K. Gajewska-Kurdziel, K. Mruczek
 ON SOME SETS OF IDENTITIES SATISFIED IN ABELIAN GROUPS

Abstract

The equational theories were studied in many works (see [4], [5], [6], [7]). Let τ be a type of Abelian groups. In this paper we consider the extentions of the equational theory $E x\left(\mathcal{G}^{n}\right)$ defined by so called externally compatible identities of Abelian groups and the identity $x^{n} \approx y^{n}$. The equational base of this theory was found in [3]. We prove that each equational theory $C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{\phi \approx \psi\}\right.$), where $\phi \approx \psi$ is an identity of type τ, is equal to the extension of the equational theory $\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup E\right)$, where E is a finite set of one variable identities of type τ.

The notation in this paper are the same as in [1].

1. Preliminaries

Let $\tau:\left\{\cdot,{ }^{-1}\right\} \rightarrow N$ be a type of Abelian groups where $\tau(\cdot)=2, \tau\left({ }^{-1}\right)=1$. By \mathcal{G}^{n} we denote the class of all Abelian groups satisfying the identity $x^{n} \approx y^{n}, n \geq 2$.

The identity of type τ is externally compatible (see [2]) if it is one of the form $x \approx x$ or of the form $\phi_{1} \cdot \phi_{2} \approx \psi_{1} \cdot \psi_{2}, \phi_{1}^{-1} \approx \psi_{1}^{-1}$ for some terms $\phi_{1}, \phi_{2}, \psi_{1}, \psi_{2}$ of type τ. Let $\operatorname{Ex}\left(\mathcal{G}^{n}\right)$ be a set of all externally compatible identities satisfied in \mathcal{G}^{n}. In [2] it was proved that $\operatorname{Ex}\left(\mathcal{G}^{n}\right)$ is the equational theory. Let $I d(\tau)$ be a set of all identities of type τ. By $C n(\Sigma)$, where $\Sigma \subseteq I d(\tau)$, we denote the deductive closure of Σ.

It is well known fact, that the lattice of all equational theories extending $I d\left(\mathcal{G}^{n}\right)$ is dually isomorphic to the lattice of all natural divisors of n with divisibility relation. It implies that $\operatorname{Cn}\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\{\phi \approx \psi\}\right)=C n\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\right.$ $\left\{\phi_{1} \approx \psi_{1}\right\}$), where $\phi \approx \psi$ and $\phi_{1} \approx \psi_{1}$ are identities of type τ and the last of them is the one variable identity. Indeed, let $\phi \approx \psi$ be an identity of type τ. So, it is equivalent to the identity of the form $x_{1}^{k_{1}} \cdot \ldots x_{s}^{k_{s}} \approx x_{1}^{l_{1}} \cdot \ldots$.

