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ABSTRACT. We provide sufficient conditions for a component of the Auslander-
Reiten quiver of an artin algebra to be determined by the composition factors
of its indecomposable modules.

1. INTRODUCTION AND MAIN RESULTS

Let A be an artin algebra over a commutative artin ring R. We denote by mod A
the category of finitely generated right A-modules, by Ky(A) the Grothendieck
group of A, and by [M] the image of a module M from mod A in Ky(A). Thus,
for modules M and N in mod A, [M] = [N] if and only if M and N have the same
composition factors including the multiplicities. An interesting open problem is to
find handy criteria for two indecomposable modules M and N in mod A with the
same composition factors to be isomorphic. It was shown in [16] that it is the case
when M does not lie on a short cycle M — X — M of non-zero non-isomorphisms
in mod A with X an indecomposable module, generalizing earlier results about
directing modules proved in [6], [8]. In fact, it follows from [7] and [16] that an
indecomposable module M in mod A lies on a short cycle M — X — M in mod A
if and only if M is the middle term of a chain Y — M — DTrY of non-zero
homomorphisms in mod A with Y a non-projective indecomposable module. Hence
the above result from [16] gives in fact another interpretation of a result from [3]. An
important combinatorial and homological invariant of the module category mod A
of an artin algebra A is its Auslander-Reiten quiver 'y [4]. Sometimes, we may
recover the algebra A and the category mod A from the shape of components % of
I' 4 and their behaviour in the category mod A. By a component of I' 4 we mean a
connected component of the translation quiver I'4.

In this article we are concerned with the problem of finding handy criteria for
a component € of the Auslander-Reiten quiver I'4 of an artin algebra A to be
uniquely determined in I" 4 by the composition factors of its indecomposable mod-
ules. We say that two components ¥ and Z of I'4 have the same composition
factors if, for any element x € Ky(A), x = [M] for an indecomposable module M
in ¢ if and only if x = [N] for an indecomposable module N in 2.

In order to state the main results, we recall some concepts. For an artin alge-
bra A, we denote by rad the Jacobson radical of mod A, generated by all non-
isomorphisms between indecomposable modules in mod A, and by rad% the infinite
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radical of mod A, which is the intersection of all powers Jradil7 i>1, of rads. Re-
call that, by a result of M. Auslander [2], rady = 0 if and only if A is of finite
representation type, that is, there are in mod A only finitely many indecomposable
modules up to isomorphism. Following [24], a component quiver ¥4 of A is the
quiver whose vertices are the components % of I' 4, and two components 4 and &
of T'4 are linked in ¥4 by an arrow ¥ — % provided rad% (X,Y) # 0 for some
modules X € ¥ and Y € 2. We note that a component ¢ of I'4 is generalized
standard in the sense of [22] if and only if ¥4 has no loop at €. By a short cycle
in ¥4 we mean a cycle ¥ - 2 — %, where possibly ¥ = 2. We also mention
that a component % of I'4 lies on a short cycle ¥ — 9 — % in X4 with € # 9
if and only if € has an external short path X — Y — Z with X and Z in € and
Y in 2 [15]. Recall also that a translation quiver of the form ZA./(7"), r > 1,
is called a stable tube of rank r. We note that every regular component (without
projective modules and injective modules) of the Auslander-Reiten quiver I'4 of an
artin algebra A is either a stable tube or is acyclic (without oriented cycles) of the
form ZA for an acyclic locally finite connected valued quiver A (see [13], [27]).
The following theorem is the first main result of this article.

Theorem 1. Let A be an artin algebra, and € and 2 two components of I' 4 with
the same composition factors. Assume that € is not a stable tube of rank one and
does not lie on a short cycle in X 4. Then € = 9.

Therefore, the above theorem says that a generalized standard Auslander-Reiten
component % of an artin algebra A without external short paths, different from a
stable tube of rank one, is uniquely determined in I'4 by the composition factors
of its indecomposable modules. We point out that the assumption on 4" not being
a stable tube of rank one is essential for the validity of the above theorem. For
example, if H is the path algebra KA of a Euclidean quiver A over an algebraically
closed field K, then the component quiver Xy of H is acyclic and the Auslander-
Reiten quiver I'y of H contains infinitely many pairwise different stable tubes of
rank one having the same composition factors (see [17], [20]).

The second main result of the article clarifies the situation in general.

