

WYDAWNIC"'WO
LNIWERSYTETU

Trends in Logic XIII

Gentzen's and Jaśkowski’s heritage 80 years of natural deduction and sequent calculi

Editors
Andrzej Indrzejczak
Janusz Kaczmarek
Michał Zawidzki

Andrzej Indrzejczak - University of Kodź, Faculty of Philosophy and History
Department of Logic and Methodology of Sciences, $16 / 18$ Kopcinskiego St., $90-232$ lodz
e-mail: indrzej@filozof.uni. lodz.pl
Janusz Kaczmarek - University of Kodź, Faculty of Philosophy and History
Department of Logic and Methodology of Sciences, 16/18 Kopcinskiego St., 90-232 kódź
e-mail: kaczmarek@filozof.uni.lodz.pl
Michat Zawidzki - University of Kódż, Faculty of Philosophy and History
Department of Logic and Methodology of Sciences, $16 / 18$ Kopcinskiego St., $90-232$ kódź
e-mail: michal.zawidzki@gmail.com
© Copyright by University of kódź, Kódż 2014
All rights reserved

No part of this book may be reprinted or utilised in any form or by any electronic. mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers

Published by kódź University Press
First edition, tódż 2014
W.06513.14.0.K

ISBN 978-83-7969-161-6 paperback

Publication of this book was supported by

PGE Górnictwo : Energetyka
Konwencjonalna S.A.

Kódź University Press
8 Lindleya St., 90-131 Łódż
www.wydawnictwo.unitodz.pl
e-mail: ksiegarnia@uni.lodz.pl
phone (42) 6655863 , fax (42) 6655862

Contents

Forword ix
| Invited lectures 1
Equational Logic and Modularity 3
Janusz Czelakowski
Proof-theoretic harmony: The issue of propositional quantification 5Peter Schroeder-Heister
The formal exposition of intuitions - a view on Gentzen and Jaśkowski 17
Max Urchs
Logics of Falsification 21
Heinrich Wansing
Philosophical Reflections on Logic, Proof and Truth 27 Jan Woleński
II Contributed talks 41
Arbitrary Reference through Acts of Choice: A Constructive View of Reference in Logic 43
Massimiliano Carrara and Enrico Martino
The faithfulness of atomic polymorphism 55
Fernando Ferreira and Gilda Ferreira
On the logics associated with a given variety of algebras 67
Josep Maria Font and Tommaso Moraschini
Multi-type Sequent Calculi 81
Sabine Frittella, Giuseppe Greco, Alexander Kurz, Alessandra Paimigiano and Vlasta Sikimić
Decidability Methods for Modal Syllogisms 95
Tomasz Jarmużek and Andrzej Pietruszczak
On Dedicated Fuzzy Logic Systems for Emission Control of In- dustrial Gases 113
Marcin Kacprowicz and Adam Niewiadomski
Almost Affine Lambda Terms 131
Makoto Kanazawa
Axiomatisations of Minimal Modal Logics Defining Jaśkowski- like Discussive Logics 149
Marek Nasieniewski and Andrzej Pietruszczak
Cut-elimination and Consistency: variations on a Gentzen-Pra- witz theme 165
Luiz Carlos Pereira and Edward Hermann Haeusler
Hierarchical Fuzzy Logic Systems and Their Extensions Based on Type-2 Fuzzy Sets 181
Krzysztof Renkas and Adam Niewiadomski
Algebraic Semantics for Bilattice Public Announcement Logic 199
Umberto Rivieccio
Gentzenization of Dynamic Topological Hybrid Logics 217
Katsuhiko Sano and Yuichiro Hosokawa
Frege's sequent calculus 233
Peter Schroeder-Heister
Games for Intuitionistic Logic 247
Pawet Urzyczyn
(8) Hirokawa, S., 'Balanced formulas, BCK-minimal formulas and their prools', in: A. Nerode and M. Taitsun (eds.), Logical Foundations of Computer Science âĂ Tver âAŻ́92, Berlin: Springer Verlag, 1992, 198-208.
[9] Jaśkowskı, S., 'Über Tautologien, in welchen keine Variable mehr als zweimal vorkommt', Zeitschriff für Mathematische Logik und Grundlagen der Mathematik, 9:12-15, 219-228. 1963.
[10] Ka.vazawa, M., 'Parsing and generation as Datalog queries', [in:] Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic, 2007, 176-183.
[11] Kanazawa, M., A lambda calculus characterization of MSO definable tree transductions (abstract); Bulletin of Symbolic Logic, 15(2):250-251, 2009.
;12] Kavazawa, M., 'Parsing and generation as Datalog query evaluation', 2011. http://research.nii.ac.jp/
[13 Kasazawa, M. and Pocodalla, S. 'Advances in abstract categorial grammars: Language theory and linguistic modeling', course taught at ESSLLI 2009, Bordeaux, France, 2009.
[14] Loader, R., Notes on simply typed lambda calculus, Technical Report ECS-LFCS-98-381, Edinburgh: Laboratory for Foundations of Computer Science, School of Infornat- ics, The University of Edinburgh, 1998.
i15] Mints, G. E., 'Closed categories and the theory of proofs', Journal of Soviet Mathematics, 15:45-62, 1981.

16] Masts, G. E., A Short Introduction to Intuitionistic Logic, New York: Kluwer Academic/Plenum Publishers, 2000.
[17] Tatslta, M. and Dezani-Ciancaglini, M. 'Normalisation is insensible to λ-term identity or difference,' [in:] Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society, Seattle, United States, 2006. 327-338.

Makoto Kanazawa

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430
Japan
kanazawa@nii.ac.jp

AXIOMATISATIONS OF MINIMAL MODAL LOGICS DEFINING JASKOWSKI-LIKE DISCUSSIVE LOGICS

Abstract

Jaskowski's discussive logic D_{2} was formulated with the help of the modat logic S 5 as follows: $A \in \mathrm{D}_{2}$ iff $\left\ulcorner\nabla A^{\bullet} \cdot 7 \in \mathrm{~S} \text {. where (}-\right)^{\bullet}$ is a translation of discussive formulae into the modal language. Thus, the key role in the definition of the logic D_{2} is played by the logic S 5 . In the literature there are considered other modal logics that are also defining the same logic D_{2}.

There are also investigated translations that are determining other Jaskowski-like logics. In 3,5 , instead of the original translation with "right"-discussive conjunction, another translation is considered, where "left"-discussive conjunction is treated as Jas'kowski's one. In :2], it has been shown that this new transformation yields a logic different from D_{2}. Ciuciura denotes the obtained logic by ' D_{2}^{*}. There are two other possibilities as regards the internal translation of discussive conjunctions.