[^0]$x_{s}^{l_{s}}$, where $k_{1}, \ldots, k_{s}, l_{1}, \ldots, l_{s} \in Z_{n}$ and $k_{i} \neq l_{i}$ for some $i \in\{1, \ldots, s\} .{ }^{1}$ Then, it is obvious that $\operatorname{Cn}\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}} \approx x_{1}^{l_{1}} \cdot \ldots \cdot x_{s}^{l_{s}}\right\}\right)=$ $C n\left(I d\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{k_{1}-l_{1}} \ldots . x_{s}^{k_{s}-l_{s}} \approx x_{1} \cdot x_{1}^{-1}\right\}\right)$. Let $d=\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)$. Then $C n\left(I d\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{k_{1}-l_{1}} \cdot \ldots x_{s}^{k_{s}-l_{s}} \approx x_{1} \cdot x_{1}^{-1}\right\}\right)=C n\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{d} \approx x_{1} \cdot x_{1}^{-1}\right\}\right)$. Because $d=\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)$ then there exist $p_{1}, \ldots, p_{s} \in Z_{n}$ such that $\left(k_{1}-l_{1}\right) \cdot p_{1}+\ldots+\left(k_{s}-l_{s}\right) \cdot p_{s}=d$ and $C n\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{k_{1}} \ldots . x_{s}^{k_{s}} \approx x_{1}^{l_{1}} \ldots .\right.\right.$. $\left.\left.x_{s}^{l_{s}}\right\}\right) \subseteq C n\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{k_{1}-l_{1}} \ldots x_{s}^{k_{s}-l_{s}} \approx x_{1} \cdot x_{1}^{-1}\right\}\right)$. So $\operatorname{Cn}\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{k_{1}}\right.\right.$. $\left.\left.\ldots x_{s}^{k_{s}} \approx x_{1}^{l_{1}} \cdots \cdot x_{s}^{l_{s}}\right\}\right) \subseteq C n\left(I d\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{p_{1}\left(k_{1}-l_{1}\right)} \ldots \ldots x_{1}^{p_{s}\left(k_{s}-l_{s}\right)} \approx x_{1} \cdot x_{1}^{-1}\right\}\right)$ and of course $\operatorname{Cn}\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{k_{1}-l_{1}} \cdot \ldots \cdot x_{s}^{k_{s}-l_{s}} \approx x_{1} \cdot x_{1}^{-1}\right\}\right) \subseteq \operatorname{Cn}\left(\operatorname{Id}\left(\mathcal{G}^{n}\right) \cup\right.$ $\left\{x_{1}^{d} \approx x_{1} \cdot x_{1}^{-1}\right\}$).

For each $i \in\{1, \ldots, s\}$ we have that $d \mid\left(k_{i}-l_{i}\right)$, so $\left(x_{i}^{k_{i}-l_{i}} \approx x_{i} \cdot x_{i}^{-1}\right) \in$ $C n\left(I d\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{d} \approx x_{1} \cdot x_{1}^{-1}\right\}\right)$. Thus $\left(x_{1}^{k_{1}-l_{1}} \cdot \ldots \cdot x_{s}^{k_{s}-l_{s}} \approx x_{1} \cdot x_{1}^{-1}\right) \in$ $C n\left(I d\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{d} \approx x_{1} \cdot x_{1}^{-1}\right\}\right)$.

The algorithm presented above neglects the structure of identities, and that is why it is useless in the case of extensions of the theory $E x\left(\mathcal{G}^{n}\right)$.

Using the Galois connection between algebras and identities we have that the lattice of all equational theories of type τ is dually isomorphic to the lattice of all varieties of the same type. So, if we know all theories $C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{\phi \approx \psi\}\right.$), where ϕ and ψ are terms of type τ, we can describe all subvarieties of the variety defined by all externally compatible identities of the variety \mathcal{G}^{n}.

2. The extension of the theory $E x\left(\mathcal{G}^{n}\right)$

In this paper, as in [3], by x^{0} we denote $x \cdot x^{-1}$. Let us consider the following identities:
(1) $x_{i} \approx x_{j}$,
(2) $x_{1}^{0} \cdot x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}} \approx x_{j}$,
(3) $\left(\left(x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}}\right)^{-1}\right)^{-1} \approx x_{j}$,
(4) $x_{1}^{0} \cdot x_{1}^{l_{1}} \cdot \ldots \cdot x_{s}^{l_{s}} \approx x_{1}^{0} \cdot x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}}$,
(5) $\left(\left(x_{1}^{0} \cdot x_{1}^{l_{1}} \cdot \ldots \cdot x_{s}^{l_{s}}\right)^{-1}\right)^{-1} \approx\left(\left(x_{1}^{0} \cdot x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}}\right)^{-1}\right)^{-1}$,
(6) $x_{1}^{0} \cdot x_{1}^{l_{1}} \cdot \ldots \cdot x_{s}^{l_{s}} \approx\left(\left(x_{1}^{0} \cdot x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}}\right)^{-1}\right)^{-1}$,
where $s \geq 2, i, j \in\{1, \ldots, s\}, l_{1}, \cdots, l_{s}, k_{1}, \ldots, k_{s} \in\{0, \ldots, n-1\}$.
It is possible to prove that every term of type τ of variables x_{1}, \ldots, x_{s} $(s \geq 2)$ has one of the following canonnical forms in the variety defined by the set $E x\left(\mathcal{G}^{n}\right): x_{j}, x_{1}^{0} \cdot x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}},\left(\left(x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}}\right)^{-1}\right)^{-1}$, where $j \in\{1, \ldots, s\}, k_{1}, \ldots, k_{s} \in\{0, \ldots, n-1\}$. It implies that each identity of type τ is equivalent one of the identities (1)-(6).

