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Abstract. We provide sufficient conditions for a component of the Auslander-

Reiten quiver of an artin algebra to be determined by the composition factors

of its indecomposable modules.

1. Introduction and main results

Let A be an artin algebra over a commutative artin ring R. We denote by modA
the category of finitely generated right A-modules, by K0(A) the Grothendieck
group of A, and by [M ] the image of a module M from modA in K0(A). Thus,
for modules M and N in modA, [M ] = [N ] if and only if M and N have the same
composition factors including the multiplicities. An interesting open problem is to
find handy criteria for two indecomposable modules M and N in modA with the
same composition factors to be isomorphic. It was shown in [16] that it is the case
when M does not lie on a short cycle M → X →M of non-zero non-isomorphisms
in modA with X an indecomposable module, generalizing earlier results about
directing modules proved in [6], [8]. In fact, it follows from [7] and [16] that an
indecomposable module M in modA lies on a short cycle M → X →M in modA
if and only if M is the middle term of a chain Y → M → DTrY of non-zero
homomorphisms in modA with Y a non-projective indecomposable module. Hence
the above result from [16] gives in fact another interpretation of a result from [3]. An
important combinatorial and homological invariant of the module category modA
of an artin algebra A is its Auslander-Reiten quiver ΓA [4]. Sometimes, we may
recover the algebra A and the category modA from the shape of components C of
ΓA and their behaviour in the category modA. By a component of ΓA we mean a
connected component of the translation quiver ΓA.

In this article we are concerned with the problem of finding handy criteria for
a component C of the Auslander-Reiten quiver ΓA of an artin algebra A to be
uniquely determined in ΓA by the composition factors of its indecomposable mod-
ules. We say that two components C and D of ΓA have the same composition
factors if, for any element x ∈ K0(A), x = [M ] for an indecomposable module M
in C if and only if x = [N ] for an indecomposable module N in D .

In order to state the main results, we recall some concepts. For an artin alge-
bra A, we denote by radA the Jacobson radical of modA, generated by all non-
isomorphisms between indecomposable modules in modA, and by rad∞A the infinite
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radical of modA, which is the intersection of all powers radiA, i ≥ 1, of radA. Re-
call that, by a result of M. Auslander [2], rad∞A = 0 if and only if A is of finite
representation type, that is, there are in modA only finitely many indecomposable
modules up to isomorphism. Following [24], a component quiver ΣA of A is the
quiver whose vertices are the components C of ΓA, and two components C and D
of ΓA are linked in ΣA by an arrow C → D provided rad∞A (X,Y ) 6= 0 for some
modules X ∈ C and Y ∈ D . We note that a component C of ΓA is generalized
standard in the sense of [22] if and only if ΣA has no loop at C . By a short cycle
in ΣA we mean a cycle C → D → C , where possibly C = D . We also mention
that a component C of ΓA lies on a short cycle C → D → C in ΣA with C 6= D
if and only if C has an external short path X → Y → Z with X and Z in C and
Y in D [15]. Recall also that a translation quiver of the form ZA∞/(τ r), r ≥ 1,
is called a stable tube of rank r. We note that every regular component (without
projective modules and injective modules) of the Auslander-Reiten quiver ΓA of an
artin algebra A is either a stable tube or is acyclic (without oriented cycles) of the
form Z∆ for an acyclic locally finite connected valued quiver ∆ (see [13], [27]).

The following theorem is the first main result of this article.

Theorem 1. Let A be an artin algebra, and C and D two components of ΓA with
the same composition factors. Assume that C is not a stable tube of rank one and
does not lie on a short cycle in ΣA. Then C = D .

Therefore, the above theorem says that a generalized standard Auslander-Reiten
component C of an artin algebra A without external short paths, different from a
stable tube of rank one, is uniquely determined in ΓA by the composition factors
of its indecomposable modules. We point out that the assumption on C not being
a stable tube of rank one is essential for the validity of the above theorem. For
example, if H is the path algebra K∆ of a Euclidean quiver ∆ over an algebraically
closed field K, then the component quiver ΣH of H is acyclic and the Auslander-
Reiten quiver ΓH of H contains infinitely many pairwise different stable tubes of
rank one having the same composition factors (see [17], [20]).

The second main result of the article clarifies the situation in general.

