5th International Scientific Conference on Pervaporation, Vapor Permeation and Membrane Distillation

20th – 23rd June 2017

Programme Booklet

Edited by: Wojciech Kujawski & Edyta Rynkowska
ISBN: 978-83-231-3846-4

Wydawnictwo Naukowe UMK, 2017

Printed and bound by Printing House of Wydawnictwo Naukowe UMK (Drukarnia Wydawnictwa Naukowego UMK)

Authors are fully responsible for the content of the abstracts.
No technical nor language corrections were made during editing.
5th International Scientific Conference on Pervaporation, Vapor Permeation and Membrane Distillation – Toruń 2017

Nicolaus Copernicus University in Toruń
Faculty of Chemistry NCU in Toruń
Chair of Physical Chemistry and Physicochemistry of Polymers
The Association for the Development of the Faculty of Chemistry at the Nicolaus Copernicus University in Toruń
Polish Membrane Society
European Membrane Society
Czech Membrane Platform

ORGANISING COMMITTEE

Chairman
Wojciech Kujawski

Vice-Chairmen
Vladimir V. Volkov
Miroslav Strnad
Stanisław Koter

Conference Secretariat
Joanna Kujawa (Webmaster)
Polina Vakuliuk
Katarzyna Knozowska
Ewa Olewnik-Kruszkowska
Edyta Rynkowska
Julia Szczerbińska

Address
Faculty of Chemistry NCU in Toruń
7, Gagarina Street
87-100 Toruń / POLAND
Phone: +48 56 611 43 15
 +48 56 611 43 18
Fax: +48 56 654 43 15
Email: wojciech.kujawski@umk.pl
www: www.pv.chem.umk.pl
Separation of Water-Alcohol Mixtures with Montmorillonite Modified Chitosan and Chitosan/Polyvinyl Alcohol Membranes

Ewelina Chrzanowska1,*, Magdalena Gierszewskal, Ewa Olewnik-Kruszkowskal

1Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
*ewelinachrzanowska@gmail.com

Keywords: Chitosan, Poly(Vinyl Alcohol), Nanocomposites, Pervaporation, Dehydration

The research that revealed enhancements of many materials properties by mixing them with appropriately modified clay minerals (e.g. montmorillonite, MMT) and synthetic clays was a key moment in polymer/silicate nanomaterials development. Polymeric nanocomposites broaden fields of applications of polymeric materials. Among others, biodegradable polymer-based nanocomposites exhibit a big potential for their applications as high-performance materials, also as a membranes in different separation techniques [1, 2].

Data given in a literature indicate the opportunity to replace synthetic polymers with natural ones in membrane separation processes. For this purpose, chitosan is one of the widely investigated natural polymers. Chitosan is a linear polysaccharide composed of β-(1→4)-2-amino-2-deoxy-D-glucopyranose and β-(1→4)-2-acetamido-2-deoxy-D-glucopyranose (Fig. 1a). It can also be presented as a homopolymer of β-(1→4)-2-amino-2-deoxy-D-glucopyranose [3]. In some cases highly hydrophilic poly(vinyl alcohol) (Fig. 1b), biodegradable synthetic polymer, can be used to enhance hydrophilic properties of new membrane.

Figure 1. Chemical structures of (a) chitosan and (b) poly(vinyl alcohol)

In the present study new chitosan and chitosan/ montmorillonite membranes crosslinked with glutaraldehyde (Ch/GA and Ch/MMT/GA) as well as chitosan/MMT/poly(vinyl alcohol) nanocomposite membranes (Ch/PVA/MMT) were obtained by dissolution and solvent evaporation technique. The structure and morphology of the new materials were determined using atomic force microscopy (AFM), scanning electron microscopy (SEM), Fourier transform infrared
spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX) techniques. Changes in surface hydrophilicity were also characterized by contact angle measurements. The results showed that MMT is uniformly dispersed in the Ch/GA and Ch/PVA matrix. SEM micrographs revealed that obtained membranes are dense and non-porous with low surface roughness.

Separation properties of membranes in pervaporative dewatering of water/alcohol mixtures were examined. Two-component water/ethanol and water/isopropanol solutions of different composition were used. All pervaporation experiments were performed at 30°C. The nanocomposite Ch/PVA/MMT membranes exhibit better separation properties in comparison with Ch/GA and Ch/MMT/GA membranes in dewatering of both alcohols.

References