[^1]Let us consider the identity (1). The following lemma is obvious.
Lemma 1. (a) If $i=j$, then $\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup\{(1)\}\right)=E x\left(\mathcal{G}^{n}\right)$.
(b) If $i \neq j$, then $\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup\{(1)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{i} \approx x_{i}^{0}\right\}\right)$.

Now, we study the identity (2).
Lemma 2. (a) If $k_{j}=0$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(2)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{j}^{0} \approx x_{j}\right\}\right)
$$

(b) If $k_{j}=1, k_{1}=k_{2}=\ldots=k_{j-1}=k_{j+1}=\ldots=k_{s}=0$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(2)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{j}^{0} \cdot x_{j} \approx x_{j}\right\}\right)
$$

(c) If $k_{j}=1, k_{1}^{2}+\ldots+k_{j-1}^{2}+k_{j+1}^{2}+\ldots+k_{s}^{2}>0$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(2)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{j} \approx x_{j}^{0} \cdot x_{j}^{d+1}\right\}\right),
$$

where $d=\left(k_{1}, \ldots, k_{j-1}, k_{j+1}, \ldots, k_{s}\right)$.
(d) If $k_{j} \geq 2$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(2)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{j}^{0} \cdot x_{j}^{d+1} \approx x_{j}\right\}\right)
$$

where $d=\left(k_{1}, \ldots, k_{j-1}, k_{j}-1, k_{j+1}, \ldots, k_{s}\right)$.
Proof. Without losing generality we can assume that $j=1$. Let $S_{1}=$ $C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(2)\}\right)$.
(a) Let $S_{2}=\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{0} \approx x_{1}\right\}\right)$. If we put $x_{j}=x_{1}^{0}, j=2, \ldots, s$ we get $S_{2} \subseteq S_{1}$. From the fact that $\left(x^{0} \approx y^{0}\right) \in E x\left(\mathcal{G}^{n}\right)$ we get ($x \approx y$) $\in S_{2}$. From this we obtain immediately $S_{1} \subseteq S_{2}$.
(b) Let $S_{2}=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1} \cdot x_{1}^{0} \approx x_{1}\right\}\right)$. Because $k_{1}-1=k_{2}=\ldots=$ $k_{s}=0$ then $S_{1}=S_{2}$ is obvious.
(c) Let $S_{2}=\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1} \approx x_{1}^{0} \cdot x_{1}^{d+1}\right\}\right)$. Putting $x_{j}=x_{1}^{0}$ for $j \geq 2$ in the identity (1) we get $\left(x_{1} \approx x_{1} \cdot x_{1}^{0}\right) \in S_{1}$. Let the sequence p_{2}, \ldots, p_{s} of integers be a solution of the equation $k_{2} \cdot t_{2}+\ldots+k_{s} \cdot t_{s}=\left(k_{2}, \ldots, k_{s}\right)$. Putting $x_{j}=x_{1}^{p_{j}}$ for $j \in\{2, \ldots, s\}$ in the identity (1) we get, that ($x_{1} \approx$ $\left.x_{1} \cdot x_{1}^{k_{2} \cdot p_{2}+\ldots+k_{s} \cdot p_{s}}\right) \in S_{1}$ and thus $\left(x_{1} \cdot x_{1}^{0} \approx x_{1} \cdot x_{1}^{0} \cdot x_{1}^{k_{2} \cdot p_{2}+\ldots+k_{s} \cdot p_{s}}\right) \in S_{1}$, so we have $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}^{d+1}\right) \in S_{1}$. Finally, we have $S_{2} \subseteq S_{1}$.

