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ABSTRACT: The article aims at examination of the shape of relationship between income 

inequality and the level of economic development measured by GDP per capita in 27 

European Union countries in the period of 2004-2014. It also aims at identification of 

determinants of income inequality. Specifically, we test for the existence of an inverted U-

shaped curve, as it is predicted by the standard Kuznets hypothesis, and J-shaped curve 

following the approach adopted by Deutsch and Silber (2004) and Anand and Kanbur (1993). 

The data come from Eurostat EU-SILC database (European Union Statistics on Income and 

Living Conditions), World Bank and International Monetary Fund. 

In the EU-27 group of countries we contradict the Kuznets hypothesis – our results provide 

evidence for a U-shaped, rather than the inverted U relationship. It also follows from our 

analysis that our data cover only the descending part of the U, that is a shape of inverted J.  
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Introduction 
 

The phenomenon of growing dispersion of incomes has attracted growing attention of 

researchers and policy makers. Numerous empirical studies find that since the 1980s income 

inequalities in the developed countries have been rising (OECD, 2011; Salverda et al., 2014; 

Franzini et al., 2016). Some researchers argue that this trend is a result of the rise of 

computerization and increasing prevalence of information technologies. Autor, Katz and 

Kearney (2006) describe a new pattern in income inequality in the US as “polarization” of the 

labour market into high-wage and low-wage jobs at the expense of middle-wage work. The 

authors find that computerization strongly complements the non-routine, abstract, cognitive 

tasks of high-wage employees, while directly substituting for the routine tasks characteristic 

for traditional middle-wage jobs. Kiatrungwilaikun and Suriya (2015) find that the growth of 

information technology positively influences human capital of employees, their productivity 

and wages in industrial sector, while it has little impact on incomes of agricultural workers. 

Other authors argue that the increase in income inequalities in the developed countries can be 

attributed to growing foreign trade and international fragmentation of production – 

particularly imports from low labour cost countries and moving labour-intensive production 

processes to low-wage countries. Findings from an empirical study based on data on United 

States, UK and Japan (Galbraith et al., 2001) confirm that inequalities in these countries have 

increased in response to rising internationalization. Raitano (2016) reports an increase in 

inequality after the outbreak of the global financial crisis in 2008. 

One of the most debated theoretical frameworks for analysing income inequality is 

Kuznets hypothesis. Kuznets first published his research results on the relationship between 

                                                             
1 This paper is prepared within the research project: Income Inequalities in the European Union Countries 

(Eurostat, No.: 164/2016-EU-SILC) and is based on data from Eurostat, EU Statistics on Income and Living 

Conditions – EU-SILC CROSS-SECTIONAL UDB 2015 – version 2 of March 2017. The responsibility for all 

conclusions drawn from the data lies entirely with the authors. 
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income inequality and the level of economic development in 1955 (Kuznets, 1955). The 

hypothesis based on empirical evidence from time-series data on England, Germany and 

United States, predicts that the relationship between Gini index and GDP per capita can be 

described by an inverted U-shaped curve (Kuznets curve). A country at the early stage of its 

economic development, when a share of employment in agriculture is relatively high, 

experiences low income inequality. During a transition from a pre-industrial to an industrial 

stage of economic development inequality increases, because the productivity, as well as 

wages, of workers employed in emerging industrial sector are higher than in agriculture. The 

gap between wages in both sector widens in response to further growth of industry and 

shrinking of agriculture. As economic development proceeds, a change of the trend occurs – 

wage dispersion stops rising and starts to fall as a result of labour force shift from the 

agricultural sector towards the industry. Higher supply of labour in industry limits the wage 

growth in this sector and lower labour supply in agriculture creates favourable conditions for 

an increase of incomes of agricultural workers. These trends are reinforced by stronger 

growth of agricultural wages which are an effect modernization in farming and improvements 

in productivity. In effect, wage disparity between both sectors further narrows.  

Early empirical studies on Kuznets hypothesis confirmed the statistically significant 

inverted U-shaped relationship between income inequality and GDP per capita (Paukert, 

1973; Ahluwalia, 1976). However, later studies based on longer sample periods including 

1980s and 1990s, and utilising better quality cross-sectional and panel data on income 

inequalities, provide no empirical evidence of the existence of the Kuznets curve (Deininger 

et al., 1998; Bruno et al., 1996; Ram, 1997; Barro, 2000; Thornton 2001; Phahan et al.,  

2010). The latest empirical evidence on the subject has been mixed, but tends to contradict 

Kuznets hypothesis. Gallup (2012) using panel data of 87 countries found the existence 

of anti-Kuznets curve – a statistically significant U-shaped relationship between income 

inequality and the level of economic development. Similar results were obtained by 

Kiatrungwilaikun and Suriya (2015), Castells-Quintana, Ramos and Royuela (2015) and 

Muszynska, Oczki and Wedrowska (2017). In 1993 Anand and Kanbur proposed a modified 

functional form of the traditional Kuznets relationship – a model of income inequality 

regressed on GDP per capita and its inverse (Anand et al., 1993). This specification was also 

applied by Ravallion (1995), Savvides and Stengos (2000), Checchi (2001), Gregorio and Lee 

(2002) and Frazer (2006). Deutsch and Silber (2004) using cross-section data on 23 

developing and developed countries and decomposing the Gini index by income sources 

found that the Kuznets type relationship has a shape of inverted J. 

