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We investigate the electronic and transport properties of gated bilayer graphene with one corru-
gated layer, which results in a stacking AB/BA boundary. When a gate voltage is applied to one
layer, topologically protected gap states appear at the corrugation, which reveal as robust trans-
port channels along the stacking boundary. With increasing size of the corrugation, more localized,
quantum-well-like states emerge. These finite-size states are also conductive along the fold, but
in contrast to the stacking boundary states, which are gapless, they present a gap. We have also
studied periodic corrugations in bilayer graphene; our findings show that such corrugations between
AB- and BA-stacked regions behave as conducting channels that can be easily identified by their
shape.

PACS numbers: 73.63.-b, 72.80.Vp

I. INTRODUCTION

The distinctive electronic properties of monolayer
graphene can be modified by stacking more graphene
layers on top [1, 2]. For instance, Bernal (also called
AB-stacked) bilayer graphene (BLG) shows a parabolic
dispersion relation at low energies, and a gap can be
opened by the external electric field applied perpendic-
ular to the system [3, 4]. Although the experimentally
obtained energy gaps are moderate, such a gap opening
is impossible in monolayer graphene or bilayer graphene
with other stackings, so it is of great importance for mak-
ing electronic devices based on graphene. Interestingly,
experimental results indicate that the transport gap in
Bernal-stacked BLG is smaller than the optical one [5–
7]. There is a substantial dispersion of the gap values,
depending on whether the sample is suspended or not,
and in the latter case, the type of substrate employed.
In fact, even for zero bias some samples showed a trans-
port gap [8–11], while others presented a metallic be-
havior [12–14]. Many-body effects have been invoked to
explain such differences [8, 15]; however, another plausi-
ble explanation has arisen recently, namely, the existence
of stacking boundaries in bilayer graphene.

In monolayer graphene, domain walls can be atomi-
cally sharp, consisting on grain boundaries made of topo-
logical defects with associated edge states [16–18]. These
grain boundaries have been extensively studied in mul-
tilayer graphene [19, 20] and even in carbon nanotubes
[21]. In BLG, boundaries composed of topological defects

also occur [22–24], but domain walls can as well consist
of a stacking dislocation between AB and BA regions
(equivalent to the so-called AB-AC boundaries). Such
structures have been experimentally identified by various
techniques, evidencing their ubiquity in bilayer graphene
[22, 25–27]. In contrast to boundaries made of topo-
logical defects, stacking boundaries are not atomically
sharp. They can appear as strained regions, which pro-
duce a gradual transition between AB and BA-stacked
graphene. The connection between the two stacking re-
gions can take place in different forms: not only by ten-
sile or shear strain, but also by corrugations of one of
the layers [28–31]. The reversal of stackings has signifi-
cant influence on the electronic transport, it lowers the
conductance between the AB and BA regions and leads
to the appearance of the topologically protected states
localized in the transition region.

Indeed, gapped bilayer graphene has been recently pre-
dicted to be a quantum valley Hall insulator [30, 32, 33].
It can have chiral edge states associated to the two val-
leys propagating in opposite directions, which are topo-
logically protected if valley mixing is precluded. These
robust states were predicted to appear in electric-field
domain walls [32], where two regions differ in the sign of
the applied voltage; however, these systems are not easy
to implement experimentally. In fact, they are equivalent
to an AB/BA stacking boundary, as those produced in
strained bilayer graphene with a uniform applied voltage,
which also show these robust gapless states [29–31, 34].
Stacking boundaries have been experimentally observed
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[22, 25, 31] and there is recent evidence of the existence
of topologically protected states in them [27].

Ripples or corrugations in single layer graphene were
theoretically predicted to appear as a consequence of
thermal fluctuations [35], and have been observed with
transmission electron microscopy [36, 37]. These ripples
can lead to interesting electronic [38–40], magnetic [41],
and chemical properties [42], mostly due to the associated
charge inhomogeneity and the changes in hybridization.
In fact, folding graphene has been put forward as a way
to modify its properties [43–45]; also, folded ribbons have
been proposed as graphene-based electronic connectors
between edges or graphene layers [46]. All these schemes
are pointing to a novel path to tune the characteristics
of graphene-based systems, giving rise to the so-called
”origami” graphene [43, 44, 47].