Theorem 2. Let A be an artin algebra, € a stable tube of rank one in I" 4 which
does not lie on a short cycle in X4, and 2 a component of I' 4 different from €
and having the same composition factors as €. Then there is a quotient algebra B
of A such that the following statements hold:

(a) B is a concealed canonical algebra.
(b) € and 2 are stable tubes of a separating family of stable tubes of T'p.
(¢) 2 is a stable tube of rank one.

Recall that a concealed canonical algebra is an algebra of the form B = End (T),
where A is a canonical algebra in the sense of C. M. Ringel [19] (see also [17])
and T is a multiplicity-free tilting module in the additive category add(P?), for
the canonical decomposition T'y = P* v T4 v QA of Ty, with 7* the canonical
infinite separating family of stable tubes of I'y. Then I'g admits a decomposition
I'p =PBVvTE vV QB where the image T2 = Homa (T, T*) of the family 7 via
the functor Homy (T, —) : mod A — mod B is an infinite separating family of stable
tubes of I'g. Moreover, all but finitely many stable tubes of 72 have rank one and
the same composition factors. We also mention that, by a result of H. Lenzing and
J. A. de la Pena [11], the class of concealed canonical algebras coincides with the
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class of artin algebras whose Auslander-Reiten quiver admits a separating family
of stable tubes.

We exhibit in Section 3 examples of generalized standard stable tubes of arbi-
trary large rank which are not uniquely determined by the composition factors. It
would be interesting to clarify if an acyclic generalized standard regular component
of the Auslander-Reiten quiver of an artin algebra is uniquely determined by its
composition factors (see Section 3 for related comments).

For basic background on the representation theory applied here we refer to [1],
[4], [17], [20], [21].

2. PROOFS OF THEOREMS 1 AND 2

Let A be an artin algebra over a commutative artin ring R. We denote by 74 and
7, the Auslander-Reiten translations D Tr and Tr D, respectively. For a module V
in mod R, we denote by |V]| its length over R. In the proofs a crucial role will be
played by the following formulas from [23, Proposition 4.1], being consequences of
[3, (1.4)] (see also [4, Corollary IV.4.3]).

For indecomposable modules M, N and X in mod A with [M] = [N] the following
equalities hold:

(i) |Homa (X, M)| — [Homu(M,74X)| = [Homa (X, N)| — [Homu (N, 74 X)|,
(ii) |Homa (M, X)| — [Homa(7, X, M)| = [Homa(N, X)| — [Homa(7, X, N)|.

Let € and 2 be components of I" 4 with the same composition factors and € does
not lie on a short cycle in ¥ 4. We assume that € # 2 and show in several steps
that € and Z are stable tubes of rank one of a separating family of stable tubes in
the Auslander-Reiten quiver I'g of a concealed canonical algebra B.

(1) € is a semi-regular component of I'y (% does not contain both a projective
module and an injective module). Assume % contains a projective module P and
an injective module I. Since ¥ and & have the same composition factors, there
exist modules M and N in 2 such that [P] = [M] and [I] = [N]. Then we have
Hom (P, M) # 0 and Hom(N,I) # 0, because the top of P is a composition
factor of M, and the socle of I is a composition factor of N. Hence, we have
in ¥4 the short cycle ¥ — 2 — ¥, because Homy (P, M) = rady (P, M) and
Hom 4 (N, I) =rad’ (N,I), a contradiction. Therefore, € is a semi-regular compo-
nent of I'4.

(2) € is a cyclic component of 'y (every module in & lies on an oriented cycle
in ¢). Take a module X in €. It follows from our assumption that [X] = [Y]
for some module Y in 2, and so X is not uniquely determined by [X], because
€ # 9. Applying [16, Corollary 2.2], we conclude that we have in mod A a short
cycle X — Z — X. Observe that then Z belongs to &, because € does not lie on a
short cycle in ¥ 4. Moreover, since there is no loop at € in ¥ 4, € is a generalized
standard component of I 4, and hence rad¥’ (X, Z) = 0 and rad%’(Z, X) = 0. Then
Homy (X, Z) # 0 and Hom4(Z, X) # 0 imply that there exist paths of irreducible
homomorphisms in mod A from X to Z and from Z to X (see [4, Proposition
V.7.5]), and consequently an oriented cycle in € passing through X and Z. Hence,
% is a cyclic component.
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(3) € is a ray tube (obtained from a stable tube by a finite number (possibly empty)
of ray insertions) or a coray tube (obtained from a stable tube by a finite number
(possibly empty) of coray insertions) in the sense of [17, (4.5)] (see also [21, XV.2]).
This is a direct consequence of [14, (2.6)], since by (1) and (2) ¢ is semi-regular
with oriented cycles.