The aim of this paper is to examine the relationship between income inequality and 

GDP per capita in a panel of European Union countries in the period of 2004-2014. 

Specifically, we aim at testing Kuznets hypothesis of the inverted U-shaped relationship as 

well as identifying determinants of income inequality. The plan of the paper is as follows. In 

section 2 we describe the model, the data set, and discuss estimation methods. Section 3 

presents estimation results for static and dynamic specifications of Kuznets U-curve for EU 

countries. Section 4 provides estimation results of modified Kuznets functional form – the J-

shaped relationship between Gini and GDP per capita. Section 5 concludes the paper. 

 

1. Methodology and data 
 

In order to empirically verify the thesis of the paper static and dynamic panel data models are 

applied. The use of panel data allows for greater number of degrees of freedom than mere 

time-series or cross-sectional data and improve the accuracy of parameter estimates (Hsiao, 

2003, p.3). 

 In the most general form panel data model can be written as follows: 



3 
 

 

 ,uXy ititit   ),T,...t(),N,...,i( 11       (1) 

 itiitu             (2) 

where: 

 ity – dependent variable, 

 itX – vector of independent variables, 

  – constant term, 

  – vector of parameters,  

 itu – error term, 

 i – unobservable, individual–specific effects, 

 it – unobservable, random term. 

 The static models can be estimated as fixed and random effects models. The former is 

based on the assumption that the individual effects are constant parameters, while in the latter 

it is assumed that the individual effects are a random variable (independent and identically 

distributed  20  ,IID~i ). 

 The parameters of the fixed and the random effects models are calculated with Least 

Squares Dummy Variables (LSDV) and Generalised Least Squares (GLS) estimators, 

respectively. In order to confirm the relevance of the decomposition of the constant term 

and/or the error term the Wald and the Breusch and Pagan Lagrange Multiplier tests are used. 

The appropriate specification of the models is checked with Hausman
2
 specification test. The 

significance of variables and the degree of statistical fit of the estimated equations are also 

verified as well as the residuals of the models. The results of the statistical and economic 

verification enable us to choose the best models. 

 The dynamic panel data models are characterised by the presence of a lagged 

dependent variable among the regressors. In this case the model described by the equations 

(1) and (2) can be specified as follows: 

 ,uXyy itititit    1 ),T,...t(),N,...,i( 11      (3) 

 itiitu    

The use of the lagged dependent variable as a right-hand regressor renders the Ordinary Least 

Squares (OLS) estimator to be biased and inconsistent. The GLS estimator is also biased in a 

dynamic panel data model.  

The basic problem arising from the inclusion of the lagged dependent variable is its 

correlation with the error term. Since dependent variable is by definition a random variable, 

then it can be expected that its lagged values are correlated with the error term. A number of 

methods have been proposed for the estimation of dynamic panel models, which account for 

the endogeneity of the explanatory variables. Most of the estimators proposed base on the 

Generalised Method of Moments (GMM). As Bond (2002, p.160) points out, GMM is 

“particularly useful when the model of interest contains endogenous or predetermined 

explanatory variables, but the process generating these series are not completely specified”. 

 The idea behind the GMM is that the population moment conditions can be replaced 

by the sample moment conditions. The properties of the regressors instruments imply that the 

moment conditions for the errors with the instruments are equal to zero. Based on that, GMM 

                                                             
2 Both methods and the tests used to assess the specification of panel data models are widely discussed in the 

literature, inter alia, by Baltagi (2005) and Wooldridge (2010). 
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estimator establishes population moment conditions and then uses the sample moment 

conditions to compute parameter estimates. 

 The form and the number of moment conditions that can be used in the GMM 

estimation process depend on the assumptions concerning the correlation between the 

variables itX  and the components: i  and it . Assuming that it  is not correlated over time 

0 )(E sitit  and itX  are correlated with i , it is possible to adopt three alternative 

assumptions about the correlation between itX  and it . The explanatory variables can be: 

 strictly exogenous, if 0)X(E isit  for all t and s,  

 predetermined, if 0)X(E isit  for ts  , but 0)X(E isit  for all ts  , 

 endogenous, if 0)X(E isit  for ts  , but 0)X(E isit  for all ts  . 

Adopting additional assumptions about the lack of correlation between variables itX  and itu  

allows to indicate additional instrumental variables, and thus additional moment conditions. 

 In our study we apply two methods based on GMM: first-differenced GMM 

(FDGMM), proposed by Arellano and Bond (1991), and the system GMM (SYSGMM), 

developed by Blundell and Bond (1998). The FDGMM transforms all regressors, usually by 

differencing, in order to remove individual-specific effects i  and then uses instruments to 

form moment conditions. Lagged levels of the dependent variable, the predetermined 

variables, and the endogenous variables are used to form GMM-type instruments. First 

differences of the strictly exogenous variables are used as standard instruments.   

 Since the lagged-level instruments in the FDGMM estimator become weak if the 

autoregressive process is too persistent or the ratio of the variance of the panel-level effects to 

the variance of the idiosyncratic error is too large, the SYSGMM method uses additional 

assumption that allows for the introduction of more instruments and improves efficiency. 