Folds, corrugations and wrinkles can also appear on
top of multilayer graphene [36, 48]. This type of extended
defect may lead to a stacking boundary between the two
sides of the fold. Contrary to boundaries produced by
shear and tensile strains, the transport properties of cor-
rugated bilayer graphene with a stacking boundary have
not been yet investigated so thoroughly as in the strained
bilayer.

x 

y 

AB BA fold 

NB 

NT 

A1 B1 
A2 B2 

FIG. 1. (Color online). Top and side view of bilayer graphene
with an AB/BA stacking boundary due to a corrugation of the
upper layer. The stacking change from AB to BA is clearly
visible in the top view. The side view below shows the geom-
etry chosen for the corrugation or fold, namely, half a nan-
otube. NB and NT are the lengths given in the number of
unit cells of the bottom and top layer at the fold.

In this paper we consider stacking boundaries in bilayer
graphene produced by a fold or corrugation of the top
layer. Such defect can be modeled as half a nanotube
protruding from the plane of the upper layer (see Fig.
1), seamlessly joined to the upper semiinfinite graphene
planes.

In order to elucidate its electronic and transport prop-
erties, we first study the one-dimensional (1D) case, i.e.,
a fold in a metallic armchair bilayer nanoribbon. Then,
we describe AB/BA stacking boundaries in the two-
dimensional (2D) case, namely, a corrugation in bilayer
graphene. Interestingly, we observe a drop of the conduc-
tance through the corrugation in the un-gated system.
We attribute this conductance gap to the symmetry un-
der the simultaneous exchange of layers and sublattices.
By applying a gate voltage to the bottom layer, energy

gaps open and a series of localized states appear in the
gap. The states are mostly localized around the fold, al-
though they extend appreciably into the leads, decaying
with an oscillatory behavior. In many cases the absolute
maximum of the local density of states (LDOS) takes
place outside the corrugation. We distinguish between
valley-polarized topological states, originating from the
stacking change, and eigenstates due to the finite size of
the corrugation. We find that the states localized at the
corrugation do not contribute to the conductance across
the boundary, but constitute perfect conductance chan-
nels along this fold, in agreement with recent experimen-
tal measurements [27].

II. GEOMETRY AND MODEL

A. Geometry

In order to fix the notation, we refer to AB stacking
when the A site from the bottom graphene layer, A1,
lies exactly below the B2 site of the top layer. Likewise,
BA stacking corresponds to the B1 site lying below the
A2 (see Fig. 1). The connection between AB and BA-
stacked regions needs a deformation of the lattice. Here
we consider the stacking boundary to consist of a corru-
gated region, as it is shown in Fig. 1. The central part
connecting the two perfect AB and BA-stacked regions
consists of two graphene layers, one of them longer, cre-
ating a fold. Because of the graphene lattice symmetry,
this kind of stacking boundary can be created in a sim-
ple way by connecting layers in AB and BA systems at
a zigzag line. Thus, the fold can be easily modeled as a
portion of an armchair nanotube; the bottom layer be-
low the fold is a piece of flat zigzag ribbon seamlessly
connected to the bottom layer of the leads. If we assume
that the bilayer is situated on a substrate, the most nat-
ural configuration would have a flat bottom layer. The
sizes of the bottom and top layers in the stacking bound-
ary (the central part), NB and NT , are given in terms of
the translational unit cell in the x direction. For a given
NB value we choose a larger NT length which allows for
the change of stacking. As mentioned above, this extra
length should naturally accommodate as a fold.

B. Model and method

We use a one-orbital tight-binding (TB) Hamiltonian
to describe the system. We assume uncoupled layers in
the fold. Only the nearest-neighbor hopping parameter
γ0 = −2.66 eV is considered, and set the on-site energy
ε0 = 0. The bilayer leads with Bernal stacking are de-
scribed by HL,R = H1 +H2 +H12, where H1 and H2 are
the single-layer Hamiltonians corresponding to the bot-
tom and top layer and the interlayer Hamiltonian H12

connects only those atoms which are on top of each other.
The interlayer hopping parameter is taken as γ1 = 0.1γ0.
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We consider that the gate voltage V is applied only to the
bottom layer, as it would be in a reasonable experimental
setup.