The question arises (which has been stated by João Marcos), what does it change if we consider the weakest in a given class modal logics that determine these "new" discussive logics. In 11; the smallest modal logics defining respective Jaśkowski-like discussive logics are considered. In the present paper we give more elegant axiomatisations of these logics.

Keywords: Jaśkowski's discussive logic, Jaśkowski-like discussive logics, axiomatisations of Jaśkowski-like discussive logics, minimal modal logics defining Jaśkowski logic, minimal modal logics defining Jaśkowski-like discussive logics

1.1 Some facts of modal logic

modal language. Modal formulae are formed in the standard way from propositional letters: ' p^{\prime} ' ' q ', ' p_{0} ', ' p_{1} ', ' p_{2} ', ...; truth-value operators: $' \neg$ ', ' V ', ' \wedge ', ' \rightarrow ', and ' \leftrightarrow ' (connectives of negation, disjunction, conjunction, material implication and material equivalence, respectively); modal operators: the necessity sign ' \square ' and the possibility sign ' \diamond '; and brackets. By Form we denote the set of modal formulae. Of course, the set Form includes the set of all classical formulae (without ' \square ' and ' \diamond '): let Taut be the set of all classical tautologies and PL - the set of all modal formulae being instances of elements of Taut. Besides, for any $\varphi, \psi, \chi \in$ Form, $_{m}$ let $\left.\chi{ }^{\varphi} / \psi\right]$ be any formula that results from χ by replacing none, one, or more occurrences of φ, in χ, by ψ.

For any $\psi \in$ Form $_{m}$ let $\operatorname{Sub}(\psi)$ be the set of all modal formulae being substitution instances of ψ. For any $\phi \subseteq$ Form let $\operatorname{Sub}(\phi):=$ $\bigcup_{\varphi \in \phi} \operatorname{Sub}(\varphi)$. We have $\psi \in \operatorname{Sub}(\psi)$ and $\phi \subseteq \operatorname{Sub}(\phi)$. Moreover, we put $\diamond \phi:=\left\{\psi: \exists_{\varphi \in \phi} \psi=\ulcorner\diamond \varphi\urcorner\right\}=\{\ulcorner\diamond \varphi\urcorner: \varphi \in \phi\}$ and $\square \phi:=\{\ulcorner\square \varphi\urcorner: \varphi \in \phi\}$.

MODAL LOGICS. A modal logic is any set L of modal formulae satisfying following conditions:

- Taut $\subseteq L_{\text {, }}$

- Lincludes the following set of formulae

$$
\left\{\left\ulcorner\chi\left[\left[^{\neg \square \varphi} / \diamond_{\varphi}\right] \leftrightarrow \chi^{\urcorner}: \varphi, \chi \in \text { Form }\right\}\right.\right.
$$

- L is closed under the following two rules: modus ponens for ' \rightarrow ':

$$
\varphi, \varphi \rightarrow \psi / \psi
$$

and uniform substitution:

$$
\begin{equation*}
\varphi / \mathrm{s} \varphi \tag{sb}
\end{equation*}
$$

where $s \varphi$ is the result of uniform substitution of formulae for propositional letters in φ.

CHOSEN CLASSES OF LOGICS. We say that a modal logic L is an rte-logic iff L is closed under replacement of tautological equivalents, i.e., for any $\varphi, \psi, \chi \in$ Form:

$$
\begin{equation*}
\text { if } \left.\ulcorner\varphi \leftrightarrow \psi\urcorner \in P L \text { and } \chi \in L \text {, then } \chi^{[\varphi /} / \psi\right] \in L \tag{rte}
\end{equation*}
$$

A modal logic is rte-logic iff it includes the following set

$$
\left\{\left\ulcorner\chi\left[{ }^{\varphi} / \psi\right] \leftrightarrow \chi^{\urcorner}: \varphi, \psi, \chi \in \text { Form }_{\mathrm{m}} \text { and }\ulcorner\varphi \leftrightarrow \psi\urcorner \in \mathrm{PL}\right\} . \quad\left(r e p_{\mathrm{PL}}\right)\right.
$$

Lemma 1.1. A modal logic contains the formula:

$$
\begin{equation*}
\square p \rightarrow p \tag{T}
\end{equation*}
$$

iff it contains its dual version:

$$
p \rightarrow \diamond p
$$

Lemma 1.2. An rte-logic contains the following formulae:

$$
\begin{align*}
\square(p \wedge q) & \leftrightarrow(\square p \wedge \square q) \tag{R}\\
\diamond \square p & \rightarrow p \tag{B}\\
\diamond \square p & \rightarrow \square p \tag{5}
\end{align*}
$$

iff it contains, respectively, theirs dual versions:

$$
\begin{align*}
\diamond(p \vee q) & \leftrightarrow(\diamond p \vee \diamond q) \\
p & \rightarrow \square \diamond p \\
\diamond p & \rightarrow \square \diamond p
\end{align*}
$$

In [1] a modat logic is called classical modal (cm-logic for short) iff it is an rte-logic which contains

$$
\begin{align*}
& \square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q) \tag{K}\\
& \square(p \rightarrow p) \tag{N}
\end{align*}
$$

Thus, all cm-logics include the set $\square P L:=\{\square \tau: \tau \in P L\}$.
We say that a logic is congruential iff it is closed under the congruence rule

$$
\begin{equation*}
\varphi \leftrightarrow \psi / \square \varphi \leftrightarrow \square \psi \tag{cgr}
\end{equation*}
$$

A logic is congruential iff it is closed under replacement

$$
\begin{equation*}
\varphi \leftrightarrow \psi / X[\varphi / \psi] \leftrightarrow \chi \tag{rep}
\end{equation*}
$$

Every congruential logic is an rte-logic.
We say that a logic L is monotonic iff L is closed under the monotonicity rule:

$$
\begin{equation*}
\varphi \rightarrow \psi / \square \varphi \rightarrow \square \psi \tag{mon}
\end{equation*}
$$

Every monotonic logic is closed under (rep), i.e. is congruential.
We say that a logic is regular iff it contains (K) and is closed under (mon).
A logic is normal iff it contains (K) and is closed under the necessitation rule

$$
\varphi / \square \varphi
$$

All normal logics are regular and cm-logics.
For all sets X and \mathcal{A} of modal formulae and any set of rules \mathcal{R} in For ${ }_{n i}$ we say that the pair $\langle\mathcal{A}, \mathcal{R}\rangle$ is an axiomatization of X iff X is the smallest set including \mathcal{A} and closed under all rules from \mathcal{R}.