 In addition to the moment conditions of lagged levels as instruments for the 

differenced equation, the SYSGMM estimator applies moment conditions in which lagged 

differences are used as instruments for the level equation. The additional moment conditions 

are valid only if first differences of instrument variables are uncorrelated with the fixed 

effects (Blundell et al., 1998a; 1998b; 2000).  

We verified the quality of the estimated dynamic models on the basis of statistical 

tests: the Arellano-Bond test for autocorrelation and the Sargan test of over-identifying 

restrictions (Arellano et al., 1991, p.282). The latter examines if over-identifying restrictions 

omitted from the estimation process were correct. More precisely, the test evaluates 

correctness of the selection of instrumental variables in estimation process in the sense of 

them being uncorrelated with the error terms of the first difference model. The null hypothesis 

of the test states that the moment conditions are valid. The applied instruments are correct if 

the test provides no grounds for rejecting the null hypothesis. 

The Arellano-Bond test verifies the assumption regarding first- and second-order 

autocorrelation in the first-differenced errors. The model is properly specified, i.e. the GMM 

method provides consistent estimator, if the test fails to reject the null hypothesis about the 

absence of the second-order autocorrelation of the first difference model error term. Presence 

of the first-order autocorrelation is expected, resulting from the model construction. When the 

idiosyncratic errors are independently and identically distributed (i.i.d.), the first differenced 

errors are first-order serially correlated. We also applied Sargan difference test (Blundell et 

al., 2000, p.21) to verify the validity of the additional instruments resulting from the 

SYSGMM estimator. Thus, we examined whether the use of SYSGMM method leads to more 

precise results than FDGMM estimator. 
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Numerous studies on income inequality, especially early publications on the subject, 

were criticized for poor quality of data (see Atkinson et al., 2003). In this article we use 

highly reliable, internationally comparable Eurostat EU-SILC (European Union Statistics on 

Income and Living Conditions) data on Gini coefficients based on equivalised disposable 

household income before social transfers (pensions are included in social transfers). Data for 

our models come from Eurostat, World Bank and World Economic Outlook Database from 

International Monetary Fund. The set of countries in our sample include: EU-15 states: 

Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, 

Netherlands, Portugal, Spain, Sweden, United Kingdom, and 12 new member states of the 

European Union: Bulgaria, Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, 

Malta, Poland, Romania, Slovakia, Slovenia. The EU-SILC data on all sample countries is 

only available for the time period of 2004-2014.  In the countries of Eastern Europe which 

joined the European Union in 2004 and 2007 the EU-SILC survey started from 2005. The 

survey carried out in 2005 provides data on 2004. The latest available EU-SILC data for all 

countries come from 2015 survey thus limiting our sample period to 2014. 

 

2. Empirical results and discussion 
 

In the first step of our investigation we tested the Kuznets hypothesis of the inverted U-

shaped relationship between income inequality and GDP per capita. Thus, we estimated the 

static panel model: 

iti
'
itititit Z)GDP(lnGDPlnGINIln   2

21     (1) 

In our analysis of Gini-GDP per capita relationship we also consider the influence of a set of 

control variables on income inequality. The list of dependent variables and their descriptions 

are presented in table 1. 

 

Table 1. Description of variables 

variable definition source of data 

Gini 
Gini coefficient of equalised disposable income before social 

transfers (pensions included in social transfers) 

Own calculations based 

on Eurostat / EU-SILC 

GDP 
GDP per capita: real gross domestic product per capita based on 
purchasing-power-parity (PPP) measured in 2010 international 

dollars 

Own calculations based 

on IMF database 

Depend 
Old-age dependency ratio: the ratio of the number of persons aged 65 

and over to the number of persons aged between 15 and 64 
Eurostat 

Selfemp 
Share of self-employed: the number of self-employed as a share of 

total number of employed 
World Bank 

Unemp 
Unemployment rate: the number of unemployed persons as a 

percentage of economically active population 
Eurostat 

School 
Tertiary education attainment: the number of persons holding tertiary 

education diploma as a share of population aged 15 and over 
Eurostat 

Open  Trade openness: (export+import)/GDP World Bank 

Agr 
The number of people working in agriculture as a share of total 

number of employed 
Eurostat 

Source: own elaboration. 
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At this stage of our analysis we chose between fixed and random effects panel model 

specifications. In random-effects models, it is assumed that country-specific effects are 

normally distributed and that there is no correlation between these effects and other 

explanatory variables. In models based on samples including a small number of objects, such 

as ours, these assumptions may not hold. Our sample contains a relatively small number of 

objects (12, 15 or 27 EU countries) and in random-effect specification the probability of 

correlation between the country-specific effects and lnGDP and sq_lnGDP could be high. 

Thus, a fixed-effects model that does not require these assumptions should be preferred, 

despite some loss of efficiency (Galbraith and Kum, 2002, p. 10). By performing the 

Hausman test, we confirm that country-specific effects are correlated with a vector of 

explanatory variables. Thus, we continue our analysis with estimating the fixed-effects static 

model. The results of estimation of static panel models are presented in table 2. 

