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Abstract 

An identity s *s t is called a hyperidentity in a variety V if by sub
stituting terms of appropriate arity for the operation symbols in s « t, 
one obtains an identity satisfied in V. If every identity in V is a hyper
identity, the variety V is called solid. All solid varieties of a given type 
T form a complete sublattice <S(T) of the lattice £(r) of all varieties of 
type r . The concept of an M-solid variety generalizes that of a solid 
variety. An equation s as t of terms of type r is called P-compatible 
where P is a partition of the set F = {fi\i £ / } of operation symbols 
of type T if it has the form n « Xi or /;(ti, -. . , t„ ( ) fj{t\, • • • ,t'n.) 
with fj € [fi]p , where [fj\p is the block of P containing fj. A variety 
is called P-compatible if it contains only P-compatible identities. All P-
compatible varieties of type T form also a sublattice of the lattice of all 
varieties of type r. We ask for the intersection of both lattices, i.e. we 
want to characterize solid varieties which are P-compatible or M-solid 
varieties which are P-compatible. 

1 Preliminaries 

Our informal definition of a hyperidentity shows that we are interested in a 
map which associates to each ni-ary operation symbol fa an n ;-ary term o{fi)-
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Any such map is called a hypersubstitution. Let WT(X) be the set of all terms 
of type r on an alphabet X = {xi,x2,... ,xn,...}. Using a hypersubstitution 
a we can define a uniquely determined mapping a defined on terms by 

(ii) &[fi{tu.\.,tni)] := ff(/4)(d[ti],...,ff[tnil). 
By Hyp(r) we denote the set of all these hypersubstitutions. If we define a 
multiplication oh on the set Hyp(r) by <T] o h 02 := ffi O<T2 where o is the usual 
composition of functions, together with ff«i(/t) := fi(xi,.. .,x„t) we obtain a 
monoid Hyp(r) = (Hyp(r); oh; <jid). If M is a submonoid of the monoid of all 
hypersubstitutions of type r then an equation s ~ t of terms of type T is called 
M-hyperidentity in the variety V of groupoids if for all a £ M the equations 
a[s] « &[t] are satisfied as identities of V. Hyperidentities are M-hyperidentities 
for M = Hyp(r). A variety V of type r is called M-solid if each of its identities 
is an M-hyperidentity for M = Hyp(r). All M-solid varieties of type T form a 
complete sublattice SM(T) of the lattice £ ( r ) of all varieties of type T with 

M i C M 2 = > 5 M , ( T ) 2 S M l ( r ) . 

To test whether an identity s w t of a variety V is an M-hyperidentity of V 
our definition requires that we check, for each hypersubstitution in M , that 
a[s] ~ a[i\ is an identity of V. Indeed, we can restrict our testing to certain 
"special hypersubstitutions". We recall of two concepts, both introduced by J . 
Plonka ([4]). 

Definition 1.1 Let V be a variety of type T . A hypersubstitution a is called 
V-proper if for every identity s ~ t in V, the identity a[s) « o[i] also holds in 
V. We use P{V) for the set of all V-proper hypersubstitutions. 

It is clear that (P(V) ;o h ;o i d ) is a submonoid of Hyp(r) = {Hyp(T); oh; aid) 
and that a variety V is M-solid for M — P(V) and P(V) is the largest M for 
which V is M-solid. 

Definition 1.2 Let V be a variety of type r. Two hypersubstitutions ai,a2 

are called V-equivalent (o-i~v&i) if &i(fi) « <*i(fi) <""e identities in V for all 
i€l. 

This relation can be extended to arbitrary terms t, i.e. 

tri~v^2 &i[t} « (72[t] 

is an identity in V. Then one can prove: If ffi~v02 and di[s\ « &i[t] then 
02\s] ~ oafi] is an identity in V. 
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We will use the following denotations: 

Id V - the set of all identities satisfied in the variety V, 
Cp{r) - the set of all P-compatible equations of type r, 
Cp{V) = CP(T) n Id V - the set of all P-compatible identities of V, 
EX(T) - the set of all externally compatible equations of type T , i.e. in
compatible for P = {{fi}\i G I } , 
Ex{V) = EX[T) n Id V, 

N(T) - the set of all normal identities of type r, i.e. P-compatible for 
P = { { / * } ! * € / } , 
N(V) = N(T) n Id V. 