1.2 The discussive logic D_{2} and other Jaśkowski-like logics

discussive languace. The logic D_{2} is defined as a set of discussive formulae of a certain kind. These formulae are formed in the standard way from propositional letters: ' p^{\prime} ' ' q ', ' p_{0} ', ' p_{1} ', ' p_{2} ', ...; truth-value operators: ' \neg ' and ' \vee ' (negation and disjunction); discussive connectives: $' \Lambda^{d}, ' \rightarrow \rightarrow^{d^{d}}, \quad$ ' \leftrightarrow^{d} ' (conjunction, implication and equivalence); and brackets. Let For ${ }^{d}$ be the set of all these formulae.
definition of discussive locic D_{2}. The logic D_{2} was formulated with the help of the modal logic S 5 as follows (see $[7,8]$):

$$
\mathrm{D}_{2}:=\left\{A \in \text { For }{ }^{\mathrm{d}}:\left\ulcorner\diamond A^{\bullet}\right\urcorner \in \mathrm{S} 5\right\},
$$

where (-$)^{\bullet}$ is a transtation of discussive formulae into modal language, i.e., it is a function (- - from For d into Form such that:

1. $(a)^{\bullet}=a$, for any propositional letter a,
2. for any $A, B \in$ Ford:
(a) $(\neg A)^{\bullet}=\left\ulcorner\neg A^{\bullet}\right\urcorner$.
(b) $(A \vee B)^{\bullet}=\left\ulcorner A^{\bullet} \vee B^{\bullet}\right\urcorner$,
(c) $\left(A \wedge^{d} B\right)^{\bullet}=\left\ulcorner A^{\bullet} \wedge \diamond B^{\bullet}\right\urcorner$,
(d) $\left(A \rightarrow^{d} B\right)^{\bullet}=\left\ulcorner\diamond A^{\bullet} \rightarrow B^{\bullet}\right\urcorner$,
(e) $\left(A \leftrightarrow^{d} B\right)^{\bullet}=\left\ulcorner\left(\diamond A^{\bullet} \rightarrow B^{\bullet}\right) \wedge \diamond\left(\diamond B^{\bullet} \rightarrow A^{\bullet}\right)\right\urcorner$.

Of course, D_{2} is closed under (sb) with respect to For ${ }^{\mathrm{d}}$. Moreover, D_{2} is closed under modus ponens for ' $\rightarrow{ }^{d}$ ':

$$
A, A \rightarrow B / B
$$

$$
\left(m p_{d}\right)
$$

because S 5 is closed under the following rule:

$$
\begin{equation*}
\diamond \varphi, \diamond(\diamond \varphi \rightarrow \psi) / \diamond \psi \tag{RC}
\end{equation*}
$$

definitions of iaśkowski-like logics. In [3, 5] a logic D_{2}^{*} was formulated with the help of the modal logic S 5 as follows:

$$
D_{2}^{*}:=\left\{A \in \text { For }{ }^{d}:\left\ulcorner\Delta A^{*}\right\urcorner \in S 5\right\},
$$

where $(-)^{*}$ is a function from For ${ }^{d}$ into Form such that for any $A, B \in$ For ${ }^{\text {d }}$

$$
(c)^{*}\left(A \wedge^{d} B\right)^{*}=\left\ulcorner\diamond A^{*} \wedge B^{*}\right\urcorner
$$

$(\mathrm{e})^{*}\left(A \leftrightarrow{ }^{\mathrm{d}} B\right)^{*}=\left\ulcorner\diamond\left(\diamond A^{*} \rightarrow B^{*}\right) \wedge\left(\diamond B^{*} \rightarrow A^{*}\right)\right\urcorner$.
and other cases stay as in the definition of the function (-$)^{\bullet}$.

Additionally a logic D_{2}^{-}was defined as follows:

$$
D_{2}^{-}:=\left\{A \in \text { For }^{d}:\left\ulcorner\diamond A^{\wedge}\right\urcorner \in S 5\right\}
$$

where $(-)^{\text {^ }}$ is a function from For into For $_{\mathrm{m}}$ such that for any $A, B \in$ Ford:
(c) ${ }^{\wedge}\left(A \wedge^{d} B\right)^{\wedge}=\left\ulcorner A^{\wedge} \wedge B^{\wedge}\right.$,
$(e)^{\wedge}\left(A \leftrightarrow{ }^{\mathrm{d}} B\right)^{\wedge}=\left\ulcorner\left(\diamond A^{\wedge} \rightarrow B^{\wedge}\right) \wedge\left(\diamond B^{\wedge} \rightarrow A^{\wedge}\right)^{\urcorner}\right.$.
and, as previously, other cases stay the same. (Notice that in the translation for conjunction ' \diamond ' is not used.)
And finally, a logic $D_{2}^{* *}$ was formulated also with the help of the modal logic S 5 as follows:

$$
D_{2}^{* *}:=\left\{A \in \text { For }^{d}:\left\ulcorner\diamond A^{\times}\right\urcorner \in S 5\right\},
$$

where $(-)^{\times}$is a function from For ${ }^{\mathrm{d}}$ into For $_{\mathrm{m}}$ such that for any $A, B \in$ Ford:
$(c)^{\times}\left(A \wedge^{d} B\right)^{\times}=\left\ulcorner\diamond A^{\times} \wedge \diamond B^{\times}\right\urcorner$.
$(e)^{\times}\left(A \leftrightarrow^{\mathrm{d}} B\right)^{\times}=\left\ulcorner\diamond\left(\diamond A^{\times} \rightarrow B^{\times}\right) \wedge \diamond\left(\diamond B^{\times} \rightarrow A^{\times}\right)\right\urcorner$.
and again, other cases stay unchanged.
Thus, all these logics have different conditions for conjunction. Notice that for each translation - call it 'any', for all $A, B \cong$ For ${ }^{\mathrm{d}}:\left(A \leftrightarrow{ }^{\mathrm{d}}\right.$ $B)^{\text {any }}=\left(\left(A \rightarrow^{d} B\right) \wedge^{d}\left(B \rightarrow^{d} A\right)\right)^{\text {any }}$. Of course, these logics are also closed under (sb) and (mp_{d}).

In [2] Ciuciura observed that $\mathrm{D}_{2}^{*} \nsubseteq \mathrm{D}_{2}$. It was shown that one of the axioms of the logic D_{2}^{*} is not a thesis of the logic D_{2}. We also have:

Fact 1.3 ([11]). Every two logics among $\mathrm{D}_{2}, \mathrm{D}_{2}^{*}, \mathrm{D}_{2}^{-}$, and $\mathrm{D}_{2}^{* *}$ cross each other.

2 MODAL LOGICS DEFINING D_{2}, $\mathrm{D}_{2}^{*}, \mathrm{D}_{2}^{-}$and $\mathrm{D}_{2}^{* *}$
There is a procedure (see [9]) that for a given class of logics fulfilling some natural conditions, returns, in the considered class, the minimal
logic which has the same theses beginning with ' \diamond ' as S 5 . The same can be repeated for $\mathrm{D}_{2}^{*}, \mathrm{D}_{2}^{-}$, and $\mathrm{D}_{2}^{* *}$.