 

Table 2. The estimates of the fixed-effects models – Kuznets specification 

 
EU-27 

 

EU-15 

 

EU-12 

 
 model 1 

 

model 2 

 

model 3 

 lnGDP -3.6040 *** -7.2906 ** -2.1555 
 sq_lnGDP 0.1629 *** 0.3352 ** 0.0915 

 selfemp -0.0072 *** -0.0061 
 

-0.0067 ** 

depend 0.0108 *** 0.0114 *** 0.0062 

 unemp 0.0045 *** 0.0040 ** 0.0042 *** 

school 0.0023 * 0.0006 

 

0.0053 ** 

open 0.0005 ** 0.0007 ** 0.0003 
 agr -0.0013 

 

-0.0118 

 

0.0017 

 constant 23.4150 *** 43.2253 ** 16.0237 ** 

R2 within 0.5737 

 

0.5527 

 

0.6375 

 R2 between 0.0557 

 

0.0013 

 

0.5160 

 R2 overall 0.1068 

 

0.0490 

 

0.5185 

 F (μi) 33.46 *** 22.32 *** 20.73 *** 

AR(1) 0.42  0.43  0.40  

Note: ***,**,*: 1%, 5% and 10% statistical significance respectively. 

Source: own calculations. 

 

The models 1-3 have been estimated with LSDV (Least Squares Dummy Variables) 

method. In case of two country groups: EU-27 and EU-15, we obtain statistically significant 

parameters on both GDP variables: lnGDP and sq_lnGDP. The signs of the parameters 1 <0 , 

2 >0, (| 1 |>| 2 |) mean that the relationship between income inequality and the level of 

economic development has a shape of U rather than inverted U, as it is predicted by Kuznets 

hypothesis. Our results are consistent with the findings by Ram (1997), Gallup (2012) and 

Muszyńska, Oczki and Wędrowska (2017). Also Kiatrungwilaikun and Suriya (2015) provide 

the evidence on statistically significant U-shaped relationship between inequality and GDP 

per capita in a group of 91 countries in the period of 2000-2012, and Castells-

Quintana, Ramos and Royuela, (2015) find this type of relationship in a panel of EU regions 

at NUTS 1 level.  

In a case of EU-12 country group we find no evidence of Kuznets hypothesis. 

Alternatively, following the approach by Rodríguez-Pose and Tselios (2008) we tested 

simpler specification assuming linear relationship between lnGini and lnGDP (table 3). We 

find statistically significant negative relationship between these variables. Hausman test 
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indicates that the country effects are random. As Rodríguez-Pose and Tselios claim, these 

results can be due to two reasons. Firstly, because of relatively short sample period the data 

cover only one part of the expected U-shaped curve. Secondly, the sample include a group of 

relatively homogeneous countries while numerous studies on Kuznets hypothesis are based on 

much wider pool of countries including the less developed as well as highly developed ones.  

 

Table 3. The estimates of the models for EU-12 – fixed and random effects 

UE12 fixed effects (FE)  

random effects 

(RE)  

model 4  model 5  

lnGDP -0.3491 *** -0.2673 *** 

selfemp -0.0060 ** -0.0041 * 

depend 0.0066  0.0050  

unemp 0.0038 ** 0.0051 *** 

school 0.0055 *** 0.0050 *** 

open 0.0003  0.0003  

agr 0.0020  0.0042  

constant 7.0934 *** 6.2678 *** 

R2 within 0.6324  0.6256  

R2 between 0.5788  0.6701  

R2 overall 0.5677  0.6499  

F (μi) 22.75 *** -  

AR(1) 0.42  -  

Hausman 8.118 p-value 0.3223  

Note: ***,**,*: 1%, 5% and 10% statistical significance respectively. 

Source: own calculations. 
 

Since the error terms in our fixed-effects models 1 and 2 do not satisfy no 

autocorrelation assumption (what results in biased standard errors of the estimates and biased 

test statistics) we next apply an autoregressive specification AR(1). The equation (1) is now 

modified and can be specified as: 

iti
'
itititit Z)GDP(lnGDPlnGINIln   2

21  

where: ititit   1  (2) 

 

AR(1) approach did not bring the expected results – residuals in our models are still 

serially correlated. Autocorrelation of residual terms can result from a number of reasons. If it 

is a result of omitted lags of the dependent variable then not only standard errors but also 

estimated parameters could be biased. In such case a dynamic panel model can be used 

(Galbraith et al., 2002, p. 13). Therefore in the next step of our investigation we add a lagged 

dependent variable lnGINI to the set of regressors in equation 3 similarly to the approach 

adopted by Chong at al. (2009, p. 16). Parameters are estimated with FDGMM and 

SYSGMM methods. Since these methods require a relatively large number of instrumental 

variables, only the model for EU-27 countries, based on a sample of 270 observations, has 

been estimated. In EU-15 and EU-12 country sets the number of objects would be too small 

and as a result the parameter estimates would be biased. The dynamic model is described by 

equation 3. 
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 ,Z)GDP(ln)GDPln()GINIln(GINIln iti
'
ititititit   

2
211   (3) 

 

The GMM estimator is consistent when the lagged values of the explanatory variables 

in equation 3 are valid instrumental variables (Chong et al., 2009, p. 17). We investigate this 

issue in our model by using two specification tests: Sargan test of over-identifying restrictions 

suggested by Arellano and Bond (1991) and error term serial correlation test by Arellano and 

Bover (1995). Failure to reject the null hypothesis of the Sargan test leads to the conclusion 

that the instrumental variables used in the model are valid. With the latter test we examine the 

null hypothesis of absence of second-order serial correlation of the differenced error term. If 

the test fails to reject it, then there is no serial correlation of the original error term in levels. 
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Table 4. Dynamic panel models – EU-27 