Since the system with a single corrugation has no
translation symmetry in the x direction (perpendicular
to the fold, see Fig. 1 ), we compute the LDOS and the
conductance using the Green function matching method.
The total Hamiltonian of the system can be written as
[21, 49, 50]:

H = HL +HR +HC + VLC + VRC , (1)

where HL and HR are the Hamiltonians of the left (L)
and right (R) leads, respectively. HC is the Hamiltonian
of the conductor in central part of the system. In our case
it is the region of the corrugation: the fold composed by
half a nanotube plus a flat piece of graphene below, VLC
and VRC are the connections of the central part to the
left and right lead, respectively. The Green function of
the central C part is a function of the energy E:

GC(E) = (E −HC − ΣL − ΣR)−1 (2)

where ΣL = VLCgLV
†
LC and ΣR = VRCgRV

†
RC are the

self-energies of the leads with gL,R being the Green func-
tions of the leads.

We calculate the conductance G using the Landauer-
Büttiker formalism,

G(E) =
2e2

h
T (E) =

2e2

h
Tr[ΓLGCΓRGC ], (3)

where T (E) is the transmission function from the left

lead to the right one and ΓL,R = i[ΣL,R−Σ†L,R] describe
the couplings between the conductor and the L, R leads.

To study the spatial distribution of the states and their
energy dependence, we draw on the complex band struc-
ture of the semiinfinite bilayer graphene leads [51–53],
where the complex values of the k wavevectors can be
related to the decay lengths of such states. It is a tool
successfully used for the analysis of the decay lengths of
localized states in bulk systems [54–56], linear periodic
molecules [57], as well as in graphene [58]; recently it has
also been applied to topological insulators [59, 60]. Here
we additionally employ it to explain the oscillations of
the corrugation-confined states.

III. CORRUGATED BILAYER GRAPHENE
NANORIBBONS

From both, the computational and the conceptual
viewpoint, it is easier to address in the first place the
properties of the 1D system, that is, a bilayer graphene
nanoribbon with a wrinkle or corrugation in the top layer.
Such ribbon can be considered as a strip of 2D bilayer
graphene with a corrugation. Since we chose the zigzag
direction to be parallel to the corrugation, this implies
that the finite-size ribbon cut perpendicularly to this fold

should be of the armchair type, as show in Fig. 1. As we
are interested in the transport properties, we select the
widths so that the bilayer nanoribbon leads are metallic
at zero gate voltage. The width W of the ribbon is given
in terms of the translational unit cell in the y direction.
The ribbons constituting the bilayer are assumed to have
minimal armchair edges and a perfect vertical stacking,
as the one depicted in Fig. 1. This is the so-called α-
stacking in the literature [40, 61, 62].

A. Conductance drop around EF at zero bias

In Fig. 2 we show the results for a bilayer ribbon
of width W = 4 with a fold. We consider two differ-
ent corrugations, NB = 6, NT = 10 in panel (a) and
NB = 14, NT = 23 in panel (b), in the absence of gate
voltage. In the energy range |E| < γ1 we observe a con-
ductance drop, more dramatic in the case of the smaller
corrugation. In fact, the maximum value of the con-
ductance and the number of maxima in |E| < γ1 in-
creases with the difference between the fold layer lengths
|NT −NB |.

The conductance drop appears although both leads as
well as the central part are metallic. To understand this,
we should consider the spatial distribution of the scat-
tering states, i.e., those in the left and right leads. Obvi-
ously, both leads, bilayer nanoribbons with AB and BA
stacking, have exactly the same band structure, shown in
Fig. 2 (c). However, recall that their spatial distribution
in the energy range |E| < γ1 is in the uncoupled nodes,
these being B1 and A2 sites in the AB stacking and A1
and B2 sites in the BA case [1, 63]. We indicate this
spatial distribution with open circles in the band struc-
ture (Fig. 2 (c)). The localization in opposite sublattices
is the reason behind the conductance drop. Indeed, the
longer the corrugation length, the larger the conductance
in this energy region, as discussed above. This points to
a symmetry related to the simultaneous exchange of sub-
lattices and layers, broken in the presence of a fold.