We say that a modal logic L defines $D_{2}\left(\right.$ resp. $\left.D_{2}^{*}, D_{2}^{-}, D_{2}^{*}\right)$ iff

- $\mathrm{D}_{2}=\left\{A \in\right.$ For $\left.{ }^{\mathrm{d}}:\left\ulcorner\diamond A^{\bullet}\right\urcorner \in L\right\}$ (resp.
- $D_{2}^{*}=\left\{A \in\right.$ For $\left.^{d}:\left\ulcorner\diamond A^{*}\right\urcorner \subseteq L\right\}$.
- $\mathrm{D}_{2}^{-}=\left\{A \in\right.$ For $\left.{ }^{\mathrm{d}}:\left\ulcorner\diamond A^{\wedge}\right\urcorner \in L\right\}$
- $\mathrm{D}_{2}^{* *}=\left\{A \in\right.$ For $\left.{ }^{\mathrm{d}}:\left\ulcorner\Delta A^{\times}\right\urcorner \in L\right\}$).

There are known other modal logics defining D_{2}. The same holds for the other three discussive logics.

We see that while expressing the logic D_{2} we refer to modal logics which
have the same theses beginning with ' \diamond ' as S 5 .
Let 55_{\diamond} be the set of all these logics, that is,

$$
L \in \text { S5. iff } \quad \forall \varphi \in \text { For }_{m}(\ulcorner\diamond \varphi\urcorner \in L \Longleftrightarrow\ulcorner\diamond \varphi\urcorner \in S 5) \text {. }
$$

By the definition we see:
FACT 2.1. For any $L \in S 5$:

1. $\{\ulcorner\diamond \varphi\urcorner:\ulcorner\diamond \varphi\urcorner \in \mathrm{S} 5\} \subseteq L$,
2. If $L \in S 5_{0}$, then L defines $D_{2}, D_{2}^{*}, D_{2}^{-}$and $D_{2}^{* *}$.

Recall that rteS5 ${ }^{\mathrm{M}}, \mathrm{cmS} 5^{\mathrm{M}}, \mathrm{e} S 5^{\mathrm{M}}, \mathrm{mS} 5^{\mathrm{M}}, \mathrm{rS} 5^{\mathrm{M}}$ and $\mathrm{S} 5^{\mathrm{M}}$ are respectively, the smallest rte-, cm-, congruential, monotonic, regular and normal logic in S 5 . Thus, by Fact 2.1 each of them defines $\operatorname{logics} \mathrm{D}_{2}^{*}$. D_{2}^{-}and $\mathrm{D}_{2}^{* *}$.

Let (-)any be any translation of discussive formulae into modal language, i.e., $(-)^{\text {any }}$ is a function from For ${ }^{\text {d }}$ into For m, $_{\mathrm{m}}$, and let

$$
\mathrm{D}_{2}^{\text {any }}:=\left\{A \in \text { For }^{d}:\left\ulcorner\diamond A^{a n y}\right\urcorner \in \mathrm{S} 5\right\}
$$

Corollary 2.2 ([11]). The logics re $5^{\mathrm{M}}, \mathrm{cmS5}^{\mathrm{M}}, \mathrm{eS} 5^{\mathrm{M}}, \mathrm{mS5} 5^{\mathrm{M}}, \mathrm{rS5} 5^{\mathrm{M}}$. and $\mathrm{S} 5^{\mathrm{M}}$ are the smallest rte-, $\mathrm{cm}-$, congruential, monotonic, regular, and normal logic in $S 5$ 。 defining $D_{2}^{\text {any }}$, respectively.

Fact 2.3 (99$]$). For any rte-logic $L: L$ defines D_{2} iff $L \in 5_{5}$.
In the proof of the next fact a function $(-)^{0_{1}}$ from For $_{\mathrm{m}}$ into For ${ }^{\text {d }}$ which <<un-modalizes>> every modal formula was used:

1. $(a)^{{ }^{\circ}}=a$, for any propositional letter a,
2. for any $\varphi, \psi \in$ Form:
(a) $(\neg \varphi)^{0_{1}}=\left\ulcorner\neg \varphi^{01}\right\urcorner$.
(b) $\quad(\varphi \vee \psi)^{0_{1}}=\left\ulcorner\varphi^{0_{1}} \vee \psi^{\left.0^{\circ}\right\urcorner}\right.$.
(c) $(\varphi \wedge \psi)^{0_{1}}=\left\ulcorner\neg\left(\neg \varphi^{0_{1}} \vee \neg \psi^{0_{1}}\right)\right\urcorner$,
(d) $(\varphi \rightarrow \psi)^{0_{1}}=\left\ulcorner\neg \varphi^{\circ_{1}} \vee \psi^{\left.0^{\circ}\right\urcorner}\right.$.
(e) $\quad(\varphi \leftrightarrow \psi)^{{ }^{1}}=\left\ulcorner\neg\left(\neg\left(\neg \varphi^{0_{1}} \vee \psi^{0^{\circ}}\right) \vee \neg\left(\neg \psi^{01} \vee \varphi^{\circ}\right)\right)\right\urcorner$,
(f) $\quad(\diamond \varphi)^{\circ 1}=\left\ulcorner\varphi^{\circ 1} \wedge^{d}(p \vee \neg p)\right\urcorner$,
(g) $(\square \varphi)^{\circ}=\left\ulcorner\neg \varphi^{\circ} \rightarrow \rightarrow^{\dagger} \neg(p \vee \neg p)\right\urcorner$.

Next we observe that for any $A, B \in$ For $\left._{\mathrm{m}}, \S \in\{-\rangle,\right\}$ and $* \in\{\wedge, \vee$ $, \rightarrow, \leftrightarrow\}$ the following formulae belong to PL :

$$
\begin{align*}
(\S A)^{\circ *} & \leftrightarrow \S A^{\circ *} \\
(A * B)^{0 *} & \leftrightarrow\left(A^{\circ *} * B^{\circ *}\right) \tag{*}\\
(\square A)^{\circ *} & \leftrightarrow \neg \diamond \neg A^{0 *}
\end{align*}
$$

And finally we see that for any formulae A_{1}, \ldots, A_{n}, C we obtain:

$$
C^{\circ *} \in L \text { iff } C\left[{ }^{\nabla A_{1}} / \neg \Delta, A_{1}, \ldots, \square A_{n} / \neg \Delta \neg A_{n}\right] \in L \text {. }
$$