 

 
strictly exogenous predetermined endogenous 

 
  

  
  FDGMM   SYSGMM   FDGMM   SYSGMM   FDGMM   SYSGMM   WG   OLS   

 model 6  model 7  model 8  model 9  model 10  model 11  model 12  model 13  

lagged Gini -0.13394   0.56456 *** 0.43419 *** 0.57887 *** 0.42091 *** 0.57203 *** 0.41590 *** 0.85200 *** 

lnGDP -2.58683 * -4.61717 *** -4.88895 *** -2.03663 *** -4.93711 *** -1.20271 * -2.02570 * -0.01340 
 

sq_lnGDP 0.10993 * 0.21950 *** 0.23486 *** 0.09639 *** 0.23732 *** 0.05796 * 0.08970 * 0.00140 
 

selfemp -0.00133   0.00380 * 0.00188   0.00371 ** 0.00178   0.00252   -0.00430 * 0.00020 
 

depend 0.00927 ** 0.00472 * 0.00183   0.00626 *** 0.00199   0.00710 *** 0.00340   0.00220 *** 

unemp 0.00346 * 0.00085   0.00323 ** 0.00152   0.00326 ** 0.00225 ** 0.00320 *** 0.00180 *** 

school 0.00338 ** 0.00263 * 0.00229   0.00186 * 0.00229   0.00111   0.00220 * 0.00050 
 

open 0.00065 ** -0.00014   0.00031   -0.00002   0.00032   -0.00002   0.00030   0.00002 
 

agr -0.00959   -0.01392 *** -0.01459 ** -0.00437   -0.01438 ** -0.00121   -0.00760 * 0.00070 
 

constant     25.78476 ***     12.13429 ***     7.64408 ** 13.53470 ** 0.47580   

no of inst. 17   27   33   63   33   61       
  

Sargan 13.8022   23.5095   25.8874   70.5998   26.9493   58.6163   
 

  
  

p-value 0.0870   0.1330   0.3590   0.0530   0.3070   0.2160      

diff-Sargan 
 

  9.7073   
 

  44.7124   
 

  31.667   
 

  
  

p-value 
 

  0.3747   
 

  0.0314   
 

  0.2446   
 

  
  

AR1 (p-value) 0.7345   
 

  0.0000   
 

  0.0000   
 

  
 

  
  

AR2 (p-value) 0.8964   
 

  0.6079   
 

  0.6168   
 

  
 

  
  

 

Note: ***,**,*: 1%, 5% and 10% statistical significance, respectively. 

Source: own calculations. 
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Even though we estimate the models on a basis of the sample of all 27 countries, the 

number of objects is relatively small. Because of this limitation we introduce only the first lag 

of the dependent variable serving as a regressor. Each additional lag of dependent variable 

added to the model requires further expansion of the matrix of instrumental variables and can 

cause a bias in FDGMM and SYSGMM estimates (Kiviet, 1995). The bias can become 

significant and outweigh the gains in efficiency from the use of the GMM (Ziliak, 1997, p. 

419; Dańska-Borsiak, 2011, p. 120). In order to limit the number of instruments in the model 

only certain lags, instead of all available lags, for instrumental variables can be used 

(Roodman, 2006, p. 16).  

Since in case of small samples lagged variables can be weak instruments what can 

result in biased and inefficient FDGMM estimators  we use also SYSGMM. The instruments 

are weak when the dependent and explanatory variables exhibit strong persistence and/or the 

relative variation of the fixed effects increases (Araujo and Cabral, 2015). In autoregressive 

model, such as ours, this is the case when the value of coefficient on the lagged variable is 

close to 1 and when variance of group effects rises along with variance of the error term 

(Dańska-Borsiak, 2011, p. 94). FDGMM and SYSGMM can be one step or two step 

estimators. We use one-step estimators since in small samples the asymptotic standard errors 

for the two-step estimators can be biased downward (Arellano et al., 1991; Blundell et al., 

1998a; Pagano, 2004). 

Up to this point we have assumed that GDP per capita variable is exogenous. 

However, in reality, the reverse relationship can exist, that is income inequality can influence 

GDP per capita (see Forbes, 2000; Naguib, 2015 and Pagano, 2004). In the next step of our 

analysis we estimate models for three cases. Firstly, it is assumed that all explanatory 

variables are strictly exogenous, secondly, that lnGDP and sq_lnGDP  are predetermined, and 

thirdly, that both these variables are endogenous. Table 4 presents the results of FDGMM and 

SYSGMM estimation of equation 3. The values of Sargan test indicate that the instrumental 

variables used in all three types of models (strictly exogenous, predetermined and 

endogenous) are valid. Arellano-Bond test confirms first-order correlation and no second-

order autocorrelation of error terms in first differenced models based on assumptions of 

predetermination and endogeneity of explanatory variables. Serial correlation of order higher 

than one implies that moment conditions are not valid, that is the set of instruments used in 

the GMM estimation method is not proper. In the first-differenced model with exogenous 

dependent variables, the lagged dependent variable is insignificant. Also, there is no error 

term serial correlation.  

The choice of additional instruments in SYSGMM estimation is examined with a use 

of difference-Sargan test. We conclude that the SYSGMM outperforms FDGMM estimator in 

the case of exogenous and endogenous independent variables – models 7 and 11, respectively. 