Theorem 2. Let A be an artin algebra, C a stable tube of rank one in ΓA which
does not lie on a short cycle in ΣA, and D a component of ΓA different from C
and having the same composition factors as C . Then there is a quotient algebra B
of A such that the following statements hold:

(a) B is a concealed canonical algebra.
(b) C and D are stable tubes of a separating family of stable tubes of ΓB.
(c) D is a stable tube of rank one.

Recall that a concealed canonical algebra is an algebra of the form B = EndΛ(T ),
where Λ is a canonical algebra in the sense of C. M. Ringel [19] (see also [17])
and T is a multiplicity-free tilting module in the additive category add(PΛ), for
the canonical decomposition ΓΛ = PΛ ∨ T Λ ∨ QΛ of ΓΛ, with T Λ the canonical
infinite separating family of stable tubes of ΓΛ. Then ΓB admits a decomposition
ΓB = PB ∨ T B ∨ QB , where the image T B = HomΛ(T, T Λ) of the family T Λ via
the functor HomΛ(T,−) : mod Λ→ modB is an infinite separating family of stable
tubes of ΓB . Moreover, all but finitely many stable tubes of T B have rank one and
the same composition factors. We also mention that, by a result of H. Lenzing and
J. A. de la Peña [11], the class of concealed canonical algebras coincides with the
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class of artin algebras whose Auslander-Reiten quiver admits a separating family
of stable tubes.

We exhibit in Section 3 examples of generalized standard stable tubes of arbi-
trary large rank which are not uniquely determined by the composition factors. It
would be interesting to clarify if an acyclic generalized standard regular component
of the Auslander-Reiten quiver of an artin algebra is uniquely determined by its
composition factors (see Section 3 for related comments).

For basic background on the representation theory applied here we refer to [1],
[4], [17], [20], [21].

2. Proofs of Theorems 1 and 2

Let A be an artin algebra over a commutative artin ring R. We denote by τA and
τ−A the Auslander-Reiten translations DTr and TrD, respectively. For a module V
in modR, we denote by |V | its length over R. In the proofs a crucial role will be
played by the following formulas from [23, Proposition 4.1], being consequences of
[3, (1.4)] (see also [4, Corollary IV.4.3]).

For indecomposable modules M,N and X in modA with [M ] = [N ] the following
equalities hold:

(i) |HomA(X,M)| − |HomA(M, τAX)| = |HomA(X,N)| − |HomA(N, τAX)|,
(ii) |HomA(M,X)| − |HomA(τ−AX,M)| = |HomA(N,X)| − |HomA(τ−AX,N)|.

Let C and D be components of ΓA with the same composition factors and C does
not lie on a short cycle in ΣA. We assume that C 6= D and show in several steps
that C and D are stable tubes of rank one of a separating family of stable tubes in
the Auslander-Reiten quiver ΓB of a concealed canonical algebra B.

(1) C is a semi-regular component of ΓA (C does not contain both a projective
module and an injective module). Assume C contains a projective module P and
an injective module I. Since C and D have the same composition factors, there
exist modules M and N in D such that [P ] = [M ] and [I] = [N ]. Then we have
HomA(P,M) 6= 0 and HomA(N, I) 6= 0, because the top of P is a composition
factor of M , and the socle of I is a composition factor of N . Hence, we have
in ΣA the short cycle C → D → C , because HomA(P,M) = rad∞A (P,M) and
HomA(N, I) = rad∞A (N, I), a contradiction. Therefore, C is a semi-regular compo-
nent of ΓA.

(2) C is a cyclic component of ΓA (every module in C lies on an oriented cycle
in C ). Take a module X in C . It follows from our assumption that [X] = [Y ]
for some module Y in D , and so X is not uniquely determined by [X], because
C 6= D . Applying [16, Corollary 2.2], we conclude that we have in modA a short
cycle X → Z → X. Observe that then Z belongs to C , because C does not lie on a
short cycle in ΣA. Moreover, since there is no loop at C in ΣA, C is a generalized
standard component of ΓA, and hence rad∞A (X,Z) = 0 and rad∞A (Z,X) = 0. Then
HomA(X,Z) 6= 0 and HomA(Z,X) 6= 0 imply that there exist paths of irreducible
homomorphisms in modA from X to Z and from Z to X (see [4, Proposition
V.7.5]), and consequently an oriented cycle in C passing through X and Z. Hence,
C is a cyclic component.
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(3) C is a ray tube (obtained from a stable tube by a finite number (possibly empty)
of ray insertions) or a coray tube (obtained from a stable tube by a finite number
(possibly empty) of coray insertions) in the sense of [17, (4.5)] (see also [21, XV.2]).
This is a direct consequence of [14, (2.6)], since by (1) and (2) C is semi-regular
with oriented cycles.

