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We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions;
one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at
Fermi energy (Ey). The reconstructed junction has only one state near Ej, indicating that these localized states are related to the
octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an

antiferromagnetic system.

1. Introduction

Carbon nanotubes can behave as metals or semiconductors
depending on their geometry and diameter. In fact, small var-
iations on their geometry can lead to quite different electronic
characteristics. The possibility of joining different tubes has
been an early theoretical proposal [1-3], later experimentally
verified [4]. To achieve such junctions, topological defects
have to be introduced in the hexagonal carbon lattice.
Indeed, a large number of works have been devoted to
the study of electronic and transport properties of single
interfaces [5-7], double junctions [8], quantum dots [9], and
carbon nanotube superlattices [10, 11]. Junctions in such sys-
tems are usually realized by introducing pentagon/heptagon
(5/7) topological defects at interfaces between the nanotubes,
although other proposals involving different kinds of defects,
such as octagons, have also been made [12]. Interface states
appearing at nanotube junctions have been customarily
related to these topological defects. However, it has been
recently shown that such states do not originate from the 5/7
defects, but they are due to the edge-localized states, which
in turn originate from the zigzag edges of the joined tubes

[13, 14]. Octagons have been proposed as a means of pro-
ducing T- or Y-junctions, and they can also appear in the
connection between tubes of dissimilar radii [15-17].

Octagonal defects forming linear grain boundaries in
graphene and in carbon nanotubes have recently been the
focus of attention. Experimental works show that such grain
boundaries may act as quasi-one-dimensional metallic wires
[18]. These grain boundaries can also contain pentagon pairs,
but when they are built of octagons only, they lead to spon-
taneous magnetization [19]. We have theoretically shown
that the flat bands appearing at octagonal defect lines are
directly related to graphene edge states [14, 19].

In this paper we investigate the electronic and magnetic
properties of octagonal rings when they appear surrounded
by hexagons. We choose a junction between two zigzag nan-
otubes, namely, the (8,0)/(14,0) case. These tubes are joined
by two topological defects which are spatially separated: an
octagon and a pair of pentagons. If further we break the bond
shared by these two pentagons we will get another octagon,
which has two nodes with only two neighbors. We show that
these octagonal defects lead to state localization at the Fermi
energy.



2. System and Geometry

It is possible to create junctions between (2, 0) and (4n—-2, 0)
tubes (n > 1) by cutting obliquely the (2n,0) tube along a
diagonal zigzag direction and joining it to a straight-cut (4n—
2,0) nanotube. This produces a knee-shaped junction. We
choose n = 4, assuring that both tubes are semiconductors.
This simplifies the analysis of the zero energy states, which
will appear in the gap in these instances. The schematic
geometry of the (8,0)/(14,0) case is shown in Figure 1. The
oblique connection leads to the appearance of two topological
defects: one at the back of the knee and the other at the
kneecap. The first is a regular octagon (8R), with all its atoms
having coordination number 3; the second is either a pair of
pentagons or a nonregular octagon with two dangling bonds,
denoted as 8N. This junction can be considered as formed
by the connection of three parts, namely, a perpendicularly
cut (8,0) tube, a wedge (W) of this (8,0) nanotube, and a
straight-cut (14, 0) nanotube. The wedge part is shown in
Figure 1(a) as a shaded region, along with the detailed atomic
geometry of the defects. Figure 1(b) shows the connection
between the two tubes in a planar geometry, that is, their
unrolled unit cells and the flattened wedge. The edge atoms
are highlighted with filled and empty circles, which represent
the two atomic sublattices. Notice that a finite portion of an
(8,0) tube diagonally cut at both ends can be joined to two
(14,0) tubes. Such double junction has two mirror-symmetric
wedge parts, with complementary orientation. The periodical
repetition of this double junction yields a superlattice (SL), as
shown in Figure 1(c), where the boundaries of a possible unit
cell are indicated and the two wedges with mirror symmetry
are highlighted. We study both cases, namely, the single
junction depicted in Figure 1(a), where the outer tubes are
semi-infinite, and superlattices of different sizes.