FACT 2.4 ([11]). For any rte-logic $L: L$ defines D_{2}^{*} iff $L \in S 5_{0}$.
On the other hand in the proof of the below fact another function $(-)^{o_{2}}$ from For r_{m} into For ${ }^{d}$ is used where for any $\varphi \in$ For $_{\mathrm{m}}$:
(f) $(\diamond \varphi)^{\circ_{2}}=\left\ulcorner\neg\left(\varphi^{\circ} \rightarrow^{\mathrm{d}} \neg(p \vee \neg p)\right)\right.$,

The other cases are as in the formulation of the function $(-)^{\circ}$.
Fact 2.5 ([11]). For any rte-logic $L: L$ defines D_{2}^{-}iff $L \in S 5$.
And finally, in the proof of Fact 2.6 a function $(-)^{o_{3}}$ from Form into For ${ }^{\text {d }}$ is needed such that for any $\varphi \in$ For :
(f) $(\diamond \varphi)^{\circ_{3}}=\left\ulcorner\varphi^{\circ_{3}} \wedge^{d} \varphi^{\circ_{3}}\right.$?

Again, the other cases stay unchanged.
FACT 2.6 ([11]). For any rte-logic $L: L$ defines $\mathrm{D}_{2}^{* *}$ iff $L \in \mathrm{~S} 5$.
COROLLARY 2.7 ([11]). The logic rteS5 ${ }^{\mathrm{M}}$ (resp. $\mathrm{cmS} 5^{\mathrm{M}}, \mathrm{eS} 5^{\mathrm{M}}, \mathrm{mS} 5^{\mathrm{M}}$, $\mathrm{rS5}{ }^{\mathrm{M}}, \mathrm{S} 5^{\mathrm{M}}$) is the smallest rte- (resp. cm-, congruential, monotonic. regular, normal) modal logic defining the $\operatorname{logics} \mathrm{D}_{2}, \mathrm{D}_{2}^{*}, \mathrm{D}_{2}^{-}$, and $\mathrm{D}_{2}^{* *}$.

Taking into account the above Corollary, we see that to find differences between logics defining respective discussive logics one has to search for modal logics that are weaker than rteS5 ${ }^{\mathrm{M}}$. There are considered $([11])$ the weakest modal logics defining respectively D_{2}^{*}, D_{2}^{-}, and $\mathrm{D}_{2}^{* *}$. In the case of these modal logics, we do not have all theses of S 5 that begin with ' \diamond '.

3 the smallest modal logics defining $D_{2}^{*}, \mathrm{D}_{2}^{-}, \mathrm{D}_{2}^{* *}$
3.1 Logics $\mathrm{A}, \mathrm{A}^{*}, \mathrm{~A}^{-}$, and A^{\times}

Let A, A^{*}, A^{-}, and A^{\times}be the smallest logics defining $D_{2}, D_{2}^{*}, D_{2}^{-}$, and $D_{2}^{* *}$, respectively. We define the following set of modal formulae:

$$
\begin{aligned}
\text { Gen } & =\left\{\varphi \in \text { For }_{m}: \exists_{A \in D_{2}} \varphi=\left\ulcorner\diamond A^{\bullet}\right\urcorner\right\} \\
& =\left\{\left\ulcorner\diamond A^{\bullet}\right\urcorner \in \text { For }_{m}: A \in D_{2}\right\}, \\
\text { Gen }^{*} & :=\left\{\varphi \in \text { For }_{m}: \exists_{A \in D_{2}^{*}} \varphi=\left\ulcorner\diamond A^{*}\right\urcorner\right\} \\
& =\left\{\left\ulcorner\diamond A^{*}\right\urcorner \in \text { For }_{m}: A \in D_{2}^{*}\right\}, \\
\text { Gen }^{\wedge} & :=\left\{\varphi \in \text { For }_{m}: \exists_{A \in D_{2}^{-}} \varphi=\left\ulcorner\diamond A^{\sim}\right\urcorner\right\} \\
& =\left\{\left\ulcorner\diamond A^{\wedge}\right\urcorner \in \text { For }_{m}: A \in D_{2}^{-}\right\}, \\
\text {Gen }^{\times} & :=\left\{\varphi \in \text { For }_{m}: \exists_{A \in D_{2}^{* *}} \varphi=\left\ulcorner\diamond A^{\times}\right\urcorner\right\} \\
& =\left\{\left\ulcorner\diamond A^{\times\urcorner} \in \text { For }_{m}: A \in D_{2}^{* *}\right\},\right.
\end{aligned}
$$

Lemma 3.1 ([11]). Every modal logic defining D_{2} (resp. D_{2}^{*}, D_{2}^{-}and $D_{2}^{* *}$) includes the set $\operatorname{Sub}(\operatorname{Cen})$ (resp. $\operatorname{Sub}\left(\operatorname{Gen}^{*}\right), \operatorname{Sub}\left(\operatorname{Gen}^{\wedge}\right), \operatorname{Sub}\left(\operatorname{Gen}^{x}\right)$).

Let Axpl be the set of modal formulae such that the pair \langle Axpl. $\{(\mathrm{mp})\}\rangle$ is an axiomatization of PL .

FACT $3.2([11])$. A (resp. $\left.\mathrm{A}^{*}, \mathrm{~A}^{-}, \mathrm{A}^{*}\right)$ is the smallest modal logic including the set Gen (resp. Gen* $\mathrm{Cen}^{\text {², }}$ Gen ${ }^{\times}$). Consequently, A (resp. A^{*}, A^{-}, A^{\times}) is axiomatized by the sum of sets $A x p l,\left(r e p^{a}\right)$, and $\operatorname{Sub}($ Cen $)$ (resp. $\left.\operatorname{Sub}\left(\mathrm{Cen}^{*}\right), \operatorname{Sub}\left(\mathrm{Gen}^{n}\right), \operatorname{Sub}\left(\operatorname{Gen}^{\times}\right)\right)$and (mp) as the only rule.

Corollary 3.3 ([11]). Every two logics among $\mathrm{A}, \mathrm{A}^{*}, \mathrm{~A}^{-}$, and A^{\times}cross each other.

From facts 2.4-2.6 we obtain:
Fact $3.4([10,11])$. The logic A is not an re-logic, so $\mathrm{A} \subsetneq$ rte $S 5^{\mathrm{M}}$. Moreover, none of the logics A^{*}, A^{-}, and A^{x} is an rte-logic.
3.2 Simplified axiomatisations of the considered JaAllkowski-like discussive logics

Although Fact 3.2 gives an axiomatisations of $\operatorname{logics} A, A^{*}, A^{-}$, and A^{\times}, it is not elegant since the sets Cen, Gen~, Gen* and Gen ${ }^{\times}$are infinite (other constituents of sums constituting axiomatisations of the considered modal logics can be easily replaced by respective finite sets). We recall Kotas's method of axiomatisation of D_{2}, since it can also be adopted to finally give axiomatisations of the considered modal logics.