(4) We may assume (without loss of generality) that C is a ray tube, hence without
injective modules. Let annA(C ) be the annihilator of C in A, that is, the intersec-
tion of the annihilators annA(X) = {a ∈ A | Xa = 0} of all modules X in C , and
B = A/ annA(C ). Then C is a faithful component of ΓB . Since C does not lie on
a short cycle in ΣA, we conclude that C is without external short paths [15], that
is, there are no paths U → V → W in modA with U and W in C but V not in
C . Then it follows from [9, Theorem 2] that B is an almost concealed canonical
algebra and C is a faithful ray tube of a separating family T B of ray tubes of ΓB .
Recall that then there exists a canonical algebra Λ (in the sense of C. M. Ringel
[17], [19]) such that B = EndΛ(T ) for a tilting module T in the additive category
add(PΛ ∪ T Λ) of PΛ ∪ T Λ, for the canonical decomposition ΓΛ = PΛ ∨ T Λ ∨ QΛ

of ΓΛ with T Λ the canonical separating family of stable tubes. By general theory
(see [11], [12], [17], [19], [25]), ΓB admits a decomposition

ΓB = PB ∨ T B ∨QB ,

where T B is a family of ray tubes separating PB from QB (in the sense of [19]).
In particular, T B is an infinite family of pairwise orthogonal generalized standard
ray tubes, HomB(T B ,PB) = 0, HomB(QB , T B) = 0, and HomB(QB ,PB) = 0. In
fact, since C is a faithful ray tube of T B , all ray tubes of T B except C are stable
tubes. Moreover, the separation property of T B implies that HomB(X ,C ) 6= 0
for any component X from PB and HomB(C ,Y ) 6= 0 for any component Y from
QB . Moreover, we note that QB contains all indecomposable injective B-modules.

(5) D is a component of ΓB . Write A = P ′ ⊕ P ′′ where the simple summands
of P ′/ radP ′ are exactly the simple composition factors of modules in C . Denote
by tP ′′(A) the ideal of A generated by the images of all homomorphisms in modA
from P ′′ to A. Since C is a semi-regular component of ΓA without external short
paths, it follows from arguments in [15, Section 1] that EndA(P ′) ∼= A/tP ′′(A) and
tP ′′(A) = annA(C ). Observe that 1A = e + f for orthogonal idempotents e and f
in A with P ′ = eA and P ′′ = fA, and consequently EndA(P ′) ∼= eAe and tP ′′(A) =
AfA. Clearly, then B = A/ annA(C ) ∼= eAe. On the other hand, since D has the
same composition factors as C , we have Nf = HomA(fA,N) = HomA(P ′′, N) = 0,
and consequently N annA(C ) = N(AfA) = (Nf)A = 0, for any module N in D .
This shows that D is a component of ΓB .

(6) D is a component of T B . Assume D /∈ T B . Fix a stable tube T ∗ of T B of rank
one, which is different from C . By general theory ([11], [12], [19]) B is a tubular
(branch) extension of a concealed canonical algebra C such that ΓC = PC∨T C∨QC ,
where T C is a separating family of stable tubes, PB = PC , C is obtained from a
stable tube T of T C by a finite number (possibly empty) of ray insertions and the
remaining tubes of T C and T B coincide (T C\T = T B\C ). Clearly, C is a quotient
algebra of B.