It is easy to see that Cp(r ) and Cp(V) are equational theories, i.e. closed 
under the rules of consequences for identities. 

2 Cp(V)-proper hypersubstitutions 

Definition 2.1 J4 hypersubstitution a G Hyp(r) is called Cp(V)-proper if for 
alls Pit G CP(V) we have &[s] w € Cp(V) ( i.e. <r[,s] ss ff[t] € /rf V and 
a[s] w <r[f] = Xi <E. X or ex(a[s\) G [ex(<r[i])]p where ex(a[i\) denotes the first 
operation symbol occurring in the term a[t\ ) . 

Let McP{V) be the set of all Cp(V)~ proper hypersubstitutions of type T. 
Then we have 

L e m m a 2.2 McP{V) forms a submonoid of Hyp(r). 

Proof. If a sa t € CP{V) then did\s] a i ( i[i] G Cp(lO> thus 
cr.d G Mcp(V)- If <7i,cr2 G MCp{V) then for all 5 a £ G C F ( V ) we 
have (72[s] « <72fl G C P ( V ) and then <7i[<r2[s]] ~ oi[°i\t\\ € CP{V) , i.e. 
(ffi °h ffajT [*] « (ffi °ii <72)~ [t] G CP(V). Therefore 0\ oh cr2 G MCp(V). • 

Remark that there are different possibilities to define sets of hypersubstitu
tions which are connected with P-compatible identities of the variety V. For 
instance we could also define a hypersubstitution to be Cp(V)-generating if for 
all s « t G Id V it follows that a[s] « a[t] G CP(V). If we denote by GCp(V) 
the set of all Cp (V)-generating hypersubstitutions we have 

L e m m a 2.3 GcP{V) is a semigroup of hypersubstitutions which in general is 
not a monoid. 
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Proof. If 0-1,(72 G G o ( V 0 then for all s sa f e Id V we get &2[a] ss 
*aM € C P ( V ) and thus «Ti[o2[s]] W *i[*9[f]] G C j » ( V ) . This means Gc P (V")is 
closed under the product oh. But in general GcP{V) is not a monoid since 
s « t G Id V, but s ss t £ Cp(V) and then <rid[s] SS o-id[t] £ C f ( V ) . • 

Remarks: 

1. If V is an idempotent variety, (i.e. {fi(x,...,x) = x) G Id V ) then a 
hypersubstitution belonging to GcP(V) has to map each ft to one of the 
variables x\t...,x„t. 

2. Clearly, GcF{V) is a subsemigroup of the monoid P{V) of all proper 
hypersubstitutions of type r and McP(V) is the monoid of all proper 
hypersubstitutions of the variety VcP •= Mod(Cp(V)) which is denned 
by all P-compatible identities of the variety V. 
That means, the variety VcF is M-solid for the monoid McP(V) and 
McP(V) is the greatest monoid of hypersubstitutions such that VcP is 
M-solid . 

Theorem 2.4 Let V be a variety of type r and let P be a partition of the set 
{fi\i G / } of operation symbols. Let McP(V) be the monoid of all CP(V)-
proper hypersubstitutions. If McP{V) = Hyp{r) then P — {{fi}\i G / } or 
P = {Miei}. 

Proof. Let s « t be an arbitrary identity of Cp{V) and assume that 
P ^ G / } . Then we can assume that s = / j ( s i , . . . , s„<) and 
t = fj{t\,... ,tnj) with fj G [fi]p,fi ^ fj- (Such an identity exists since 
P G / } ) . Consider now a hypersubstitution which maps fi to 
fi(xu... ,xni) and fj to ft(/,( ) , . . . ,fj{xi,. •. ,x n j . ) ) , where h is an 
arbitrary operation symbol of P = {fi\i G / } . We may assume that h is not 
miliary, otherwise we change the role of / and g. Since Hyp(r) = Cp{V) we 
obtain &[s] « a[t] G CP(V) and h G [fi]P and P - {fi\i G / } . • 

Note that Theorem 2.4 is a reformulation of [2,Theorem 8] which says that 
if Mod{CP(V)) is solid and Mod{CP{V)) ^ Mod{Ex{V)) then Mod(CP{V)) 
is normal. The proof is also only a reformulation of the proof of (2,Theorem 8j. 