We have calculated an ideal abrupt AB/BA boundary,
without any extra atoms for the fold, just by connect-
ing directly an AB and a BA bilayer nanoribbon. If the
hoppings across the boundary are kept equal, then the
conductance gap is perfect, due to the existence of the
aforementioned symmetry: such idealized boundary is
invariant under an exchange of sublattices and layer po-
sition. If the hoppings at the boundary are modified, the
symmetry is broken and a small nonzero conductance is
observed in the gap. Likewise, adding more atoms in a
folded layer or changing the hoppings in a strained pla-
nar boundary makes the conductance increase due to the
larger symmetry breaking.
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(b) (a) 
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NT=10 

NB=14 

NT=23 

(c) 

FIG. 2. (Color online). Conductance of two bilayer ribbons
with the width W = 4 and two different fold lengths: (a)
NB = 6, NT = 10, (b) NB = 14, NT = 23. The red line shows
the conductance of the infinite bilayer ribbons acting as leads.
Panel (c) shows the band structure close to the Fermi level of
a bilayer ribbon with Bernal stacking. Open circles indicate
that the corresponding states are localized on disconnected
sublattices, i.e., B1 and A2 sites for AB stacking and A1 and
B2 sites in the BA case.

B. Gap-localized states in biased folded ribbons

We consider a gate voltage V uniformly applied to the
entire bottom layer, i.e., to both leads and the central flat
part lying below the fold (Fig. 3). With respect to the
leads, it is well-known that the voltage opens a gap and
changes the shape of the bands to a “Mexican hat”-type
dispersion [3, 4]. Fig. 3 (c) shows the band structure
of the bilayer leads with V = 0.3 V, with a gap in the
energy range 0.05 < E < 0.25 eV. For small k values the
valence and conduction band states are still localized on
uncoupled sites (indicated in the Figure with open cir-
cles), similarly to the V = 0 case. However, due to the
“Mexican hat” dispersion, there are two channels avail-
able at low energies, and the second one is extended to
the coupled sublattices as well, indicated by filled circles
in Fig. 3 (c).

Figs. 3 (a) and (b) show the LDOS and conductance
of a biased (V = 0.3 V) bilayer ribbon of width W = 4
and corrugation with NB = 6 and NT = 10. The LDOS
is summed over all the nodes of the central part which
constitutes the corrugation. We observe a series of LDOS
peaks; some of them appear in the nonzero conductance
region and give rise to antiresonant conductance drops
whereas in the conductance gap ranging from 0.05 eV
to 0.25 eV we find two peaks at energies E1 = 0.081
eV and E2 = 0.2 eV. The number of localized states
in the gap is equal to two only for small NB and NT .
Increasing the length of the fold leads to the appearance
of more localized states. These gap peaks correspond to

(b) (c) (a) 

FIG. 3. (Color online). (a) LDOS and (b) conductance of a bi-
layer corrugated ribbon with a V = 0.3 V gate voltage applied
to the bottom layer. The width of the ribbon is W = 4 and
the folded region lengths are NB = 6 and NT = 10. The red
line in (b) shows the conductance of the infinite bilayer leads
with the same bias. (c) Band structure of the infinite bilayer
ribbons which constitute the leads. Open circles indicate that
the corresponding states are localized on disconnected sublat-
tices, whereas filled circles indicate states with weight in any
sublattice.

the quantization of the topological boundary states which
appear in the 2D corrugated bilayer graphene. The origin
and properties of the localized states can be analyzed
more easily resorting to the 2D case (see Section IV).

C. Spatial distribution of the localized states

The two states appearing in the gap that we described
in the previous Subsection are produced by the change
of stacking across the boundary and should be localized
therein. To corroborate this, we analyze their spatial
distribution. We focus on one of the localized states,
that with E1 = 0.081 eV found in the corrugated W = 4
ribbon with a folded region of NB = 6 and NT = 10.
Figure 4 (a) shows the LDOS distribution in the fold
and in the adjacent regions of the leads; the radii of the
circles are proportional to the LDOS. The color indicates
the layer where the LDOS is evaluated (bottom - red, top
- blue). In order to elucidate the distribution in layers
and sublattices, we present in Fig. 4 (b) the LDOS at
the bottom (red dots) and top (blue dots) layers, and in
Figs. 4 (c) and (d) we show how the state is distributed
in the A and B sublattices, respectively.

Being a stacking boundary state, it is mostly localized
at the central part which constitutes the corrugation. We
find that the maximum of the LDOS is not always lo-
cated in the corrugation region, but instead, it may have
its maximum value in the adjacent cells to the stacking
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boundary, extending appreciably into the leads. Recall
that for this energy range, bulk lead states are located
in the uncoupled sublattices of the bilayer, which are re-
versed in AB and BA stacking. We verify that indeed,
this localized state is also mostly located in the uncou-
pled sublattices far from the fold. As they are reversed at
opposite sides of the boundary, they must exchange from
one to the other in the corrugation region. Such lattice
swapping is most evident in Figs. 4 (c) and (d).