COMPONENTS DETERMINED BY THEIR COMPOSITION FACTORS 5

Let M be a module in C which lies in T . In particular, the composition factors
of M are C-modules. Take a module N ∈ D such that [M ] = [N ]. Assume
D ∈ QB . Since [M ] = [N ] there exists a projective module P ∈ PB = PC such
that HomB(P,N) 6= 0. By the separation property of T B we have HomB(X,N) 6= 0
for some module X ∈ T ∗. Then, applying the formula (i), we obtain

0 = |HomA(X,M)| − |HomA(M, τAX)| = |HomA(X,N)| − |HomA(N, τAX)|

= |HomA(X,N)| > 0,

since M and X belong to orthogonal tubes of T B and HomB(QB , T B) = 0. Dually,
if D ∈ PB , then there exists an injective module I inQB such that HomB(N, I) 6= 0.
By the separation property of T B , we have HomB(N,Y ) 6= 0 for some module
Y ∈ T ∗. Then, by the formula (ii), we have

0 = |HomA(M,Y )| − |HomA(τ−A Y,M)| = |HomA(N,Y )| − |HomA(τ−A Y,N)|

= |HomA(N,Y )| > 0,

since M and Y belong to orthogonal tubes of T B and HomB(T B ,PB) = 0. The
above contradictions show that D ∈ T B .

(7) T B is a family of stable tubes. Assume C contains a projective module P .
Take an indecomposable module Y in D with [P ] = [Y ]. Then the top of P is a
composition factor of Y and hence HomB(P, Y ) 6= 0. Therefore, HomB(C ,D) 6= 0
which contradicts the fact that C and D are orthogonal. We conclude that C is a
stable tube of T B . Clearly, then T B is a separating family of stable tubes of ΓB ,
and consequently B is a concealed canonical algebra, by [11].

(8) C and D are stable tubes of rank one. Since C and D belong to the separating
family T B of stable tubes of ΓB , we know that C and D are orthogonal, generalized
standard, and without external short paths. In particular, C and D do not lie on
short cycles in ΣB . Then, applying [23, Lemmas 3.1 and 3.3], we conclude that
C and D consist of modules which do not lie on infinite short cycles in modB.
Assume C is of rank r ≥ 2. Take a module X lying on the mouth of C (X has one
immediate predecessor and one immediate successor in C ). Then, by [23, Corollary
4.4], X is uniquely determined by [X], which contradicts the fact that [X] = [Y ]
for some module Y in D and C 6= D . Therefore, C is of rank one. Applying the
same arguments, we conclude that D is also of rank one.

Summing up, the proofs of Theorems 1 and 2 are provided.

3. Examples

Let K be an algebraically closed field and Q be a finite quiver. For any arrow
α ∈ Q, by s(α) and t(α) we mean the source and the target of α, respectively.
By KQ we denote the path algebra of Q. Recall that, if the quiver Q is acyclic,
then KQ is a hereditary algebra [1]. For a finite dimensional algebra H over K,
we denote by T (H) the trivial extension algebra of H by its duality H-H-bimodule
D(H) = HomK(H,K). Recall that T (H) = H ⊕ D(H) as K-vector space and
the multiplication in T (H) is given by (a, f)(b, g) = (ab, ag + fb) for a, b ∈ H and
f, g ∈ D(H). Then T (H) is a symmetric algebra and H is the quotient algebra of
T (H) by the ideal D(H).
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For a natural number n ≥ 4, Qn will be the quiver of the following form:

1

**

n+ 1

tt
3

//

jj

tt

4oo // · · ·oo // n− 2oo // n− 1oo

44

,,2

44

n

jj

Each arrow in Qn will be named either by α or by β in such a way that an arrow
which starts in the vertex 3 and terminates in the vertex 1 is α, and s(α) = t(β),
t(α) = s(β), for all arrows α and β. Let In be the admissible ideal in the path al-
gebra KQn generated by all paths αβ, βα such that s(αβ) 6= t(αβ), s(βα) 6= t(βα),
and all commutativity relations ω1−ω2, where ω1, ω2 are all paths of length 2 in Qn
such that their source and target coincide with the vertex i, for all i ∈ {3, . . . , n−1}.
Then by Λn we denote the quotient algebra KQn/In.

We consider now the quiver ∆n of Euclidean type D̃n, for any n ≥ 4, defined in
the following way. If n is an odd number, then ∆n is of the form:

1 n+ 1

xxqqqqq

3 //

``AAAAA

~~||
||

|
4 · · ·oo n− 2oo // n− 1

2 n

ffMMMMMMM

and similarly, for an even number n, the quiver ∆n is of the form:

1 n+ 1

3 //

``AAAAA

~~||
||

| 4 · · ·oo // n− 2 n− 1oo

88qqqqq

&&MMMMMMM

2 n

(in particular, all maximal subquivers of type An−1 of Qn have alternate orientation
of arrows).