We consider some more examples. We will call a hypersubstitution <7 of type 
T a pre-hypersubstitution if for every i 6 I the term is not a variable 
([3]). Let Pre(r) be the set of all pre-hypersubstitutions of type r. Let T be 
the trivial variety of type r, i.e. T = Mod{x & y) and let Id X be the set of all 
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identities of type r. Therefore CP{T) = CP{T) and MCP{T) = Pre{T)C\{a\U e 
[fj\p ex(<j{fi)) e \ex{a(fj))}p}. If V = Alg(r) is the class of all algebras 
of type r , i.e. V = Mod{x ^ x} then V is solid. The set Id V consists of all 
equations where the terms on the left and on the right hand side are the same. 
Clearly, Cp{V) = Hyp(r) for any partition P of {fi\i 6 / } . 

Since McP (V) is a monoid we can apply the theory of M-hypersubstitutions 
and M-solid varieties developed in [1). We can apply hypersubstitutions 
o~ € Mcpiy) to both, to equations and to algebras. If s « t is an equa
tion of terms of type r then we can form o[s] a[t]. and define an operator 
#Cp by 

- {&[*] » € MCp(V),s « f € E , E C W T ( X ) 2 } . 
The application of hypersubstitutions to an algebra ¿4 = (J4; {fiA)i£i) of type 
r is defined by 
*Cpl#] : = {*\M\<> € M C , ( V ) , J 4 e C Alg(r)}, where := 
(4(ff(/0 A)<€/). 
It is easy to see that both operators have the properties of closure operators 
which are defined for arbitrary non-empty sets as union of the results which we 
obtain if we apply them to one-element sets, i.e. 

*2,[E1 = U 

^P[if] = u *c„(U}) 

Such operators are called addit.ive. Further they are connected by the prop
erty 

s M * e Id 4» a « *}) € Id If. 

Because of this property we speak of a conjugate pair of additive closure oper
ators. 
Further we use the following denotations: 
HMC (i/) Id (V) - the set of all Mcv(V)-hyperidentities satisfied in the variety 
V and 
HMCp(v)Mod(Y!,) - the class of all algebras of type r , such that every equation 
of is an Mc7p(V)-hyperidentity of this algebra. 

Further, we say that a variety K is McP{V) -solid if ^[K] = K. From 
the properties of the pair {X^c (v)>^Mc (V)) M a conjugate pair of additive 
closure operators we obtain the following characterization of MQP{V)-solid 
varieties ([ 1 ]). 
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Theorem 2.5 For all varieties K of type r and for all equational theories 
E of type T the following conditions (i)-(iv) and the conditions (i')-(iv') are 
equivalent: 

(i) K — HMcp{V)ModHMCp(y)Id (K) (K is an McP(V)-hyperequational 
class), 

XMCp(v)W = K is MCp(V)-solid, 

(in) X^v)[Id(K)] = Id{K), 

(iv) Id (K)= HMcp{V)Id (K), and 

(*') £ = HMcp{V)Id HMcp(V)Mod$:), 

(iii') X&Cpiv)[ModC£)) = Mod(Z), 

(m Mod(Z) = HMcp{v)Mod(Z)-

We have already mentioned that the variety VcP = Mod(Cp(V)) is McP (V)-
solid. Therefore VcP satisfies the equivalent conditions (i),(ii),(iii),(iv). 

From the general theory (see [ 1)) it follows also that the class of all McP{vy 
solid varieties forms a complete lattice which is a complete sublattice of the 
lattice of all varieties of type r. 

3 P-compatible relations on hypersubstitutions 

In analogy to the relation ~ v we define the following binary relation on the 
set Hyp{r) and on submonoids of ffyp(r). 