3. Model and Computational Details

We use a one-orbital m-electron tight-binding (TB) model.
This approach has been extensively employed to calculate
the electronic properties of carbon-based systems around
the Fermi energy [10, 20]. The hopping parameter is chosen
to be t = -2.7eV. We have checked that the changes in
t induced by the defects amount to a negligible change in
the calculated energy spectra, in agreement with previous
calculations [19, 20].

In order to see the role of electron-electron interactions
in the zero-energy states, we compare the one-electron tight-
binding results with those including a Hubbard term. The
Hubbard Hamiltonian in a mean-field approximation is given
by [21]

H:thTc + H.c.
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where cL(c,-o) are the creation (annihilation) operators for
electrons with spin ¢ at site i; (i, j) indicates that the sum
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FIGURE 1: (a) Schematic diagonal junction between zigzag (8,0) and
(14,0) nanotubes. The shaded region is the wedge (W) part between
the two straight-cut tubes. The circles mark the positions of the
octagonal defects 8R and 8N. Their atomic structure is also shown.
(b) The junction showing all the edge atoms in the wedge and the
unrolled unit cells of the (8,0) and (14,0) tubes. Filled and empty
circles mark atoms of different sublattices. Dotted lines indicate
the connections between the edge atoms of the nanotubes and the
wedge. Short bold, red line in the right apex of the wedge marks
the connection which reconstructs the 8N octagon into a pair of
two pentagons. (c) Schematic unit cell of the (8,0)/(14,0) superlattice,
with the two complementary wedges inside.

takes place within nearest neighbors; i is the atom index; and
the arrows correspond to the two spin states. The value of the
Coulomb repulsion parameter U is chosen to be U = 3eV.
This choice has been discussed in a number of previous works
[19, 22-24]; it is considered to be a reasonable assumption
for graphene-based materials. The expectation values of the

spin-resolved densities at site i, (n; ,) = (cl +Cio)» depend on
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FIGURE 2: (a) LDOS at the wedge for the single junction (8,0)/(14,0). (b) Band structure of the 12(8,0)/12(14,0) SL. (c) Band structure of the

5(8,0)/5(14,0) SL.

the eigensolutions of the Hamiltonian, so the above equation
has to be solved iteratively.

For the single junction, we employ a Green’s function
matching technique, which allows to obtain the local density
of states at the junction [6]. The Hamiltonian of the nanotube
superlattice is directly diagonalized, yielding the band struc-
ture and wavefunctions of the infinite system [10].

4. Results

4.1. Localization at Octagonal Defects. We begin by con-
sidering a diagonal junction between the (8,0) and (14,0)
nanotubes, as shown in Figure1(a). As discussed in the
previous section, when joining the (14,0) tube to a diagonally
cut (8,0) tube, an 8R octagonal defect appears at the back of
the knee. At the kneecap we may have either (i) an 8N octagon
or (ii) a pair of pentagons (2 x 5). This is visualized in the
upper inset of Figure 1(a) and in Figure 1(b). In the latter case
(ii) the pentagons mix the graphene sublattices, which causes
the breaking of electron-hole symmetry.

Here we consider the case (i), that is, with two octagons,
8R and 8N, present at each junction. Since there are no
pentagons, the system can be still considered as a bipartite
lattice.

Figure 2(a) shows the LDOS of an (8,0)/(14,0) single
junction. A strong peak appears at E = 0 in the gap. In
order to elucidate its origin, we perform calculations for two
related superlattices M (8,0)/M(14,0) with M = 12and M =
5 (M is the number of hexagons along the tube axis). The
corresponding band structures are presented in Figures 2(b)
and 2(c). Four bands, almost flat, appear near the Fermi level.
They form two bonding and antibonding pairs because there

are two junctions within a unit cell (recall Figure 1(c)). The
wavefunctions of one pair are localized at the octagons 8R,
whereas the wavefunctions of the other pair of bands are
localized at the 8N octagons. The localization at the octagon
8N takes place at the sublattice to which the pair of nodes
having only two neighbors belong. Consequently, localization
at the octagon 8R occurs in the complementary sublattice.
The wavefunctions centered at each octagon defect extend in
a decaying way into the region of the complementary octagon
but are always confined into their own sublattice. In the limit
of M — oo we end up with the single junction case having
a doubly degenerate E = 0 state, like the one shown in
Figure 2(a).