Let Hn be the path algebra K∆n and H∗n the path algebra K∆∗n, where ∆∗n is
the opposite quiver of ∆n. Note that ∆n is a subquiver of Qn given by the arrows
α and ∆∗n is a subquiver of Qn given by the arrows β. Moreover, observe that Λn is
the trivial extension algebra T (Hn) of Hn and the trivial extension algebra T (H∗n)
of H∗n. In particular, Hn and H∗n are quotient algebras of Λn.

Assume now that n ≥ 4 is an odd number. For each arrow α in ∆n such that
s(α) = i and t(α) ∈ {i− 1, i+ 1}, for some i ∈ {3, . . . , n}, we put αl instead of α,
where l is given by the formula:

l =

{
i−1

2 ; α : i→ i+ 1

n− i+1
2 ; α : i→ i− 1.

Observe that l ∈ {1, . . . , n− 2}. We define the family of indecomposable represen-
tations Fα1

, . . . , Fαn−2
of Hn over K:
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• Fαl
for l /∈ {n−1

2 , n− 2} :

0 0

~~||
||

|

0 //

``BBBBB

~~||
||

|
· · · K

1
K · · · // 0

0 0

``BBBBB

where K stands in the vertices s(αl), t(αl), zero space elsewhere
(here by we mean // or oo );
• Fαn−1

2

:

0 K
1

||xxx
xx

0 //

``BBBBB

~~||
||

| 0 · · ·oo 0oo // K

0 K
1

bbFFFFF

where K stands in the vertices n− 1, n, n+ 1, zero space elsewhere;
• Fαn−2

:

K 0

~~||
||

|

K //

1bbFFFFF

1||xx
xxx

0 · · ·oo 0oo // 0

K 0

``BBBBB

where K stands in the vertices 1, 2, 3, zero space elsewhere.

Let El = Fαl
for l ∈ {1, . . . , n − 2}. Obviously E1, . . . , En−2 are pairwise or-

thogonal bricks. Direct calculation shows that τHn
El+1 = El if l ∈ {1, . . . , n − 3}

and τHn
E1 = En−2. Moreover, Ext2

Hn
(Er, Ep) = 0 for any r, p ∈ {1, . . . , n − 2},

because Hn is a hereditary algebra. It allows us to state that E1, . . . , En−2 form
the mouth of a standard stable tube T of rank n − 2 in ΓHn

(see [17],[20]). Since
pdHn

X ≤ 1 for any Hn-module X in T , it follows from [26, Proposition 1.1] that
T is also a component of the Auslander-Reiten quiver ΓΛn .

Analogously, let E∗1 , E
∗
2 , . . . , E

∗
n−2 be the indecomposable H∗n-modules, where

the indices l are given in such a way that, for any l ∈ {1, . . . , n − 2}, El and E∗l
have the same composition factors in mod Λn including the multiplicities. It is easy
to see that these modules form the mouth of a stable tube T ∗ of rank n− 2 in ΓH∗n
such that τH∗nE

∗
l = E∗l+1 for l ∈ {1, . . . , n−3} and τH∗nE

∗
n−2 = E∗1 . Using once more

[26, Proposition 1.1] we get that T ∗ is also a component of the Auslander-Reiten
quiver ΓΛn

. Note that top(E∗l ) = soc(El) and top(El) = soc(E∗l ) in mod Λn, for
any l ∈ {1, . . . , n− 2}. Therefore, T has an external short path El → E∗l → El in
mod Λn, which implies existence of a short cycle T → T ∗ → T in ΣΛn

. Observe
also that T and T ∗ have the same composition factors since [El] = [E∗l ] for all
l ∈ {1, . . . , n − 2}. Moreover, T and T ∗ are generalized standard stable tubes
in ΓΛn

since they are generalized standard in ΓHn
and ΓH∗n , respectively (see for

example [20, Chapter X]).
Assume n ≥ 4 is an even number. For each arrow α in Hn such that s(α) = i and

t(α) ∈ {i−1, i+1}, for some i ∈ {3, . . . , n−1}, we define the index l in the previous
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way. Similarly, we define the indecomposable representations Fα1 , . . . , Fαn−2 of Hn

over K:

• Fαl
for l /∈ {n−2

2 , n− 2} :

0 0

0 //

``BBBBB

~~||
||

|
· · · K

1
K · · · 0

>>|||||

  B
BB

BB
oo

0 0

where K stands in the vertices s(αl), t(αl), zero space elsewhere
(here by we mean // or oo );
• Fαn−2

2

:

0 K

0 //

``BBBBB

~~||
||

| 0 · · ·oo // 0 Koo

1 <<xxxxx

1 ""F
FFF

F

0 K

where K stands in the vertices n− 1, n, n+ 1, zero space elsewhere;
• Fαn−2

:

K 0

K //

1bbFFFFF

1||xx
xxx

0 · · ·oo // 0 0

>>|||||

  B
BB

BB
oo

K 0

where K stands in the vertices 1, 2, 3, zero space elsewhere.

As before the modules El = Fαl
, l ∈ {1, . . . , n−2}, form the mouth of a stable tube

T of rank n− 2 in ΓHn , in such a way that τHnEl+1 = El for l ∈ {1, . . . , n− 3} and
τHnE1 = En−2. Similarly, let T ∗ be the stable tube of rank n − 2 in ΓH∗n whose
mouth consists of the modules E∗1 , E

∗
2 , . . . , E

∗
n−2, where the indices l are given in

such a way that, for any l ∈ {1, . . . , n− 2}, El and E∗l have the same composition
factors and top(E∗l ) = soc(El), top(El) = soc(E∗l ) in mod Λn. Therefore, there is
a short cycle T → T ∗ → T in ΣΛn . Moreover, T and T ∗ are generalized standard
components in ΓΛn .

Summing up, we have proved that, for an arbitrary m ≥ 2, the Auslander-Reiten
quiver ΓΛm+2

of Λm+2 contains a generalized standard stable tube of rank m which
is not uniquely determined by its composition factors.

We end this section with comments concerning acyclic generalized standard
Auslander-Reiten components. It has been proved in [22, Corollaries 2.4 and
3.3] that every acyclic generalized standard component C of the Auslander-Reiten
quiver ΓA of an artin algebra A is of the form Z∆ for a finite acyclic connected
valued quiver ∆ with at least three vertices, B = A/ annA(C ) is a tilted algebra
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of the form EndH(T ), for some wild hereditary artin algebra H and a regular tilt-
ing H-module, and C is the connecting component CT of ΓB determined by T .
Moreover, C. M. Ringel proved in [18] that, for any connected wild hereditary artin
algebra H whose ordinary valued quiver has at least three vertices, there exists
a multiplicity-free regular tilting module T in modH, and consequently the con-
necting component CT of the Auslander-Reiten quiver ΓB of the associated tilted
algebra B = EndH(T ) is an acyclic generalized standard faithful regular compo-
nent of ΓB . We refer also to [10] for constructions of tilted algebras having regular
connecting components with arbitrary large composition factors.

Let K be an algebraically closed field, Q an arbitrary connected acyclic wild
quiver with at least three vertices, and H = KQ. Then it follows from [10, Corollary
4] that, there are infinitely many pairwise non-isomorphic tilted algebras B =
EndH(T ), for multiplicity-free regular tilting modules T in modH, such that the
connecting component CT determined by T is regular and without simple modules.
Take such a tilted algebra B = EndH(T ) and consider the trivial extension algebra
Λ = T (B) of B by the B-B-bimodule D(B) = HomK(B,K). Then it follows from
[5, Section 5] that the Auslander-Reiten quiver ΓΛ of Λ consists of two acyclic
generalized standard regular sincere components C = CT and D , having sections of
type ∆ = Qop, and infinitely many components whose stable parts are of the form
ZA∞. However, it is not clear if C and D may have the same composition factors.
It would be interesting to know if such a situation may occur.
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26. A. Skowroński, A construction of complex syzygy periodic modules over symmetric algebras,

Colloq. Math. 103 (2005), 61–69.
27. Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652–672.

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,

Chopina 12/18, 87-100 Toruń, Poland
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