Definition 3.1 Let V be a variety of type r and let P be a partition of the set 
of operation symbols {fi\f e / } ofV. Let Cp(V) be the set of all P-compatible 
identities satisfied in V. Then for any two hypersubstitutions <ri,o~2 6 Hyp(r) 
we define 

°\ ~ o ( V ) ^2 Vi 6 J(<xi(/i) w ffaCfc) G CP(V)). 
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We notice that ~cP(v) is an equivalence relation on Hyp(r) . It can be easily-
shown that for all terms t G WT(X), if o\ ~ c P ( V ) °~i then di[t] w &2[t] G 
CP(V). 

The relation ~<j P(v) can also be restricted to the monoid McP(v)-

Theorem 3.2 The monoid Mcp(v) 1 5 a union of full equivalence classes with 
respect to the relation ~ o ( v ) -

Proof. We have to show that if o\ G McP(v) and if a\ ~ c P ( V ) "2 then 
o~2 G McP(v)- Indeed, u\ G MCp(v) means that for each s ~ t G Cp{V) the 
identity <7i[s] w di[t] belongs also to Cp(V). The relation «72 ~ c P ( V ) &i im
plies <72[f] « o-j[t] 6 C P ( V ) for all t € WT{X). But then, by transitivity we get 
cri[s] ~ #a[*] € CP(V), and this means CT2 G M C p ( V ) - D 

Theorem 3.2 shows also that, if we want to check whether an identity is an 
Mc7p(v)-byperidentity, we can restrict our checking to one representative from 
each equivalence class with respect to ~ c p ( v ) - We can also show 

Corollary 3.3 The restriction of the relation ~Cp(v) to the submonoid 
McP{v) is a congruence relation on the monoid McP{v)-

Proof. We show that the restricted relation ~cP(v) \McP(V) is a right and 
a left congruence on McP{v)- Assume that o~i ~ C V ( V ) I M C <V) FFA * N A T 

a € MCp(v)- Then for the term <r(/j) we have Oi\d{fi)) w c^C/ i ) ] € Cp(V) 
and therefore ofc <r ~ C P ( V ) | M 0 ( V ) "2 ° A ". From ax ~cPlv))„Cp(V)

 a 2 1 1 

follows <Ti(/j) w ff2(/i) G Cp{V) and for every <r G M c P ( v ) also *[o-i(/i)] « 
eC/>(V), i.e. CTOfcff! ~ C p ( V r ) | M C p ( v , f f ° h f f i € C P ( V ) . • 

If we consider the class of the identity hypersubstitution, we notice that it 
forms a submonoid of McP{v) since if o~i ~ c P ( v ) "id and c"i ~ C F ( V ) o~\d then 
we have Oi(fi) as <rw(/i) = fi(xlt... ,xni) G C P { V ) and <r2(/i) « <?id(/i) = 
/ i (rc i , . . . ,xnt) G Cp(V) and then also (ax ocr2){/j) = ffiM/i)] w fri[ffW(/0] G 
Cp(V) , i.e. (<TI o h <r 2)(/ i) = CTi{a2(/i)j * " i ( / , ) = o-a € C p ^ ) , that means 
o\ oh a-i ~cP{V) °~id-

Finally we want to remark that the previous definitions and theorems can 
be generalized in the following way: 
Let V be a variety of type r and let T(T) be the set of all identities of type 
r which fulfils a given property. For example the property could also be that 
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the set of variables occurring on both sides of the identity agree, so that T ( r ) 
is the set of all regular identities of type r. We will also assume that T ( T ) is 
an equational theory. We set T(V) := T(T) n Id V and if E is an equational 
theory we set T ( E ) := T{r) n E . 

Then we define a hypersubstitution to be T(V)-proper if for all s ft* * £ T(V) 
we obtain a[s\ « a[t] e T ( V ) . 

Let Mj^v) t>e t r i e set of all T(V)-proper hypersubstitutions of type r. Clearly 
MT(V) 1S a submonoid of Hyp(r) and we get a theorem similar to Theorem 2.6. 
The relation ~ c P ( V ) c a n be also generalized and we define 

a ~nv) 0-2 Vi e /(<ri(/0 »«r 2(/0 e r(V)). 

Using this definition we obtain theorems similar to Theorem 3.2 and to Corol
lary 3.3. 
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