For any rule R on For m_{m} we define the following rules R^{\diamond} and R^{\square} on Form:

$$
\begin{aligned}
& R^{\diamond}:=\left\{\left\langle\diamond \varphi_{1}, \ldots, \diamond \varphi_{n}, \diamond \psi\right\rangle:\left\langle\varphi_{1}, \ldots, \varphi_{n}, \psi\right\rangle \subseteq R\right\} \\
& R^{\square}:=\left\{\left\langle\square \varphi_{1}, \ldots, \square \varphi_{n}, \square \psi\right\rangle:\left\langle\varphi_{1}, \ldots, \varphi_{n}, \psi\right\rangle \in R\right\}
\end{aligned}
$$

Moreover, for any set of rules \mathcal{R} on For $_{\text {r }}$ we put $\mathcal{R}^{\diamond}:=\left\{R^{\diamond}: R \in \mathcal{R}\right\}$ and $\mathcal{R}^{\square}:=\left\{R^{\square}: R \in \mathcal{R}\right\}$.

Now, let $A x$ Taut be any finite axiomatization of Taut with (mp) and (sb). Next we consider the following rules:

$\square \varphi / \varphi$	$\left(\right.$ nec $\left.^{-1}\right)$
$\diamond \varphi / \varphi$	$\left(\right.$ pos $\left.^{-1}\right)$

In [12] a set M-S5 $:=\left\{\varphi \in\right.$ For $\left._{\mathrm{m}}: \nabla \varphi \in \mathrm{S} 5\right\}$ was considered. Adopting axiomatisation given in [4] we see that for the case where ' \diamond ' is a primitive symbol of the language it has the following form:

Fact 3.5 ([4]). 1. The set M-S5 is axiomatized by the sum of sets $\square A x_{\text {Taut }}^{\text {in }},\left(r e p^{\square}\right),\{\square K, \square T, \square 5\}$, and the rules $(\mathrm{sb}),\left(\mathrm{nec}^{-1}\right),\left(\mathrm{pos}^{-1}\right)$, (nec) ${ }^{\square}$, (mp)
2. The set $\square S 5$ is axiomatized by the sum of the sets $\square A x{ }_{\text {Taut }}^{\text {fin }}\left(r e p^{\square}\right)$, $\{\square K, \square T, \square 5\}$, and the rules (sb), (nec) $)^{\square},(\mathrm{mp})^{\square}$.

It appears that unmodalizing functions used in proofs of facts 2.4-2.6 are variants of the function used in [4]. Let $(-)^{\circ}:$ For $_{m} \rightarrow$ For ${ }^{\text {d }}$ be a function such that for any $\varphi \in$ Form:
(f) $(\diamond \varphi)^{\circ}=(p \vee \neg p) \wedge^{d} \varphi^{\circ}$,
(g) $(\square \varphi)^{\circ}=\neg\left((p \vee \neg p) \wedge^{d} \neg \varphi^{\circ}\right)$,
and other conditions stay as in the definition of the function o_{1}.
Now we have
Lemma $3.6([4])$. 1. For any $A \in$ For ${ }^{\text {d }}$, if $A \in D_{2}$, then $A^{\bullet} \in \mathrm{M}-\mathrm{S} 5$.
2. For any $\phi \in$ For $_{m}$, if $\varphi \in \operatorname{M}$-S5, then $\varphi^{\circ} \in \mathrm{D}_{2}$.

Let us recall the following notation (see [10]). For any $\Gamma \subseteq$ For $^{\text {d }}$ and any translation $\$$ from For ${ }^{\text {d }}$ into Form we put

$$
\left.\Gamma^{\diamond S}:=\left\{\Gamma \diamond A^{S}\right\urcorner \in \text { For }_{m}: A \in \Gamma\right\} .
$$

Of course, for $\$=\bullet$ we have Gen $=\mathrm{D}_{2}^{*}$.
Moreover, for any rule R on For ${ }^{\text {d }}$ we define the following rule $R^{\circ s}$ on Form:

$$
\begin{aligned}
R^{\diamond \$}:= & \left\{\left\langle\varphi_{1}, \ldots, \varphi_{n}, \psi\right\rangle: \exists_{A_{1}, \ldots, A_{n}, B \in \text { Ford }} \varphi_{1}=\left\ulcorner\diamond A_{1}^{\$\urcorner}\right\urcorner \ldots, \varphi_{n}\right. \\
& =\left\ulcorner\diamond A_{n}^{\$ \neg}\right\urcorner, \psi=\left\ulcorner\diamond B^{\$\urcorner} \text { and }\left\langle A_{1}, \ldots, A_{1}, B\right\rangle \in R\right\} .
\end{aligned}
$$

Thus, for any $A_{1}, \ldots, A_{n}, B \in$ Ford:

$$
\left\langle A_{1}, \ldots, A_{n}, B\right\rangle \in R \text { iff }\left\langle\diamond A_{1}^{S}, \ldots, \diamond A_{n}^{S}, \diamond B^{\$}\right\rangle \in R^{\diamond 5}
$$

For \mathcal{R} being a set of rules on Form let $\mathcal{R}^{c s}:=\left\{R^{o s}: R \in \mathcal{R}\right\}$.
Similarly as in the case of modal logics, for all sets X and \mathcal{A} of discussive formulae and any set of rules \mathcal{R} in For ${ }^{\text {d }}$ we say that the pair $\langle\mathcal{A}, \mathcal{R}\rangle$ is an axiomatization of X iff X is the smallest set including \mathcal{A} and closed under all rules from \mathcal{R}.

FACT 3.7 ([10]). Let $\left\langle\mathcal{A},\left\{\left(\operatorname{mp}_{\mathrm{d}}\right)\right\}\right\rangle$ be an axiomatization of D_{2}. Then $\left\langle A x p l \cup\left(r e p^{\square}\right) \cup \mathcal{A}^{\bullet}, \quad\left\{\left(m p_{d}\right)^{0},(m p)\right\}\right\rangle \quad$ and $\left\langle A x p L \cup\left(r e p^{\square}\right) \cup \mathcal{A}^{\circ},\{(R C),(m p)\}\right\rangle$ are axiomatizations of A. Consequently, A is the smallest modal logic which includes the set \mathcal{A}° and is closed under the rule $\left(m p_{d}\right)^{\circ}(r e s p .(R C))$.