Test value for model 8 (predetermined explanatory variables) shows that the optimal 

estimator is FDGMM. Difference-Sargan test is also used in order to compare models 7, 8 and 

11. The most accurate model describing the relationship between income inequality and 

economic development in EU-27 countries is model 11, estimated with SYSGMM and 

assuming endogeneity of lnGDP and sq_lnGDP. 

Additionally, we examine whether the estimates of coefficients on the lagged 

dependent variable are unbiased by confirming that their values are between those obtained 

from application of OLS and WG (within-group) methods as in Tam (2008), Arellano and 

Bond (1991), Soto (2009), and Arnone and Presbitero (2010). We expect the following 

relationship to be true: 

 

OLSGMMWG           (4) 
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OLS estimates tend to be biased upward whilst within-group method gives a downward 

biased estimates of this coefficient (Blundell et al., 1998b, p.9). In our analysis the estimate of 

coefficient δ on the lagged dependent variable takes the value of δ= 0,57203, that is between  

0,4158 and 0,8520 obtained with WG method (model 12) and with OLS method (model 13), 

respectively.  

Economic growth is not the only factor influencing the dispersion of income. 

Parameters on control variables in model 11 indicate that unemployment rate and old-age 

dependency ratio statistically significantly determine income inequality in EU countries. The 

higher unemployment rate and the higher the share of persons aged 65 and over in the number 

of persons aged between 15 and 64, the greater the inequality. These results are not 

controversial. High unemployment rate leads to a more dispersed income since 

unemployment is one of the main factors influencing standard of living and poverty, 

especially in our data on income before social transfers. The old age dependency ratio proved 

significant because our data on income do not include pensions, thus demographic structure of 

the society significantly influences income inequality. The share of self-employed, and 

persons employed in agriculture in total employment, share of persons holding tertiary 

education in total population and trade openness all proved insignificant in model 11, 

although some of these variables significantly influenced Gini index in models assuming 

strictly exogenous and predetermined dependent variables. 

Static model 2 describing the U-shaped relationship in EU-15 country group indicates 

that there is a significant influence of the same two control variables – unemployment rate 

and old-age dependency ratio. Also, income inequality is determined by trade openness - the 

variable describing the degree of internationalization of the economies. The higher the share 

of the sum of imports and exports in GDP the greater income inequality. The positive sign of 

the parameter has been expected because globalization and openness of the economies is 

pointed out as one of the main causes of rising income inequalities in developed countries 

(Galbraith et al., 2001). A slightly different set of control variables proved significant in static 

panel model 4, based on the sample of EU-12 countries. In the new member states of the EU 

unemployment rate and the share of population holding tertiary education degree in total 

population influenced the Gini index in period 2004-2014. Our results on the significant and 

positive influence of higher education attainment support the findings by Barro (2000). 

 

3. Alternative specification - J-curve 
 

Our empirical results confirm the U-shaped curve describing income inequality and economic 

development measured by GDP per capita. In the next step we examine an alternative 

specification of the model and check whether the resulting U curve is symmetrical. In the 

empirical studies two approaches to this issue are used. Galbraith and Kum (2002) identify 

the turning point on the U curve. Another approach is estimation of the hyperbolic Anand-

Kanbur specification that regresses an inequality index on per capita income and its inverse, 

or on logarithm of per capita income and the inverse of the logarithm of income (Anand et al., 

1993). Hyperbolic model assumes that the underlying relationship between Gini coefficient 

and GDP per capita has the shape of J or inverted J depending on the signs of parameters, and 

can be written as: 

 

)ln(

1
)ln()ln(

GDP
cGDPbaGINI        (5) 
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If a turning point exists, and it can be calculated as
b

c  , then it is a local extreme 

point (maximum or minimum value depending on the sign of b and c). 

First derivative of function (5) is 
 
 2

2

ln

ln

GDP

cGDPb 
 and it is equal zero if 

b
cGDP )ln( .  

If 0b  and 0c  function (5) is convex and achieves a minimum value at 
b

cGDP )ln( , 

because the second derivative 
 

0
ln

2
3


GDP

c
 (curve B). If 0b  and 0c  function (5) is 

concave and achieves a maximum at 
b

cGDP )ln( , because the second derivative 

 
0

ln

2
3


GDP

c
, as sketched in C. 

 

Figure 1. The shapes of considered relationships 

A B C 

  

 

 

Source: Author’s illustration. 

 

Coefficients b and c describing curves B and C are both either positive or negative. If 

they have the opposite signs then the function 5 does not have minimum nor maximum. When 

0b  and 0c  the function is convex and strictly decreasing, and when 0b  and 0c  it is 

concave and strictly increasing. 

Similarly to the case of U-shaped relationship model, we have also included control variables 

(Z.) and the equation (5) can be written as: 

iti
'
it

it
itit Z

GDPln
GDPlnGINIln   321

1
,    (6) 

where Z represents a vector of control variables. 