Below we show that the appearance of states localized at
the junctions is connected with the octagonal structure of the
defects. To do this we divide the diagonal junction between
the (8,0) and (14,0) tubes into three parts: (T1) a regular
semi-infinite (8,0) tube, (W) the 62-atom wedge of the (8,0)
tube, and (T2) a regular semi-infinite (14,0) tube, as shown in
Figure 1.

According to the rules presented in [14], the semi-infinite
(8,0) tube cut perpendicularly to its axis has three zero-energy
edge states localized at the sublattice to which the zigzag-
edge atoms belong. Similarly, the semi-infinite (14,0) tube
has five E = 0 edge states localized at the same sublattice.
On the other hand, the wedge portion has eight zero-energy
states, since there is an imbalance of eight atoms belonging to
different sublattices [22, 25]. All the wedge states are localized
at the complementary sublattice with respect to the nanotube
edges. Therefore, when all three parts, (T1), (W), and (T2),
are connected by bonding the edge nodes of tubes with the
edge nodes of the wedge, the zero-energy edge states should
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FIGURE 3: (a) A scheme showing the reconstruction of an 8N
octagon into a pair of pentagons. (b) LDOS for the case of
(8,0)/(14,0) junction with 8R octagon present and varying strengths
of the bond between the two unsaturated nodes of the 8N octagon
(hopping tp, atthis bond varies from top to bottom: 0, 0.2t, 0.5¢, t).

in principle mix, split, and merge into the bulk continuum.
However, our calculations show that two zero-energy states
are still present being localized at the octagonal defects 8R
and 8N.

The 8N octagon has two atoms with coordination number
2, so it can be expected that it may reconstruct into two
pentagons. We thus connect the two unsaturated nodes of the
8N octagon, transforming it into a pair of pentagons (2 x 5)
in the nanotube junctions, as shown in Figure 3(a).

Figure 3(b) shows the LDOS calculated at the wedge for
increasing values of the hopping parameter ¢, between these
two nodes. The LDOS peak corresponding to the state local-
ized at the octagon 8N moves from Ep, lowers its energy, and
finally merges into the bulk-band continuum. The peak cor-
responding to the localized state at the 8R octagon remains
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FIGURE 4: (a) Two possible representations of the zero-energy TB
wavefunctions for the octagonal carbon ring. Filled and empty
circles mean positive and negative values of the wavefunction; no
circle means that the wavefunction is exactly zero. (b), (c) Schematic
views showing how the 8R and 8N octagons are connected to the
voids V8R and V8N, respectively. Filled and empty circles indicate
the void-edge nodes corresponding to different sublattices.

fixed at E = 0, because it is localized at the complementary
sublattice. These results are in agreement with our previous
calculations on nanotube SLs [26]. In these latter systems the
Fermi level is below the bands localized at the junctions, so
the octagon-localized states are unoccupied in this case.

4.2. Octagonal Defect and Its Void. Let us begin by remarking
that an octagonal ring of carbon atoms has two zero-
energy states. The two zero-energy TB functions, localized
at different sublattices, are shown in Figure 4(a). We want to
investigate how these two zero energy states evolve when they
are connected to the rest of the knee-shaped structure. Let
us consider the (8,0)/(14,0) junction with a pair of pentagons
in the kneecap. If the 8R octagon at the back of the knee is
disconnected from the lattice, setting to zero the hoppings
f between the octagon and the rest of the lattice, an 8-fold
void (V8R) is left at the junction. The LDOS calculated at
the wedge of this structure (i.e., the knee with a void plus
the disconnected octagon) is shown at the topmost panel
of Figure 5. The peak at E = 0 corresponds to a doubly
degenerate zero-energy state of the detached octagon, while
the peak at 0.05 eV represents the state localized at the edge
of the V8R void. The wave function of this later peak is
localized at one sublattice. Its energy is slightly displaced from
Er because of the presence of two pentagons that mix both
sublattices and break electron-hole symmetry. This peak is
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FIGURE 5: LDOS evaluated at the wedge region for the single
(8,0)/(14,0) junction with a pair of pentagons (2 x 5) at the kneecap
and varying strengths of the hopping f parameter connecting the 8R
octagon into the V8R void. The hopping parameter varies as 0, 0.1¢,
0.4t and t from top to bottom.

roughly twice smaller than that at E = 0, because the central
peak corresponds to a doubly degenerate energy level. When
the octagon is connected to the void, one of its zero-energy
states mixes with the void state, since they are localized at
different sublattices. Those states split and merge into the bulk
continuum, as shown in Figure 5. The peak corresponding to
the other zero-energy state of the octagon is left unchanged.
Its wavefunction spreads and decays out from the octagonal
defect but remains in the same sublattice.