(4) We may assume (without loss of generality) that € is a ray tube, hence without
injective modules. Let ann4 (%) be the annihilator of € in A, that is, the intersec-
tion of the annihilators anns(X) = {a € A | Xa = 0} of all modules X in %, and
B = A/ann4(%). Then % is a faithful component of I'g. Since % does not lie on
a short cycle in ¥4, we conclude that € is without external short paths [15], that
is, there are no paths U — V — W in mod A with U and W in € but V not in
%. Then it follows from [9, Theorem 2| that B is an almost concealed canonical
algebra and ¢ is a faithful ray tube of a separating family 72 of ray tubes of I'z.
Recall that then there exists a canonical algebra A (in the sense of C. M. Ringel
[17], [19]) such that B = Enda(7') for a tilting module T in the additive category
add(PM U TA) of PAUTA, for the canonical decomposition I'y = PA v T4 v QA
of T'y with 72 the canonical separating family of stable tubes. By general theory
(see [11], [12], [17], [19], [25]), I'p admits a decomposition

I'g=PEBvTBVQOE,

where T2 is a family of ray tubes separating PP from QF (in the sense of [19]).
In particular, 72 is an infinite family of pairwise orthogonal generalized standard
ray tubes, Homp (72, PB) = 0, Homp(QF,7?) = 0, and Homp(QF,PF) = 0. In
fact, since ¢ is a faithful ray tube of 77, all ray tubes of T2 except € are stable
tubes. Moreover, the separation property of 72 implies that Homp (2 ,%) # 0
for any component 2" from P? and Homp (¢, %) # 0 for any component % from
QB . Moreover, we note that QF contains all indecomposable injective B-modules.

(5) 2 is a component of I'g. Write A = P’ @ P” where the simple summands
of P'/rad P’ are exactly the simple composition factors of modules in €. Denote
by tpr(A) the ideal of A generated by the images of all homomorphisms in mod A
from P” to A. Since € is a semi-regular component of I'4 without external short
paths, it follows from arguments in [15, Section 1] that Enda(P’) = A/tpr(A) and
tpr(A) = anng(%). Observe that 14 = e+ f for orthogonal idempotents e and f
in A with P’ = eA and P” = fA, and consequently End4(P’) = eAe and tpr(A) =
AfA. Clearly, then B = A/anns (%) = eAe. On the other hand, since 2 has the
same composition factors as ¢, we have N f = Homa(fA, N) = Hom4(P"”,N) =0,
and consequently N anny (%) = N(AfA) = (Nf)A = 0, for any module N in 2.
This shows that & is a component of I'g.

(6) 2 is a component of T2. Assume 2 ¢ TP. Fix a stable tube 7* of T2 of rank
one, which is different from ¥. By general theory ([11], [12], [19]) B is a tubular
(branch) extension of a concealed canonical algebra C such that T = PEvTCvQC,
where TC is a separating family of stable tubes, P? = P¢, € is obtained from a
stable tube 7 of 7¢ by a finite number (possibly empty) of ray insertions and the
remaining tubes of 7¢ and 77 coincide (TC\T = TP\%). Clearly, C is a quotient
algebra of B.
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Let M be a module in € which lies in 7. In particular, the composition factors
of M are C-modules. Take a module N € & such that [M] = [N]. Assume
2 € QFB. Since [M] = [N] there exists a projective module P € P8 = P¢ such
that Homp(P, N) # 0. By the separation property of 72 we have Homp(X, N) # 0
for some module X € T*. Then, applying the formula (i), we obtain

0 = [Homu (X, M)| — [Homa (M, 74X)| = |Homa (X, N)| — [Hom4 (N, 74 X)|

= |[Homa (X, N)| > 0,

since M and X belong to orthogonal tubes of 72 and Homp(QF,75) = 0. Dually,
if D € PB, then there exists an injective module I in Q7 such that Homp (N, I) # 0.
By the separation property of 72, we have Hompg(N,Y) # 0 for some module
Y € T*. Then, by the formula (ii), we have

0 = [Homa(M,Y)| — [Homu (7, Y, M)| = [Homu(N,Y)| — [Homa (7, Y, N)|

= [Hom4 (N, Y)| > 0,

since M and Y belong to orthogonal tubes of 72 and Homp(T2,PE) = 0. The
above contradictions show that 2 € TB.