One can extend the above lemma to a theorem (see [10, Fact 4.2]) that can be used to obtain an axiomatisation of the logic A. We can use Kotas's axiomatisation $[4,6]$ of D_{2}. To be able to express Kotas's result, we recall his abbreviation:

$$
p \rightarrow{ }_{5}^{1} q:=\neg\left((r \vee \neg r) \wedge^{d} \neg(\neg p \vee q)\right)
$$

Theorem 3.8 ([4]). The logic D_{2} is axiomatised by the sum of the sets $\left(\square A x_{\text {Taut }}^{\text {fin }}\right)^{\circ},\left(\square\left(r e p^{\square}\right)\right)^{\circ},\left\{(\square K)^{\circ},(\square T)^{\circ},(\square 5)^{\circ}\right\}$, and the formulae $\left\ulcorner(p \S q)^{\bullet \circ} \rightarrow_{s}^{1}(p \S q)\right\urcorner$ and $\left\ulcorner(p \S q) \rightarrow_{s}^{1}(p \S q)^{\bullet \circ}\right\urcorner$, for $\S \in\left\{\Lambda^{d}\right.$ $\left., \vee, \rightarrow^{\mathrm{d}}, \leftrightarrow^{\mathrm{d}}\right\}$, and the rules $(\mathrm{sb})^{\circ},\left(\mathrm{nec}^{-1}\right)^{\circ},\left(\mathrm{pos}^{-1}\right)^{\circ},(\mathrm{nec})^{\square 0},\left(\mathrm{mp} \rightarrow \frac{1}{1}\right)$, $(m p)^{\square 0}$.

Using translations $(-)^{*}$ and $(-)^{o_{i}}$ (resp. $(-)^{\wedge}$ and $(-)^{c_{2}} ;(-)^{o_{3}}$ and $(-)^{\times}$) we extend Kotas' Lemma 3.6 to the case of D_{2}^{*}, D_{2}^{-}, and $\mathrm{D}_{2}^{* *}$.

Lemma 3.9. 1. (a) For any $A \in$ For ${ }^{d}$, if $A \in D_{2}^{*}$, then $A^{*} \in M-S 5$.
(b) For any $\phi \in$ For $_{m}$, if $\varphi \in \operatorname{M}$-S5, then $\varphi^{o_{1}} \in D_{2}^{*}$.
2. (a) For any $A \in$ For ${ }^{d}$, if $A \in D_{2}^{-}$, then $A^{n} \in M-S 5$.
(b) For any $\phi \in$ For $_{n}$, if $\varphi \in \mathrm{M}-\mathrm{S} 5$, then $\varphi^{0_{2}} \in \mathrm{D}_{2}^{-}$
3. (a) For any $A \in$ For ${ }^{\text {d }}$, if $A \in \mathrm{D}_{2}^{* *}$, then $A^{\times} \in \mathrm{M}-\mathrm{S} 5$.
(b) For any $\phi \in$ For $_{\mathrm{m}}$, if $\varphi \in \mathrm{M}-\mathrm{S} 5$, then $\varphi^{0_{3}} \in \mathrm{D}_{2}^{* *}$.

We can easily obtain axiomatisations of $\mathrm{D}_{2}^{*}, \mathrm{D}_{2}^{-}$and $\mathrm{D}_{2}^{* *}$. Now we will use respective abbreviations for those logics:

$$
\begin{aligned}
& p \rightarrow{ }_{s}^{2} q:=\neg\left(\neg(\neg p \vee q) \wedge^{d}(r \vee \neg r)\right) \\
& p \rightarrow{ }_{s}^{3} q:=\left(\neg(-p \vee q) \rightarrow^{d} \neg(r \vee \neg r)\right)
\end{aligned}
$$

We see that in the next theorem, in the case of $\mathrm{D}_{2}^{* *}$ one can use either \rightarrow_{s}^{1} or \rightarrow_{s}^{2}. Besides, the implication \rightarrow_{s}^{3} can be used in each case.

Theorem 3.10. 1. The logic D_{2}^{*} is axiomatised by the sum of the sets $\left(\square A x_{\text {Taut }}^{\text {in }}\right)^{\circ_{1}}, \square\left(\left(\text { rep }^{\square}\right)\right)^{\circ_{1}},\left\{(\square K)^{\circ_{1}},(\square T)^{\circ_{1}},(\square 5)^{\circ_{1}}\right\}$, and $r(p \S$ $q)^{* o_{1}} \rightarrow_{s}^{2}(p \S q) 7$ and $\Gamma(p \S q) \rightarrow_{s}^{2}(p \S q)^{\left.* o_{1}\right\rceil}$, for $\S \in\left\{\wedge^{d}, \vee, \rightarrow^{d}\right.$,$\left.\leftrightarrow^{d}\right\}$ as axioms, and the rules $(\mathrm{sb})^{o_{1}},\left(\mathrm{nec}^{-1}\right)^{o_{1}},\left(\mathrm{pos}^{-1}\right)^{o_{1}},(\mathrm{nec})^{\mathrm{o}_{1}}$, $\left(\mathrm{mp}_{\rightarrow-\frac{2}{s}}\right),(\mathrm{mp})^{\square \mathrm{O}_{1}}$.
2. The logic D_{2}^{-}is axiomatised by the sum of three sets ($\left.\square \mathrm{Ax} \times \mathrm{Tin}_{\text {Taut }}\right)^{\circ}$, , $\left(\square\left(\text { rep } p^{\square}\right)\right)^{o_{2}}, \quad\left\{(\square K)^{\mathrm{c}_{2}}, \quad(\square T)^{\mathrm{o}_{2}}, \quad(\square 5)^{\mathrm{o}_{2}}\right\}$ and the formulae $\Gamma(p \S q)^{n_{2}} \rightarrow_{s}^{3}(p \S q)^{7}$ and $\Gamma(p \S q) \rightarrow_{s}^{3}(p \S q)^{\left.n_{2}\right\urcorner}$, for $\S \in\left\{\Lambda^{d}, V\right.$ $\left., \rightarrow^{\mathrm{d}}, \leftrightarrow^{\mathrm{d}}\right\}$, as axioms, and the rules $(\mathrm{sb})^{\mathrm{O}_{2}},\left(\mathrm{nec}^{-1}\right)^{\mathrm{O}_{2}},\left(\mathrm{pos}^{-1}\right)^{\mathrm{O}_{2}},(\mathrm{nec})^{\mathrm{DO}_{2}}$, $\left(m p_{\rightarrow \frac{3}{5}}\right),(m p)^{\square o_{2}}$.
3. The logic $D_{2}^{* *}$ is axiomatised by the sum of three sets $\left(\square A x x_{\text {Taut }}^{\text {fin }}\right)^{o_{3}}$, $\left(\square\left(\text { rep }^{\square}\right)\right)^{\circ_{3}},\left\{(\square K)^{\circ_{3}},(\square T)^{\circ_{3}},(\square 5)^{\circ_{3}}\right\}$, and $\left\ulcorner(p \S q)^{\times_{3}} \rightarrow_{5}^{2}(p \S q)^{7}\right.$ and $\left.\Gamma(p \S q) \rightarrow_{s}^{2}(p \S q)^{\times O_{3}}\right\urcorner$, for $\S \in\left\{\wedge^{d}, \vee, \rightarrow^{\mathrm{d}}, \leftrightarrow^{\mathrm{d}}\right\}$ as axioms, and the rules $(\mathrm{sb})^{\times^{o_{3}}},\left(\mathrm{nec}^{-1}\right)^{\mathrm{o}_{3}},\left(\mathrm{pos}^{-1}\right)^{\mathrm{o}_{3}},(\mathrm{nec})^{\square^{0_{3}}},\left(\mathrm{mp} \rightarrow \frac{2}{5}\right),(\mathrm{mp})^{\square^{o_{3}}}$.