4.3. Effects of Electron Interaction. As most of the studied
structures present flat and degenerate bands at the Fermi
level, we should consider the effect of electron-electron
interactions on them. We employ the Hubbard model
described in Section 3. In Figure 6 we show the bands of
the 12(8,0)/12(14,0) SL calculated (a) with the TB model, (b)
including the Hubbard term. Figure 6(c) shows the LDOS

corresponding to the (8,0)/(14,0) single junction including
the Coulomb repulsion.

In both Figures 6(a) and 6(b) we see two pairs of bonding
and antibonding bands near the Fermi level. They are more
separated in energy when the Coulomb repulsion is taken
into account. Bonding and antibonding bands are due to the
presence of two junctions in the SL unit cell.

Note that when spin is included, the bands remain spin
degenerate even in the Hubbard model, but the degeneracy
is caused by the presence of two complementary junctions in
the SL unit cell. Each band of a degenerate pair corresponds to
a state located in the same defect but at a different junction,
having opposite spins. Therefore, at each junction the states
are not spin degenerate. This occurs also in the case of single
junction, as shown in Figure 6(c). The four peaks at the LDOS
of the single junction can be unequivocally related to the four
bands of the SL. The spin splitting between the energy levels
corresponding to the pair of spin-up and spin-down states
localized at the 8R octagon is about 0.1eV. For the octagon 8N
this splitting is =0.3 eV. The octagonal defects introduce local
magnetic moments of different polarization at each octagon,
thus rendering these systems antiferromagnetic. This finding
can be compared to the antiferromagnetic ordering in zigzag
graphene nanoribbons. In such systems the Coulomb inter-
action splits the four flat and edge-localized bands at E = 0
into two spin degenerate bands. Each of them corresponds
to states located at different ribbon edges with opposite spin
polarization. In contrast, in the nanotube junctions with two
octagons, the zero energy states split into four different bands.
This is because the octagons are not equal, so their states
experience different Coulomb repulsions.

5. Summary and Conclusions

We have investigated the octagonal defects which appear at
diagonal junctions between zigzag carbon nanotubes. We
have chosen the (8,0) and (14,0) tubes, which is a particular
case of the (2n,0)/(4n — 2,0) junction. With such a choice
both tubes are semiconductors, so the defect-localized states
lie within the energy gap. Two different octagons, surrounded
by hexagons, appear at the junction between the tubes. They
are the source of state localization at the Fermi level. The 8R
octagon has all atoms with coordination number 3, whereas
the other one, namely, the 8N, has two unsaturated atoms, and
it can be reconstructed into two pentagons. The junction with
two octagonal defects presents two degenerate localized states
at E = 0. These states are associated with the zero-energy
states of the octagonal carbon ring. When the 8N octagon
reconstruction takes place, the state localized at this defect
splits and merges into the bulk continuum, while the other
state, that is, the one localized at 8R octagon, is left at E = 0.

We have included also the electron-electron interaction
effects to see how they influence these localized states. We
find that the single junction with two octagonal defects
presents spin-split states localized at different octagons, thus
yielding an antiferromagnetic ground state of the junction
system. The superlattice bands are spin degenerate, but with
the two junctions having opposite spin configuration.
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FIGURE 6: Comparison of band structures of 12(8,0)/12(14,0) SL calculated with the TB (a) and Hubbard (b) models. In the Hubbard model all
bands are spin degenerate. (c) LDOS at a single junction, including the Coulomb repulsion (the peaks positions correspond to the flat bands
presented at (b)). Arrows and letters R/N indicate spin polarization and localization at the 8R and 8N octagons, respectively.
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