(7) TP is a family of stable tubes. Assume % contains a projective module P.
Take an indecomposable module Y in 2 with [P] = [Y]. Then the top of P is a
composition factor of ¥ and hence Homp(P,Y") # 0. Therefore, Homp(€¢,2) # 0
which contradicts the fact that ¥ and 2 are orthogonal. We conclude that € is a
stable tube of T5. Clearly, then 77 is a separating family of stable tubes of I'p,
and consequently B is a concealed canonical algebra, by [11].

(8) € and 2 are stable tubes of rank one. Since € and 2 belong to the separating
family 72 of stable tubes of I'g, we know that " and 2 are orthogonal, generalized
standard, and without external short paths. In particular, ¥ and 2 do not lie on
short cycles in Xp. Then, applying [23, Lemmas 3.1 and 3.3], we conclude that
% and 2 consist of modules which do not lie on infinite short cycles in mod B.
Assume ¥ is of rank r > 2. Take a module X lying on the mouth of € (X has one
immediate predecessor and one immediate successor in ¢). Then, by [23, Corollary
4.4], X is uniquely determined by [X], which contradicts the fact that [X] = [Y]
for some module Y in Z and € # %. Therefore, € is of rank one. Applying the
same arguments, we conclude that Z is also of rank one.
Summing up, the proofs of Theorems 1 and 2 are provided.

3. EXAMPLES

Let K be an algebraically closed field and @ be a finite quiver. For any arrow
a € @, by s(a) and ¢(«) we mean the source and the target of «, respectively.
By K@ we denote the path algebra of ). Recall that, if the quiver @ is acyclic,
then K@ is a hereditary algebra [1]. For a finite dimensional algebra H over K,
we denote by T'(H) the trivial extension algebra of H by its duality H-H-bimodule
D(H) = Homg (H, K). Recall that T(H) = H & D(H) as K-vector space and
the multiplication in T'(H) is given by (a, f)(b,g) = (ab,ag + fb) for a,b € H and
fyg € D(H). Then T(H) is a symmetric algebra and H is the quotient algebra of
T(H) by the ideal D(H).
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For a natural number n > 4, @,, will be the quiver of the following form:

1‘\\>:a%4ﬁ‘-~-%nQ%n1(/771+1
72NN

Each arrow in @), will be named either by «a or by £ in such a way that an arrow
which starts in the vertex 3 and terminates in the vertex 1 is «, and s(a) = t(3),
t(a) = s(B), for all arrows « and S. Let I, be the admissible ideal in the path al-
gebra K@, generated by all paths o8, Ba such that s(af) # t(af), s(Ba) # t(Ba),
and all commutativity relations w; —ws, where wy,w, are all paths of length 2 in @,
such that their source and target coincide with the vertex i, for alli € {3,...,n—1}.
Then by A,, we denote the quotient algebra K@, /I,,.

We consider now the quiver A, of Euclidean type ]ﬁ)n, for any n > 4, defined in
the following way. If n is an odd number, then A,, is of the form:

1 n+1

o

3—4<—<=—n—-2—>n-1

™

2 n
and similarly, for an even number n, the quiver A,, is of the form:

1 n+1

7

3—4~<~—-—>n—2<—n-—1

I

2 n

(in particular, all maximal subquivers of type A,,_1 of @, have alternate orientation
of arrows).

Let H,, be the path algebra KA, and H; the path algebra KA, where A is
the opposite quiver of A,,. Note that A,, is a subquiver of @,, given by the arrows
a and A7 is a subquiver of @),, given by the arrows . Moreover, observe that A,, is
the trivial extension algebra T'(H,,) of H,, and the trivial extension algebra T'(H})
of HY. In particular, H,, and H,: are quotient algebras of A,,.

