≤d y or x = y or y ≤d x .

Other properties of the relation ≤d will be shown on the basis of
some facts that are held for mereological balls from a given point. First,
we will show that in every point α, for a given ball a ∈ α there is a
mereological ball in the point which is a part of ball a, and there is a
mereological ball, that part of it is mereological ball a, i.e.:

∀a∈B∃b∈B(a⊚ b ∧ b ⊏ a), (11)

∀a∈B∃b∈B(a⊚ b ∧ a ⊏ b). (12)

Indeed, let a ∈ B. Let int(a) = Ba and fr(a) = Sa. Let α be an
arbitrary point such that α ∈ Sa and let L(πa, α) be a straight line
crossing πa and α. Let γ, γ′ be points such that B(πa γ α) and B(πa αγ

′).
Then, by (df <) we have πa γ < πa α and πa α < πa γ

′. Since for each
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point φ ∈ Sγπa
we have πa γ ≡ πa φ, and for each point ψ ∈ Sa we have

πa ψ ≡ πaα, so Sγπa
⊆ Ba and Sa ⊆ Bγ

′

πa
. Then, by definition of the set of

interior points of an arbitrary sphere and by fact that Euclidean ball is a
convex set, we have Bγπa

⊆ Ba and Ba ⊆ Bγ
′

πa
. Hence, mereological ball a

and mereological ball c such that int(c) = Bγπa
satisfy (12), and mereo-

logical ball a and mereological ball d such that int(d) = Bγ
′

πa
satisfy (11).

Directly from (df Π) and (df ⊚) it follows that:

∀α∈Π∀a,b∈α(a = b ∨ a ⊑ b ∨ b ⊑ a). (13)

The next fact is related to «density» of the set of mereological balls
from a given point that are «between» two distinct balls from this point.

∀α∈Π∀a,b∈α
(

a ⊏ b =⇒ ∃c∈α a ⊏ c ⊏ b
)

. (14)

Indeed, let α ∈ Π be an arbitrary point and let a, b ∈ α. Moreover,
suppose that a ⊏ b. Let int(a) = Ba, fr(a) = Sa, and int(b) = Bb,fr(b) = Sb. Let β, γ ∈ Π are points such that β ∈ Sa and γ ∈ Sb.
Let L be an arbitrary straight line crossing α. Let φ be a point lying
on L such that αφ ≡ πa β and let ψ be a point such that αψ ≡ πb γ.
Hence, by (df <d), we have da <d db and then by Fact 4.11 we obtain
πa β < πb γ. Thus αφ < αψ and by (df <) we have B(αφψ). Let
δ be an arbitrary point such that B(φ δ ψ). Hence, by Axiom O8 and
(OB), we have: B(αφ δ) and B(αφψ). Hence, again by (df <) we have
αφ < αδ and αδ < αψ. Let c ∈ B be a mereological ball such thatint(c) = Bδα and fr(c) = Sδα. Thus, we have: Ba ⊂ Bc and Bc ⊂ Bb.
Since πa = πb = α, so a ⊏ c ⊏ b, by (3).

From (df ≤d), by (11) and (12), it follows that:

∀x∈D∃y∈D y ≤d x , (15)

∀x∈D∃y∈D x ≤d y . (16)

Moreover, by (13) and (14), it follows that:

∀x,y∈D(x ≤d y ∨ y ≤d x), (17)

∀x,y∈D(x ≤d y =⇒ ∃z∈D x ≤d z ≤d y). (18)

Finally, on the basis of (15), (16), (17) and (18) we obtain the following
characteristics of the set D with respect to the relation ≤d.

Theorem 4.12. A pair 〈D,≤d〉 is a density, linear order without greatest

and smallest element.
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A. Appendix: Basic facts from geometry

I. Axioms of Incidence6

I1. For any line L there exist (two) distinct points α and β such that
α, β ∈ L.

I2. For any points α and β there exists at least one line L such that
α, β ∈ L.

I3. If points α and β are distinct, then there exists at most one line L
such that α, β ∈ L.

I4. For any plane S there exist (three) non-collinear points α, β, γ such
that α, β, γ ∈ S.

I5. For any points α, β, γ there exists at least one plane S such that
α, β, γ ∈ S.

I6. If points α, β, γ are not-collinear, then there exists at most one plane
S such that α, β, γ ∈ S.

I7. For any line L and for any plane S, if there exist two distinct points
α and β such that α, β ∈ L and α, β ∈ S, then L ⊂ S.