To prove the opposite inclusion let us note, that from the condition $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}^{d+1}\right) \in S_{2}$ it follows that $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{d}\right) \in S_{2}$. The immediate consequence of these conditions is $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}\right) \in S_{2}$. The definition of d implying that for each j from the set $\{2, \ldots, s\}$ a number d is a divisor of k_{j}. Hence there exist elements p_{2}, \ldots, p_{s} in the set Z_{n} such that $k_{j}=p_{j} \cdot d$. As a result of the condition $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{d}\right) \in S_{2}$ we have that for each $j \in\{2, \ldots, s\}$ the identity $x_{j}^{0} \approx x_{j}^{0} \cdot x_{j}^{p_{j}^{j} \cdot d}$ belongs to S_{2}. From the fact that $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{2}^{0} \cdot \ldots \cdot x_{s}^{0}\right) \in S_{2}$, we obtain $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{2}^{p_{2} \cdot d} \cdot \ldots \cdot x_{s}^{p_{s} \cdot d}\right) \in S_{2}$. Using earlier notation we get ($\left.x_{1}^{0} \approx x_{1}^{0} \cdot x_{2}^{k_{2}} \cdot \ldots \cdot x_{s}^{k_{s}}\right) \in S_{2}$ and of course
$\left(x_{1} \cdot x_{1}^{0} \approx x_{1}^{0} \cdot x_{1} \cdot x_{2}^{k_{2}} \cdot \ldots \cdot x_{s}^{k_{s}}\right) \in S_{2}$. From this and from the condition $\left(x_{1} \approx x_{1} \cdot x_{1}^{0}\right) \in S_{2}$ we get $\left(x_{1} \approx x_{1}^{0} \cdot x_{1} \cdot x_{2}^{k_{2}} \cdot \ldots \cdot x_{s}^{k_{s}}\right) \in S_{2}$. It completes the proof.
(d) Let $S_{2}=\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1} \approx x_{1}^{0} \cdot x_{1}^{d+1}\right\}\right)$, where $d=\left(k_{1}-1, k_{2}, \ldots, k_{s}\right)$. From the fact that $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}}\right) \in S_{1}$ we get that $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{k_{1}-1} \cdot \ldots\right.$. $\left.x_{s}^{k_{s}}\right) \in S_{1}$. It is obvious that $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{d}\right) \in S_{1}$, where $d=\left(k_{1}-1, k_{2}, \ldots, k_{s}\right)$. From the other hand we have that $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}^{k_{1}}\right) \in S_{1}$ (we get it putting $x_{j}=x_{1}^{0}$ for $j \in\{2, \ldots, s\}$). From this we obtain $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{k_{1}-1}\right) \in S_{1}$, and of course we get $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}\right) \in S_{1}$. From this we get $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}^{d+1}\right) \in S_{1}$. So, we have proved that $S_{2} \subseteq S_{1}$.

Now, let we prove the opposite inclusion. Analogously to the proof of (c) we can show that $\left(x_{1} \approx x_{1} \cdot x_{1}^{0}\right) \in S_{2}$. From the fact that $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}^{d+1}\right) \in S_{2}$ we obtain that $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{d}\right) \in S_{2}$. The number d is a divisor of $k_{1}-1$ then there exists $p_{1} \in Z_{n}$ such that $d \cdot p_{1}=k_{1}-1$. Putting $x_{1}=x_{1}^{p_{1}}$ in the identity $x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{d}$ we get $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{k_{1}-1}\right) \in S_{2}$. From this we have $\left(x_{1} \cdot x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{k_{1}}\right) \in S_{2}$. By this and by the condition $\left(x_{1} \approx x_{1} \cdot x_{1}^{0}\right) \in S_{2}$ we have that $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}^{k_{1}}\right) \in S_{2}$. Now it is easy to verify that $\left(x_{1} \approx\right.$ $\left.x_{1}^{0} \cdot x_{1}^{k_{1}} \cdot x_{2}^{k_{2}} \cdot \ldots \cdot x_{s}^{k_{s}}\right) \in S_{2}$ (similarly as in proof of (c)). So we get the inclusion $S_{1} \subset S_{2}$. It completes the proof of Lemma 2.