In the first step of the analysis of the J-shaped relationship we estimated static models 

for all three country groups. The results are presented in table 5. 
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Table 5. The estimates of the fixed effects models – J curve 

 EU-27 

 

EU-15 

 

EU-12 
   model 14  model 15  model 16  

lnGDP 1.3690 ** 3.8005 ** 0.6060 

 inv_lnGDP 170.8489 *** 447.0019 ** 92.8375 

 selfemp -0.0073 *** -0.0059 

 

-0.0067 ** 

depend 0.0108 *** 0.0111 *** 0.0063 

 unemp 0.0045 *** 0.0038 * 0.0042 *** 

school 0.0022 * 0.0005 

 

0.0053 ** 

open 0.0005 ** 0.0007 ** 0.0003 

 agr -0.0011 

 

-0.0134 

 

0.0017 

 constant -27.1136 ** -78.8381 ** -11.7241   

R2 within 0.5737 
 

0.5555 
 

0.6379 
 R2 between 0.0580 

 

0.0024 

 

0.5146 

 R2 overall 0.1096 
 

0.0417 
 

0.5175 
 F (μi) 33.36 

 

22.59 

 

20.82 

 AR(1) 0.42 
 

0.43 
 

0.40 
 Note: ***,**,*: 1%, 5% and 10% statistical significance respectively. 

Source: own calculations. 
 

We find statistically significant influence of GDP variables – lnGDP and inv_lnGDP, 

on inequality in fixed-effects models for EU-27 and EU-15. There is no evidence of 

significant J-curved relationship in a group of countries EU-12. Thus we conclude that the 

relationship between logarithm of inequality and logarithm of GDP per capita in EU-12 

country set is linear, as it follows from model 4 presented in table 3. Error terms in models 14 

and 15 are serially correlated thus we estimate parameters again with AR(1) procedure 

similarly to the case of U-curve analysis. The resulting equation can be written as follows: 

iti
'
it

it
itit Z

GDPln
GDPlnGINIln  

1
21  

where: ititit   1   (7) 

 

As it was in the case of U-curve modelling this approach does not solve the problem of 

autocorrelation so we add lagged lnGINI variable on the right hand side of the equation: 

,Z
GDPln

)GDPln()GINIln(GINIln iti
'
it

it
ititit   

1
211   (8) 

 

Table 6 presents the equation (8) estimated with FDGMM and SYSGMM assuming: 

strict exogeneity, predetermination and endogeneity of lnGDP and the inverse of the 

logarithm of Gini index for EU-27 countries. The choice of instruments used in the estimators 

are confirmed by the Sargan test. The values of Arellano-Bond test for first-difference models 

indicate that there is first-order correlation and no serial correlation of second order in error 

terms in models assuming predetermination and endogeneity. In the model based on the 

assumption of strict exogeneity the lagged dependent variable proved statistically 

insignificant. Also there is no serial correlation of residuals. 

The use of difference-Sargan test leads to a conclusion that SYSGMM estimator is 

superior over FDGMM in models 18 and 22, that is models based on assumptions of strict 
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exogeneity and endogeneity of GDP per capita, respectively. FDGMM is a better estimator in 

model assuming predetermined GDP per capita variables. Specification 22, estimated with 

SYSGMM and assuming endogeneity of lnGDP and inv_lnGDP is indicated by difference-

Sargan test as superior over all other J-curve specifications. We obtain the statistically 

significant coefficients on lnGDP and inv_lnGDP variables ( 01   and 02  ) thus we 

conclude the resulting Gini-GDP per capita relationship has a shape of inverted J, as it is 

depicted in figure B.  

Model 22 indicates to the same set of statistically significant control variables as 

model 11 describing the U-shaped relationship. Unemployment rate and old-age dependency 

ratio both have a positive impact on income inequality in the EU countries. The rest of control 

variables: the share of self-employed, and persons employed in agriculture in total 

employment, the share of persons holding tertiary education in total population and trade 

openness do not influence income inequality. In the EU-15 country group (model 15) apart 

from the statistically significant J-shaped relationship between lnGini and lnGDP, income 

inequality is influenced by unemployment rate, old-age dependency ratio and trade openness, 

that is the same set of determinants as in the model 2. 
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Table 6. The estimates of the dynamic panel models for EU-27 – J curve 

 

 
strictly exogenous predetermined endogenous 

    
  FDGMM   SYSGMM   FDGMM   SYSGMM   FDGMM   SYSGMM   WG   OLS   

 
model 17 

 
model 18 

 
model 19 

 
model 20 

 
model 21 

 
model 22 

 
model 23 

 
model 24 

 
lagged Gini -0.14802 

 
0.56592 *** 0.43106 *** 0.57251 *** 0.42075 *** 0.56963 *** 0.41510 *** 0.85180 *** 

lnGDP 0.80365 
 

2.15527 *** 2.43543 *** 1.04829 *** 2.47058 *** 0.66707 ** 0.71860 
 

0.03720 
 

inv_lnGDP 118.86010 * 237.62550 *** 261.96240 *** 116.14190 *** 264.95620 *** 71.61200 ** 94.72750 * 2.34010 
 