The obtained axiomatisations of the logics D_{2}^{*}, D_{2}^{-}and $D_{2}^{* *}$ can be used to give axiomatisations of logics $\mathrm{A}^{*}, \mathrm{~A}^{-}$, and A^{\times}. Fact 3.7 can be extended to any axiomatization of D_{2} and also of D_{2}^{-}, D_{2}^{*}, and $D_{2}^{* *}$. In such a way we obtain an extension of the mentioned Fact 4.2 from [10] to the case of D_{2}^{-}, D_{2}^{*} and $D_{2}^{* *}$.

Theorem 3.11. Let $\langle\mathcal{A}, \mathcal{R}\rangle$ be an axiomatization of D_{2} (resp. $\mathrm{D}_{2}^{-}, \mathrm{D}_{2^{\prime}}^{*}$ $\mathrm{D}_{2}^{* *}$.

1. The pairs

- $\left\langle\operatorname{Axpl} \cup\left(r e p^{\square}\right) \cup \mathcal{A}^{0}, \mathcal{R}^{0 \cdot} \cup\{(m p)\}\right\rangle$,
- $\left\langle\operatorname{Axpl} \cup\left(r e p^{\circ}\right) \cup \mathcal{A}^{\infty *}, \mathcal{R}^{\infty \times} \cup\{(m p)\}\right\rangle$,
- $\left\langle\operatorname{Axpl} \cup\left(r e p^{\square}\right) \cup \mathcal{A}^{o n}, \mathcal{R}^{o n} \cup\{(m p)\}\right\rangle$,
- $\left\langle\operatorname{Axpl} \cup\left(r e p^{\square}\right) \cup \mathcal{A}^{\diamond x}, \mathcal{R}^{\diamond \times} \cup\{(m p)\}\right\rangle$
are axiomatizations of the logics $\mathrm{A}, \mathrm{A}^{*}, \mathrm{~A}^{-}$, and A^{\times}, respectively.

2. The logic $\mathrm{A}\left(\right.$ resp. $\left.\mathrm{A}^{*}, \mathrm{~A}^{-}, \mathrm{A}^{\times}\right)$is the smallest modal logic which includes the set \mathcal{A}^{∞} (resp. $\left.\mathcal{A}^{\star}, \mathcal{A}^{\infty-}, \mathcal{A}^{\infty}\right)$ and is closed under all rules from the set $\mathcal{R}^{\circ \cdot}$ (resp. $\mathcal{R}^{\infty}, \mathcal{R}^{\infty-}$ and \mathcal{R}°).
```
REFERENCES
```

13. Bull, R. A., and K. Secerberc, 'Basic Mlodal Logic', pp. 1-88 in Handbook of Philosophical Logic, vol. II. D. M. Gabbay and F. Guenthner (eds.), Dordrecht: D. Reidel Publishing Company, 1984.
"2; Cilcilra, J., 'On the da Costa, Dubikajtis and Kotas' system of the discursive logic, D_{2}^{*}, Logic and Logical Philosophy 14:235-252, 2005.
14. Da Costa, N. C. A., and L. Dlbikajtis, 'On Jaśkowski's discussive logic', 'in:: A. I. Arrlda, \. C. A. da Costa, and R. Chliaqu (eds.), Non-Classical Logics, Model Theory and Computability, Amsterdam: \orth-Holland Publishing, 1977, 37-56.
:4 Kotas, J., 'The axiomatization of S. Jaskowski's discussive system', Studia Logica 33, 2:195-200, 1974.
[5: Kotas, J., and N.C.A. DA Costa, 'On some modal logical systems defined in connexion with Jaśkowski's problem', 'in:': A. I. Arruda, \. C. A. da Costa, and R. ChlaQul (eds.), Non Classical Logics, Model Theory and Computability, Amsterdam: NorthHolland Publishing, 1977, 57-73.
66^{6} Kotas, J., and A. Pieczkowski, 'Allgemeine logische und matematische Theorien', Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 16:353-376, (1970).

7: Jaśkowskı, S., 'Rachunek zdań dla systemÃşw dedukcyjnych sprzecznych', Studia Societatis Scientiarum Torunensis Sect. A, I, no. 5:57-77, 1948. In English: 'Propositional calculus for contradictory deductive systems", Studia Logica 24:143-157. 1969, and Logic and Logical Philosophy 7:35-56, 1999.
8. Jaśkowskı, S., 'O koniunkcji dyskusyjnej w rachunku zdaŕ dla systemów dedukcyjnych sprzecznych', Studia Societatis Scientiarum Torunensis Sect. A, vol. I, no. 8: 171-172, 1949. In English: 'On the discussive conjunction in the propositional calculus for inconsistent deductive systems', Logic and Logical Philosophy 7: 57-59, 1999.
[9]. Nasieniewski, M., and A. Pietruszczak, 'A method of generating modal logics defining Jaśkowski's discussive logic D_{2} ', Studia Logico 97, 1:161-182, 2011.
[10] Nasieniewski, M., and A. Pietrlszczak, 'On the weakest modal logics defining Jaskowski's logic D_{2} and the D_{2}-consequence', Bulletin of the Section of Logic 41(3/4): 215-232, 2012.

11 Nasienlewski, M., and A. Pietruszczak, 'On modal logics defining Jaśkowski-like discussive logics', submitted to Proceedings of 5th World Congress on Paraconsistency, Kolkata, February 13-17, 2014.
12] Perzanowski, J., 'On M-fragments and L-fragments of normal modat propositionat logics', Reports on Mathematical Logic 5:63-72, 1975.

Marek Nasieniewski and Andrzej Pietruszczak
Department of Logic
Nicolaus Copernicus Ĺniversity
Stanistawa Moniuszki 16/20, 87-100. Toruń
Poland
\{mnasien, pietrusz\}@umk.pl