I8. For any planes R and S, if there exists a point α such that α ∈ R
and α ∈ S, then there exists a point β distinct from α and such that
β ∈ R and β ∈ S.

I9. There exist (four) non-coplanar points α, β, γ, δ.

The most important fact that follows from above axioms of incidence
is following:

Fact A.1. Just one line passes through two distinct points.

II. Axioms of Order for the ternary relation B of betweenness
(if B(αβ γ) then we say that β lies between α and γ):

O1. If B(αβ γ), then points α, β, γ are collinear and distinct.
O2. If B(αβ γ), then B(γ β α).
O3. If B(αβ γ), then ¬ B(β α γ).
O4. If points α, β, γ are collinear and distinct, then B(αβ γ) or B(β γ α)

or B(γ αβ).
O5. If points α and β are distinct, then there exists a point γ such that

B(αβ γ).
O6. If points α and β are distinct, then there exists a point γ such that

B(αγ β).

6 In this Appendix we give only a sketch of the main axioms and concepts that
are necessary for this paper. For details, the reader should see [1, 2].
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O7. If B(αβ γ) and B(β γ δ), then B(αβ δ).
O8. If B(αβ δ) and B(β γ δ), then B(αβ γ).

The most important fact that follows from axioms of order is following.
For any α, β, γ, δ ∈ Π:

(OA) If B(αβ γ) and B(β γ δ), then B(αγ δ).
(OB) If B(αβ δ) and B(β γ δ), then B(αγ δ).
(OC) If B(αβ δ), B(αγ δ) and β 6= γ, then B(αγ β) or B(β γ δ).
(OD) If B(αβ γ) and B(αγ δ), then B(αβ δ).
(OE) If α 6= β and B(αβ γ) and B(αβ γ′), then B(β γ γ′) or B(β γ′ γ).

III. Axioms of Congruence

C1. If D(ααβ γ), then β = γ.
C2. D(αβ β α).
C3. If D(αβ γ δ) and D(αβ φψ), then D(γ δ φψ).

Any non-ordered pair {α, β} which is formed of two distinct points α
and β is called segment. Any segment {α, β} will be denoted by α β.
For any α, β, γ, δ ∈ Π we put:

αβ ≡ γ δ
df

⇐⇒ D(αβ γ δ). (df ≡)

From properties of the relation D it follows that the relation ≡ is an
equivalence relation, thus:

αβ ≡ αβ, (r≡)

αβ ≡ γ δ =⇒ γ δ ≡ αβ, (s≡)

αβ ≡ γ δ ∧ γ δ ≡ φψ =⇒ αβ ≡ φψ. (t≡)

Relation ≡ is called the congruence of segments. According to above
definition, other axioms of congruence are as follows:

C4. If B(α1 β1 γ1), B(α2 β2 γ2), α1 β1 ≡ α2 β2 and β1 γ1 ≡ β2 γ2, then
α1 γ1 ≡ α2 γ2

C5. For every half-line A with origin α and for every segment βγ there
exists just one point δ ∈ A such that αδ ≡ βγ.

By axioms (C4) and (C5) and by fact that the relation ≡ is an equivalence
relation in the set of all segments it follows that:

C4′ If B(αβ γ), B(α′ β′ γ′), αβ ≡ α′ β′, and αγ ≡ α′ γ′, then β γ ≡
β′ γ′.

We have also a fact which may be said to be converse of Axiom (C4)
and fact (C4′), i.e.:
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Fact A.2. If B(α1 β1 γ1) and α1 γ1 ≡ α2 γ2, then there exists a point β2

such that B(α2 β2 γ2), α1 β1 ≡ α2 β2 and β1 γ1 ≡ β2γ2.

By means of the relation of congruence of line segments and the
betweenness relation we define the relation of inequality of segments.
For any segments α1 β1 and α2 β2 we put:

α1 β1 < α2 β2
df

⇐⇒ ∃γ∈Π

(

B(α2 γ β2) ∧ α1 β1 ≡ α2 γ
)

. (df <)

The relation < is asymmetric and transitive. Thus, for any segments
α1 β1, α2 β2 and α3 β3:

If α1 β1 < α2 β2, , then ¬ α2 β2 < α1 β1, (as<)

If α1 β1 < α2 β2 and α2 β2 < α3 β3, then α1 β1 < α3 β3. (t<)

From (as<) and (t<) it follows that the relation < is also irreflexive.
For an arbitrary line segment αβ:

¬ αβ < αβ. (irr<)

Next, for the relation < also hold laws of extensionality expressed in
terms of the relation ≡. For any segments α1 β1 and α2 β2:

If α1 β1 < α2 β2 and αβ ≡ α1 β1, then αβ < α2 β2.