The wavefunction of the localized state decays moving
away from the corrugation, but with an oscillatory be-
havior. This oscillation, visible in the LDOS separated
by layers, is even clearer when plotted for different sublat-
tices. The oscillations in the top and bottom layers of the
leads are in antiphase, but obviously with the same oscil-
lation period and decay constant. These can be obtained
from the complex band structure of the leads [51]. The
idea is to allow the wavevectors k to have complex val-
ues. These analytic extensions stem from the extrema of
the real band structure and the corresponding wavevec-
tors describe the decay and oscillations of the interface or
boundary states lying in the energy gap. It can be con-
sidered as solving the Hamiltonian eigenvalue problem
for a fixed energy inside the gap, so the solutions yield
the complex wavevectors. In fact they can be obtained
more easily from the transfer matrix formalism [52, 53].

For the state shown in Fig. 4 we can directly extract
from the LDOS behavior the spatial frequency of the os-
cillations, ω = 0.044 and the decay constant α = 0.125,
assuming that the LDOS ∝ cos2(ωx) e−αx. From the
complex band structure, we get ω = Re(k)/π = 0.044
and α = 2 Im(k) = 0.118, which compare rather well to
the fitted values. The unit length in the previous quanti-
ties is the BLG nanoribbon unit cell size. As these com-
plex wavevectors are the analytical continuation from the
gap at the K points, with nonzero values, they have a real
component which gives rise to the oscillations.

Notice that, since the bilayer leads are the same in
any AB/BA boundary, irrespectively of the particular
geometry of the transition region, we can expect the same
oscillating behavior in other types of stacking boundaries,
such as those produced by strained bilayer regions [30].

We have verified that the numerical agreement between
the fitted values and those extracted from the complex
band structure is excellent in other states with sharper
oscillations produced by higher values of V .

The second gap-localized state with E2 = 0.2 eV is
also distributed mainly at the corrugation. However, it
is more strongly localized at the uncoupled nodes of the
bottom layer than E1. Its behavior is approximately as
that of E1 exchanging the top and bottom layers and the
A and B sublattices simultaneously.

IV. CORRUGATED BILAYER GRAPHENE

We consider now the 2D bilayer graphene with either
one isolated stacking boundary, or with periodically re-

A subl. 

B subl. 

(b) 

(c) 

(d) 

(a) 

FIG. 4. (Color online). Spatial distribution of the localized
state with energy E1 = 0.081 eV found in the corrugated bi-
layer ribbon of width W = 4 and corrugation given by NB = 6
and NT = 10. (a) Atom-resolved LDOS; the circles plotted on
each node have radii proportional to the corresponding LDOS
values. Red and blue colors indicate that the node belongs
to the bottom and top layers respectively. (b) Unit-cell aver-
aged LDOS at the bottom (red) and the top layer (blue); the
zero labels mark the limits of the stacking boundary. (c,d):
Unit-cell-averaged LDOS at both layers (red - bottom; blue
- top), plotted separately for (c) A and (d) B sublattices; in
these two latter panels, open circles indicate that the LDOS
is located at unconnected nodes.

peated folds. The orientation of the fold is as described
in Sec. II A, namely, along the zigzag direction. Thus,
the flat bilayer and the corrugation have translational
symmetry in the y direction.

In 2D systems, we can consider two different geome-
tries to evaluate the conductance: either perpendicular
to the stacking boundary or along it. We start with the
same configuration as for the nanoribbons, that is, trans-
port perpendicular to the corrugation. We will next ex-
amine a periodically repeated fold in order to elucidate
the conductance along the corrugations.

A. Single fold in bilayer graphene

We first consider a 2D graphene bilayer with one cor-
rugation. Like in the finite ribbons, we take the current
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to flow perpendicularly to the fold. In this sense, the flat
bilayers act as leads.