Now, let us regard the identity (3).
Lemma 3. (a) If $k_{j}=0$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(3)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{\left(\left(x_{j}^{0}\right)^{-1}\right)^{-1} \approx x_{j}\right\}\right)
$$

(b) If $k_{j}=1, k_{1}=k_{2}=\ldots=k_{j-1}=k_{j+1}=\ldots=k_{s}=0$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(3)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{\left(\left(x_{j}^{0} \cdot x_{j}\right)^{-1}\right)^{-1} \approx x_{j}\right\}\right)
$$

(c) If $k_{j}=1, k_{1}^{2}+\ldots+k_{j-1}^{2}+k_{j+1}^{2}+\ldots+k_{s}^{2}>0$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(3)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{j} \approx\left(\left(x_{j}^{0} \cdot x_{j}^{d+1}\right)^{-1}\right)^{-1}\right\}\right)
$$

where $d=\left(k_{1}, \ldots, k_{j-1}, k_{j+1}, \ldots, k_{s}\right)$.
(d) If $k_{j} \geq 2$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(3)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{\left(\left(x_{j}^{0} \cdot x_{j}^{d+1}\right)^{-1}\right)^{-1} \approx x_{j}\right\}\right)
$$

where $d=\left(k_{1}, \ldots, k_{j-1}, k_{j}-1, k_{j+1}, \ldots, k_{s}\right)$.
Proof. The proof of this lemma is analogously to the proof of the Lemma 2.

Let we study the identity (4).
Lemma 4. (a) If $l_{1}=k_{1}, \cdots, l_{s}=k_{s}$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(4)\}\right)=E x\left(\mathcal{G}^{n}\right)
$$

(b) If $l_{j} \neq k_{j}$ for some $j \in\{1, \ldots, s\}$, then

$$
\left.C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(4)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{d}\right\}\right)\right)
$$

where $d=\left(l_{1}-k_{1}, \ldots, l_{s}-k_{s}\right)$.
Proof. The proof of (a) is obvious.
To prove (b) let us use some notation. Let $S_{1}=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(4)\}\right)$ and $S_{2}=\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{d}\right\}\right)$. It is easy to check that $\left(x_{1}^{0} \approx\right.$ $\left.x_{1}^{0} \cdot x_{1}^{r_{1}} \ldots x_{s}^{r_{s}}\right) \in S_{1}$, where $r_{i}=l_{i}-k_{i}$, if $l_{i} \geq k_{i}$ or $r_{i}=n-\left(l_{i}-k_{i}\right)$ in opposite case. From this it follows directly that for each i from the set $\{1, \ldots, s\}$ it holds $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{r_{i}}\right) \in S_{1}$, and thereby $\left(x_{1} \approx x_{1}^{0} \cdot x_{1}^{\left(r_{1}, \ldots, r_{s}\right)}\right) \in S_{1}$. We have proved that $S_{2} \subseteq S_{1}$.

To prove the opposite inclusion let us observe that $\left(r_{1}, \ldots, r_{s}\right) \mid r_{i}$ for each $i \in\{1, \ldots, s\}$. Hence, for each $i \in\{1, \ldots, s\}$ there exists $p_{i} \in\{0, \ldots, n-1\}$ such that $r_{i}=p_{i} \cdot\left(r_{1}, \ldots, r_{s}\right)$. Putting $x_{1}=x_{1}^{p_{1}} \cdot \ldots \cdot x_{s}^{p_{s}}$ in the identity $x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{\left(r_{1}, \ldots, r_{s}\right)}$ we get $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{r_{1}} \cdot \ldots \cdot x_{s}^{r_{s}}\right) \in S_{2}$. From the above it follows directly that the identity (4) belongs to the set S_{2}, thus $S_{1} \subseteq S_{2}$. So, the lemma has been proved.