selfemp -0.00149 
 

0.00396 * 0.00164 
 

0.00376 *** 0.00159 
 

0.00254 
 

-0.00440 * 0.00020 
 

depend 0.00942 ** 0.00477 * 0.00182 
 

0.00653 *** 0.00189 
 

0.00726 *** 0.00340 
 

0.00220 *** 

unemp 0.00358 * 0.00098 
 

0.00342 ** 0.00156 
 

0.00349 ** 0.00226 ** 0.00320 *** 0.00180 *** 

school 0.00337 ** 0.00243 * 0.00220 
 

0.00180 * 0.00220 
 

0.00108 
 

0.00220 * 0.00050 
 

open 0.00066 ** -0.00010 
 

0.00032 
 

-0.00001 
 

0.00033 
 

-0.00002 
 

0.00030 
 

0.00002 
 

agr -0.00936 
 

-0.01393 
 

-0.01469 ** -0.00446 
 

-0.01446 ** -0.00137 
 

-0.00750 * 0.00070 
 

constant 
  

-43.76436 *** 
  

-20.67356 *** 
  

-12.41235 * -14.41120 
 

-0.12340 
 

no of instr. 17 
 

27 
 

33 
 

63 
 

33 
 

61 
     

Sargan 13.877 
 

23.6182 
 

24.7135 
 

69.1786 
 

25.5332 
 

57.3528 
     

p-value 0.085 
 

0.130 
 

0.422 
 

0.067 
 

0.377 
 

0.251 
     

diff-Sargan 
  

9.7412 
   

44.4651 
   

31.8196 
     

p-value 
  

0.3718 
   

0.0331 
   

0.2388 
     

AR1 (p-value) 0.7662 
   

0.0000 
   

0.0000 
       

AR2 (p-value) 0.8776 
   

0.6025 
   

0.6135 
       

 

Note: ***,**,*: 1%, 5% and 10% statistical significance respectively. 

Source: own calculations. 
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Conclusions 
 

Empirical evidence on the relationship between income inequality and the level of economic 

development measured by GDP per capita has been mixed.  Recent studies based on data 

from periods including the end of the twentieth century and the beginning of the present 

century seem to contradict the traditional theory of Kuznets which predicts the inverted U-

shaped relationship. In case of many developed countries income inequality has not been 

declining and has not followed the trend predicted by the inverted U-curve.  

Our results do not support Kuznets hypothesis. We confirm the U-shaped rather than 

inverted U-shaped relationship between Gini index and GDP per capita in EU-27. It also 

follows from our analysis that our data cover the descending part of the U, that is a shape of 

inverted J. Static model estimate results show that the above statistically significant 

relationships are also present in EU-15 countries. In case of country group EU-12 we provide 

no evidence of Kuznets-type relation, however we find a significant negative relationship 

between lnGini and lnGDP. We conclude that dynamic panel models are a better tool for 

describing Kuznets type relationship than static ones – in all specifications the lagged 

dependent variable proved statistically significant. We also find that the model assuming 

endogeneity of GDP per capita variable best describes the relationship between income 

inequality and income per capita. We conclude that SYSGMM estimator is superior over 

FDGMM in models based on assumptions of strict exogeneity and endogeneity of 

independent variables. Summing up, J-shaped specification estimated with System 

Generalized Method of Moments and assuming endogeneity of lnGDP and inv_lnGDP is 

indicated as superior over all other models we examine in the article. The statistically 

significant coefficients on lnGDP and inv_lnGDP variables and their signs show that the 

resulting Gini-GDP per capita relationship has a shape of inverted J.  

The level of economic development is not the only factor influencing the dispersion of 

income. In both models: U- and J-shaped the same set of control variables proves statistically 

significant. Unemployment rate and old-age dependency ratio both have a positive impact on 

income inequality in the EU-27 countries. Other variables: share of self-employed, employed 

in agriculture in total employment, the share of population holding a university degree and 

trade openness do not have statistically significant impact on Gini index. Positive relation 

between unemployment rate and income inequality is not surprising taking into consideration 

that the equivalent disposable income before social transfers, we use in our analysis, is mostly 

employment related income. The higher share of persons receiving no employment related 

income in economically active population the greater income inequalities. Also, the 

significant positive impact of the percentage of older population in total population on income 

inequality could have been expected. High share of pensioners in a society means that 

proportionally large number of individuals receive relatively small pensions as compared to 

wages of the economically active majority. 

Analysis of the differences in country groups, based on static panel models, leads to 

the conclusion that unemployment rate is the only control variable which significantly 

influences income inequality in both, EU-15 and EU-12. In “old” member states income 

inequality is also positively related to old-age dependency ratio and trade openness, while in 

EU-12 it is negatively influenced by the share of self-employed in total employment and 

positively related to the share of population holding university degree. The finding that the 

share of exports and imports in GDP which served as a proxy of the degree of 

internationalization of the economies positively influences income inequalities in EU-15 

countries, not in EU-12 group, confirms our expectations that international specialization and 

foreign trade has more significant impact on incomes in high-wage countries. Greater imports 

from low labour cost countries can put downward pressure on incomes of unskilled 
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employees in high-wage countries. Moreover, in developed countries exports can be seen as 

beneficial for well earning highly skilled employees rather than the low-skilled. It is more 

difficult to explain the negative relationship between the share of self-employed and income 

inequalities in the “new” member states. One could expect, however, that the higher incidence 

of forced self-employment in Eastern Europe, where this form of employment frequently 

substitutes a regular employment contract, but also is an alternative for being unemployed, 

leads to smaller income inequalities, as it improves incomes of individuals who are less likely 

to find and maintain employment. Positive impact of the share of individuals with tertiary 

education on income inequality in EU-12 can result from relatively small percentage of highly 

educated individuals in these countries or it can follow from particularly high returns to 

education. Further research on the determinants of income inequality should address these 

issues. 
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