Figure 5 shows the conductance between the bilayer
leads and projected LDOS [64] at the corrugation as func-
tions of k and E, with and without gate voltage. The
corrugation lengths are NB = 6 and NT = 10, and the
LDOS(E, k) is summed over all nodes in the unit cell of
the fold. The results are shown for k ≥ 0. As we con-
sider the current flowing from the left to the right lead,
we focus on the Dirac cone at positive k stemming from
K’ of the reciprocal graphene lattice. Negative k values
are therefore related to K, which is its mirror reflection in
the present geometry. The only difference is thus the sign
of the carriers’ velocity. Comparing the plots on Figs. 5
(a) and (c), with V = 0 and V = 0.3V respectively,
we observe the expected energy shift of the conductance
and LDOS as well as the appearance of the conductance
gap due to the voltage. This gap opening can be also
seen in the corresponding LDOS(E, k) plot (Fig. 5 (d)).
More importantly, we have two bands crossing the gap
and connecting the two bulk continua when V is applied,
which constitute two localized states in the corrugation
of topological origin due to the change from AB to BA
stacking. These states are valley-polarized; they give no
contribution to the conductance for this current direc-
tion, but will carry a valley-polarized current along the
fold.

Figure 6 shows the LDOS for two instances of large cor-
rugations in bilayer graphene, NB = 14, NT = 23 (panel
(a)) and NB = 30, NT = 48 (panel (b)). With increasing
NB and NT , we observe the appearance of more bands
in the gap. Differently to the stacking boundary bands
of topological origin, which cross the gap, they start and
end in the same cone (upper or lower). These bands cor-
respond to the eigenstates of the two finite layers compos-
ing the corrugation region. They are quantum-well-like
states arising from the finite-size effect imposed by the
change from the bilayer regions to two uncoupled mono-
layers of different size.

Figure 6 (c) is a zoom of the LDOS shown in Fig. 6
(b), for a corrugation given by NB = 30 and NT = 48.
The successive crossings and anticrossings of these local-
ized bands indicate the existence of two types of symme-
try, labeled as S1 and S2. The topological states have
the same type of symmetry (S1 with asterisk), while the
quantum-well-like states appear with S2 and S1 alter-
nately. In order to elucidate these symmetries, we have
calculated the wavefunctions of a related periodic system
- a BLG with a periodic corrugation of the same charac-
teristics. We find that S1 states have horizontal (along
the x direction) nodal surfaces in the corrugation, while
S2 states have also vertical nodal surfaces.

Figure 6 (d) shows the same bands from panel (c),
now distinguishing between bottom (red) and top (blue)
layer localization. There is a remarkable exchange of lo-
calization between layers at the anticrossings, due to the
hybridization between these bands.

(b) 

(d) 

(a) 

(c) 

G (2e2/h) ln(LDOS) 

FIG. 5. Conductance between leads (left panels) and LDOS
at the corrugation (right panels) for the NB = 6, NT = 10
case as functions of the energy E and wavevector k; (a) and
(b) are without gate voltage; (c) and (d) with V = 0.3V
applied to the bottom layer. Notice that the LDOS scale is
logarithmic.

Folded ribbons from discretizing 2D corrugated graphene

The analysis of bilayer graphene with a single fold al-
lows us to understand the size dependence of the gap
states appearing in the 1D ribbons described in the pre-
vious Section. In the same way that an armchair rib-
bon may be treated as a strip cut of the infinite plane,
we expect that the properties of the corrugated ribbon
with a particular width can be obtained by imposing the
proper quantization rules along the y direction to the 2D
LDOS(E, k) and G(E, k) calculated for the corrugated
bilayer graphene (Fig. 5). If a bilayer armchair ribbon
of width W is cut from a graphene bilayer oriented as in
Fig. 1, the corresponding wavefunctions should vanish
for y = 0 and y = (W + 1

2 )a, where a is the graphene
lattice constant. That gives us the quantization rule for
the ky vector, kq = qπ

(W+ 1
2 )a

, where q = 1, ...,W . Ac-

cording to this, for a particular W value, the LDOS of
the ribbon is the sum of LDOS for all kq calculated for
all the allowed q values. The same can be said for the
conductances. We can compare Fig. 2 with Fig. 5. For
V = 0 we observe the conductance drop when one of
the allowed kq values is equal to 2

3
π
a ; it would be a cut

of the 2D plot in Fig. 5 (a) through the middle of the
cone, yielding a low conductance as in Fig. 2 (a). After
applying this rule to the nonzero V case (see Fig. 3 (a)
with Fig. 5 (d)), we see the W dependence of the local-
ized states. Note that allowed k values include 2

3
π
a when

W = 3m + 1, which is always the case for the metallic
ribbons considered in this work. For narrow ribbons, the
energies of the gap-localized states for fixed NB and NT
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do not depend on W because they stem from 2
3
π
a . How-

ever, for W ≥ 25, there are other kq values which cross
the stacking boundary bands lying in the gap, giving rise
to more localized states whose energies do depend on W .