Now we consider the identity (5).
Lemma 5. (a) If $l_{1}=k_{1}, \cdots, l_{s}=k_{s}$, then $C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(5)\}\right)=E x\left(\mathcal{G}^{n}\right)$.
(b) If $l_{j} \neq k_{j}$ for some $j \in\{1, \ldots, s\}$, then $\operatorname{Cn}\left(\operatorname{Ex}\left(\mathcal{G}^{n}\right) \cup\{(5)\}\right)=$ $\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{d}\right\}\right)$, where $d=\left(l_{1}-k_{1}, \ldots, l_{s}-k_{s}\right)$.
Proof. The proof of this lemma is analogous to the proof of the last lemma.

Now, let us regard the identity (6).
Lemma 6. (a) If $l_{i}=k_{i}=0$ for $i \in\{1, \cdots, s\}$, then

$$
C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(6)\}\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{0} \approx\left(\left(x_{1}^{0}\right)^{-1}\right)^{-1}\right\}\right)
$$

(b) If $k_{i}=l_{i}$ for each $i \in\{1, \ldots, s\}$ and $k_{j} \neq 0$ for some $j \in\{1, \ldots s\}$, then

$$
\begin{aligned}
& C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(6)\}\right)=\operatorname{Cn}\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{0} \cdot x_{1}^{\left(k_{1}, \ldots, k_{s}\right)} \approx\left(\left(x_{1}^{\left(k_{1}, \ldots, k_{s}\right)}\right)^{-1}\right)^{-1}\right\}\right. \\
& \begin{aligned}
& \text { (c) If } k_{j} \neq l_{j} \text { for some } j \in\{1, \ldots, s\}, \text { then } \\
& C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(6)\}=C n\left(E x (\mathcal { G } ^ { n }) \cup \left\{x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)}, x_{1}^{0} \cdot x_{1}^{\left(l_{1}, \ldots, l_{s}\right)}\right.\right.\right. \\
&\left.\left.\approx\left(\left(x_{1}^{p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}}\right)^{-1}\right)^{-1}\right\}\right),
\end{aligned}
\end{aligned}
$$

where p_{1}, \ldots, p_{s} satisfy the following condition $p_{1} \cdot l_{1}+\ldots+p_{s} \cdot l_{s}=\left(l_{1}, \ldots l_{s}\right)$, $p_{1}, \ldots, p_{s} \in Z_{n}$.
Proof. (a) The proof is obvious.
(b) It is enough to observe that the equation $t_{1} \cdot k_{1}+\ldots+t_{s} \cdot k_{s}=$ $\left(k_{1}, \ldots k_{s}\right)$ has a solution in the set Z_{n}.
(c) Let $S_{1}=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\{(6)\}\right)$ and $S_{2}=C n\left(E x\left(\mathcal{G}^{n}\right) \cup\left\{x_{1}^{0} \approx x_{1}^{0}\right.\right.$. $\left.\left.x_{1}^{\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)}, x_{1}^{0} \cdot x_{1}^{\left(l_{1}, \ldots, l_{s}\right)} \approx\left(\left(x_{1}^{p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}}\right)^{-1}\right)^{-1}\right\}\right)$, where p_{1}, \ldots, p_{s} are defined above.