If α1 β1 < α2 β2 and αβ ≡ α2 β2, then α1 β1 < αβ .

From laws of extensionality for the relation<, (irr<) and (t<) follows
the law of trichotomy. For any segments α1 β1 and α2 β2 holds exactly
one of below:

α1 β1 < α2 β2 or α1 β1 ≡ α2 β2 or α2 β2 < α1 β1. (a1)

Next, by means of relations < and ≡ we define the relation of sharp
inequality of segments. For any segments α1 β1 and α2 β2 we put:

α1 β1 ¬ α2 β2
df

⇐⇒ α1 β1 < α2 β2 ∨ α1 β1 ≡ α2 β2 (df ¬)

From properties of the relations < and ≡ it follows that the relation ¬
is a partial order in the set of all segments, i.e.:

α1 β1 ¬ α1 β1, (r¬)

α1 β1 ¬ α2 β2 ∧ α2 β2 ¬ α1 β1 ⇒ α1 β1 ≡ α2 β2, (antis¬)

α1 β1 ¬ α2 β2 ∧ α2 β2 ¬ α3 β3 ⇒ α1 β1 ¬ α3 β3. (t¬)
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We introduce the following operation mid : Π × Π −→ Π of middle point
which ascribes for any pair of distinct points a point which lies exactly
midway between them. For any α, β ∈ Π we put:

mid(α, β) := (ι γ)(B(αγ β) ∧ γ α ≡ γ β). (df mid)

We have the following connections between the operation mid and the
relations ≡ and <.

Fact A.3. If αβ ≡ α′ β′ and γ = mid(α, β), γ′ = mid(α′, β′), then

αγ ≡ α′ γ′ and γ β ≡ γ′ β′.

Fact A.4. If αβ < α′ β′ and γ = mid(α, β), γ′ = mid(α′, β′), then

αγ < α′ γ′ and γ β < γ′ β′.

Since the relation ≡ is an equivalence relation, the equivalence classes
of the family of all segments with respect to the relation ≡ will be called
free segments. We denote free segments by a, b, c, d. A free segment
with a representative αβ will be denoted by [αβ]. Now, we introduce
the relation of inequality of free segments:

a < b
df

⇐⇒ a = [α1 β1] ∧ b = [α2 β2] ∧ α1 β1 < α2 β2. (df ′ <)

Then, we introduce the operation of the addition of free segments:

c = a + b
df

⇐⇒ ∃γ∈Π(B(αγ β) ∧ a = [αγ] ∧ b = [γ β]). (df +)

Fact A.5. For any free segments a, b, c and d we have:

If a < b, then ¬ b < a, (as<)

If a < b and b < c, then a < c, (t<)

a + b = b + a, (comm+)

(a + b) + c = a + (b + c), (assoc+)

If a < b, then a + c < b + c, (mon<)

If a < b and c < d, then a + c < b + d. (a2)

We have the following fact which is known as the triangle inequality.

Fact A.6. For any three distinct points α, β, γ we have:

[αγ] ¬ [αβ] + [β γ],

and [α β] + [β γ] = [αγ] if and only if B(αβ γ).
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There also holds the following fact that characterized bisectors of
segments.

Fact A.7. For any segment αβ and any plane P such that α, β ∈ P ,

for the bisector M ⊆ P of the segment αβ we have:

M = {γ ∈ P : γ α ≡ γ β}.

Fact A.8. Let Sβα and Sδγ be arbitrary spheres. Then:

1. If [αγ] = [αβ] + [γ δ], then Sβα ∩ Sδγ = {φ} and Bβα ∩ Bδγ = ∅.

2. If [αγ] > [αβ] + [γ δ], then Sβα ∩ Sδγ = ∅ and Bβα ∩ Bδγ = ∅.

Fact A.9. For any spheres Sβα and Sδγ , if Sβα ∩ Sδγ = {φ}, then:

Bβα ∩ Bδγ = ∅ or Bβα ⊆ Bδγ or Bδγ ⊆ Bβα.

Fact A.10. For any spheres Sβα and Sδγ , if Sβα ∩ Sδγ = {φ, φ′}, then

Bβα \ Bδγ 6= ∅ and Bδγ \ Bβα 6= ∅.
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