(b) (a) 

(d) 

ln(LDOS) a-c: 

(c) 

S2 

S1* 

S2 

S1 
S2 

S1 S1* 

ln(LDOSB/LDOST) d: 

FIG. 6. LDOS as a function of the energy E and wavevector
k at the corrugation, summed over all its nodes, for two large
instances: (a) NB = 14, NT = 23 and (b) NB = 30, NT = 48.
Because of the large values of the LDOS at the localized
states, the LDOS scale is logarithmic. (c) Zoom of the gap
states presented in (b), with two types of symmetries marked
as S1 and S2 (topologically protected states market with
the asterisk). (d) Layer-resolved LDOS of the same system,
ln(LDOSB/LDOST ), plotted only when LDOSB+LDOST is
larger that a threshold value 10−3.

B. Periodic corrugations in bilayer graphene:
conducting topological states

We have already seen how the conductance through
the corrugation is lowered due to the stacking change,
and explained this reduction. We have also proven that
gap states give no contribution to the current perpendic-
ular to the fold. However, we expect these states to be
conducting along the corrugation. In order to verify this,
we consider a bilayer graphene with periodic corrugations
separated with long Bernal stacking regions (AB and BA
alternately) of size d in translational BLG unit cells along
the armchair direction x. We calculate the conductance
in the y direction. For this system and transport setup,
the conductance is a function of the wavevector in the x
direction, kx. As we are interested in the current flowing
along the corrugation, we take kx = 0. This assump-
tion implies that the current is measured with a local
probe that makes the contribution of other scattering di-
rections negligible. In the energy range around Fermi
level we expect four conductance quanta (G0 = 2e2/h),

as we have two corrugations in the unit cell, each hav-
ing two topologically protected states. Fig. 7 shows
the conductance for a corrugated bilayer graphene plane
with V = 0.3 V with two different periodic corrugations.
Close to the Fermi level we always have four conductance
quanta, which are valley-polarized. Increasing the size of
the corrugation and the distance between them, there is
a general rise of the conductance related to the increas-
ing number of bands. However, around the Fermi level
the conductance is always equal to four G0. This is due
to the fact that the topologically protected states are the
only ones crossing EF . In a transport experiment, it is
possible to employ a probe that contacts only one corru-
gation; in such a case, the conductance close to EF in a
gated system would be at most two conductance quanta
belonging to a single valley.

(b) (a) (c) 

FIG. 7. Conductance of periodically corrugated graphene bi-
layers with gate voltage V = 0.3 V with periodic corrugations.
(a) NB = 6 and NT = 10, separated with d = 5 unit cells; (b)
NB = 6 and NT = 10, separated with d = 10 unit cells; (c)
NB = 14 and NT = 23 separated with d = 10.

V. SUMMARY

We have explored the electronic and transport proper-
ties of bilayer graphene and the corresponding metallic
graphene nanoribbons with an AB/BA stacking bound-
ary composed of a corrugation. We have shown that the
transition between AB and BA zigzag-ended stackings
can take place a fold formed by half a nanotube and a
nanoribbon.

Without an external gate voltage, these systems are
gapless, but present a conductance gap due to the sym-
metry mismatch related to the simultaneous exchange of
sublattices and layers. The application of a gate voltage
produces the appearance of gap states at the corruga-
tion which are topologically protected in the absence of
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intervalley mixing.
For larger folds, more localized states appear at the

corrugation, that we relate to quantum-size effects.
These states are gapped, contrarily to those stemming
form the change of stacking. We have analyzed the
spatial dependence and transport properties of all these
corrugation-localized states, verifying their oscillatory
decay far from the corrugation, that we have related to
the complex band structure of the bilayer regions.

Finally, we have shown that these states are conductive
along the folds, constituting robust conductance channels
that can be easily identified by their geometry, being ex-
tended folds or corrugations across bilayer graphene re-

gions.
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