In the identity (6) let us put $x_{i}=x_{1}^{p_{i}}$. We get, that $\left(x_{1}^{0} \cdot x_{1}^{\left(l_{1}, \ldots, l_{s}\right)} \approx\right.$ $\left.\left(\left(x_{1}^{p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}}\right)^{-1}\right)^{-1}\right) \in S_{1}$. It is clear, that from the definition of the set S_{1} it follows that for each $i \in\{1, \ldots, s\}$ the identity $x_{i}^{0} \approx x_{i}^{0} \cdot x_{i}^{\left(k_{i}-l_{i}\right)}$ belongs to S_{1}. Analogously, as in the proof of Lemma 2 we get, that $\left(x_{1}^{0} \approx x_{1}^{0} \cdot x_{1}^{\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)}\right) \in S_{1}$. We have proved, that $S_{2} \subseteq S_{1}$.

To prove the opposite inclusion in the identity

$$
x_{1}^{0} \cdot x_{1}^{\left(l_{1}, \ldots, l_{s}\right)} \approx\left(\left(x_{1}^{p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}}\right)^{-1}\right)^{-1}
$$

we put $x_{1}=x_{1}^{\frac{l_{1}}{\left(l_{1}, \ldots, l_{s}\right)}} \cdot \ldots x_{s}^{\frac{l_{s}}{\left.T_{1}, \ldots, l_{s}\right)}}$. We get, that the identity (*) $\quad x_{1}^{0} \cdot x_{1}^{l_{1}} \cdot \ldots \cdot x_{s}^{l_{s}}$

$$
\approx\left(\left(x_{1}^{\frac{l_{1}, \ldots, l_{s}}{\left(l_{s}\right.} \cdot\left(p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}\right)} \cdot \ldots \cdot x_{s}^{\frac{l_{s}}{\left(l_{1}, \ldots, l_{s}\right)} \cdot\left(p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}\right)}\right)^{-1}\right)^{-1}
$$

belongs to S_{2}.
For each $i \in\{1, \ldots, s\}$ let us consider the equation $h_{i} \cdot\left(k_{1}-l_{1}, \ldots, k_{s}-\right.$ $\left.l_{s}\right)+\frac{l_{i}}{\left(l_{1}, \ldots, l_{s}\right)} \cdot\left(p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}\right)=k_{i}$. We show, that $h_{i}=\frac{k_{i}-l_{i}, k_{s}-}{\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)}-$ $\frac{p_{1} \cdot l_{i}\left(k_{1}-l_{1}\right)}{\left(l_{1}, \ldots, l_{s}\right) \cdot\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)}-\ldots-\frac{p_{s} \cdot l_{i}\left(k_{s}-l_{s}\right)}{\left(l_{1}, \ldots, l_{s}\right) \cdot\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)}$ is a solution of this equation.

Because $\left(l_{1}, \ldots, l_{s}\right) \mid l_{i}$ and $\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right) \mid\left(k_{r}-l_{r}\right)$ for each $r \in$ $\{1, \ldots, s\}$ then $h_{i} \in Z$. Hence $h_{i} \cdot\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)=\left(k_{i}-l_{i}\right)-\frac{l_{i}}{\left(l_{1}, \ldots, l_{s}\right)}\left(p_{1}\right.$. $\left.\left(k_{1}-l_{1}\right)+\ldots+p_{s} \cdot\left(k_{s}-l_{s}\right)\right)$ and $h_{i} \cdot\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)=\left(k_{i}-l_{i}\right)-\frac{l_{i}}{\left(l_{1}, \ldots, l_{s}\right)}$. $\left(p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}-p_{1} \cdot l_{1}-\ldots-p_{s} \cdot l_{s}\right)=\left(k_{i}-l_{i}\right)-\frac{l_{i}}{\left(l_{1}, \ldots, l_{s}\right)} \cdot\left(p_{1} \cdot k_{1}+\right.$ $\left.\ldots+p_{s} \cdot k_{s}-\left(l_{1}, \ldots, l_{s}\right)\right)=k_{i}-\frac{l_{i}}{\left(l_{1}, \ldots, l_{s}\right)} \cdot\left(p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}\right)$.

Thus for each $i \in\{1, \ldots, s\}$ the identity $x_{i}^{0} \approx x_{1} \cdot x_{i}^{h_{i} \cdot\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)}$ belongs to S_{2}. Hence, as a result of the fact, that the identity $\left({ }^{*}\right)$ belongs to S_{2} we get, that the identity

$$
\begin{aligned}
x_{1}^{0} \cdot x_{1}^{l_{1}} \cdot \ldots \cdot x_{s}^{l_{s}} \approx & \left(\left(x_{1}^{0} \cdot x_{1}^{h_{1} \cdot\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)+\frac{l_{1}}{\left(l_{1}, \ldots, l_{s}\right)} \cdot\left(p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}\right)} \cdot \ldots\right.\right. \\
& \left.\left.\cdot x_{s}^{h_{s} \cdot\left(k_{1}-l_{1}, \ldots, k_{s}-l_{s}\right)+\frac{l_{s}}{\left(l_{1}, \ldots, l_{s}\right)} \cdot\left(p_{1} \cdot k_{1}+\ldots+p_{s} \cdot k_{s}\right)}\right)^{-1}\right)^{-1}
\end{aligned}
$$

belongs to S_{2}. So, we get that $\left(x_{1}^{0} \cdot x_{1}^{l_{1}} \cdot \ldots \cdot x_{s}^{l_{s}} \approx\left(\left(x_{1}^{k_{1}} \cdot \ldots \cdot x_{s}^{k_{s}}\right)^{-1}\right)^{-1}\right) \in S_{2}$. It implies that $S_{1} \subseteq S_{2}$.

Finally, we have proved that $S_{1}=S_{2}$.
From Lemmas 1-6 we obtain

Theorem 1. If E is a finite set of identities of type τ then there exists a set E_{1} of one variable identities such that $C n\left(E x\left(\mathcal{G}^{n}\right) \cup E\right)=C n\left(E x\left(\mathcal{G}^{n}\right) \cup E_{1}\right)$.

By $\mathcal{G}_{E x}^{n}$ we denote the variety defined by the set $E x\left(\mathcal{G}^{n}\right)$. The consequence of Theorem 1 is the following theorem
Theorem 2. Let τ be a type of Abelian groups with the exponent n and let \mathcal{A} be a free algebra in the variety $\mathcal{G}_{E x}^{n}$ with a one element set of generators. Then $\operatorname{Id}(\mathcal{A})=\operatorname{Id}\left(\mathcal{G}_{E x}^{n}\right)$.

References

[1] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer, New York 1981.
[2] W. Chromik, Externally compatible identities of algebras, Demonstratio Math. 23 (1990), 344-355.
[3] K. Hałkowska, B. Cholewińska, R. Wiora, Externally compatible identities of Abelian groups, Acta Univ. Wratislav. No 1890 (1997), 163-170.
[4] J. Ježek, The lattice of equational theories, Part I, Part II, Part III, Czeh. Math. J. 31 (1981) 127-157, 31 (1981), 573-603, 32 (1982), 129-164.
[5] B. Jónnson, Equational classes of lattices, Math. Scand. 22 (1968), 187-196.
[6] R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43.
[7] G. F. McNulty, Structural diversity in the lattice of equational theories, Algebra Universalis 13 (1981), 271-292.

UNIVERSITY OF OPOLE

institute of mathematics and computer science
ul. Oleska 48
45-052 OPOLE, POLAND
E-mail: gajewska@math.uni.opole.pl
mruczek@math.uni.opole.pl

Received July 4, 2001; revised version February 14, 2002.

[^0]: 1991 Mathematics Subject Classification: 03C05, 20 A 05.
 Key words and phrases: Abelian groups, identity, externally compatible identity, equational theory.

[^1]: ${ }^{1}$ If $k_{1}=l_{1}, \ldots, k_{s}=l_{s}$, then it is obvious that $\operatorname{Cn}\left(I d\left(\mathcal{G}^{n}\right) \cup\{\phi \approx \psi\}\right)=I d\left(\mathcal{G}^{n}\right)$.