Assume now that n > 4 is an odd number. For each arrow « in A,, such that
s(a) =i and t(«) € {¢ — 1,7+ 1}, for some i € {3,...,n}, we put «; instead of «,
where [ is given by the formula:

I FTI; a:t—i+1
Cn- ari—i— L
Observe that I € {1,...,n — 2}. We define the family of indecomposable represen-

tations Fy,,...,F,, _, of H, over K:
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o F, forl¢ {®2 n—2}:

0 \ 0
/04>"'K1K"'4>0
0 0
where K stands in the vertices s(ay),t(y), zero space elsewhere
(here by — we mean —> or —<=— );
o I
2
0 K
j/
0—>0=<— " =—0—K
1

0 K

where K stands in the vertices n — 1,n,n + 1, zero space elsewhere;
o Fy ,:
K 0
N
K—0=<—=—0—0
e

K 0

where K stands in the vertices 1,2, 3, zero space elsewhere.
Let E, = F,, for [ € {1,...,n — 2}. Obviously E1, ..., E,_o are pairwise or-

thogonal bricks. Direct calculation shows that 7y, Fjy1 = E;if 1 € {1,...,n — 3}
and 7y, E; = E,_s. Moreover, Extfqn (Er,Ep) =0 for any r,p € {1,...,n — 2},
because H,, is a hereditary algebra. It allows us to state that Fy, ..., E,_o form
the mouth of a standard stable tube T of rank n — 2 in I'yy, (see [17],[20]). Since
pdy, X <1 for any H,-module X in 7, it follows from [26, Proposition 1.1] that
T is also a component of the Auslander-Reiten quiver I'y .

Analogously, let Ef, E5, ..., E’_, be the indecomposable H}-modules, where
the indices [ are given in such a way that, for any [ € {1,...,n — 2}, E; and Ef
have the same composition factors in mod A,, including the multiplicities. It is easy
to see that these modules form the mouth of a stable tube 7 of rank n — 2 in I'gx
such that 7- B = B, forl € {1,...,n—3} and 7+ E};_, = Ef. Using once more
[26, Proposition 1.1] we get that 7* is also a component of the Auslander-Reiten
quiver T's . Note that top(E;) = soc(E;) and top(E;) = soc(E}) in mod A,,, for
any | € {1,...,n — 2}. Therefore, 7 has an external short path E; — E — Ej in
mod A,,, which implies existence of a short cycle 7 — T7* — T in ¥, . Observe
also that 7 and 7* have the same composition factors since [E;] = [E}] for all
I € {1,...,n —2}. Moreover, T and T* are generalized standard stable tubes
in I'y,, since they are generalized standard in I'y, and I'py:, respectively (see for
example [20, Chapter X]).

Assume n > 4 is an even number. For each arrow « in H,, such that s(«) = ¢ and
t(a) € {i—1,i+1}, for some i € {3,...,n—1}, we define the index [ in the previous



8 ALICJA JAWORSKA, PIOTR MALICKI, AND ANDRZEJ SKOWRONSKI

way. Similarly, we define the indecomposable representations Fy,, ..., Fy, , of H,
over K:

o F,, forl%{%,n—?}:

0 \ 0
p 0>+ —K—K— <0
0 0
where K stands in the vertices s(ay), (o), zero space elsewhere
(here by — we mean —= or =<— );
. FO“%2 :
2
0 K
1
0—0<——>0~<~—K
1
0 K
where K stands in the vertices n — 1,n,n + 1, zero space elsewhere;
o Iy ,:
K 0
AN
K—>0=<——>0=<—0
e
K 0

where K stands in the vertices 1,2, 3, zero space elsewhere.

As before the modules E; = F,,, [ € {1,...,n—2}, form the mouth of a stable tube
T of rank n—2in 'y, in such a way that 74, Fyj41 = E; forl € {1,...,n—3} and
T, E1 = E, 5. Similarly, let 7" be the stable tube of rank n — 2 in I'g» whose
mouth consists of the modules EY, E5, ..., E*_,, where the indices | are given in
such a way that, for any [ € {1,...,n — 2}, E; and E; have the same composition
factors and top(E;) = soc(E;), top(E;) = soc(E}) in mod A,,. Therefore, there is
a short cycle 7 — 7* — T in ¥, . Moreover, 7 and 7* are generalized standard
components in I'y .

Summing up, we have proved that, for an arbitrary m > 2, the Auslander-Reiten
quiver 'y, , of Ay, 4o contains a generalized standard stable tube of rank m which
is not uniquely determined by its composition factors.

We end this section with comments concerning acyclic generalized standard
Auslander-Reiten components. It has been proved in [22, Corollaries 2.4 and
3.3] that every acyclic generalized standard component % of the Auslander-Reiten
quiver I'4 of an artin algebra A is of the form ZA for a finite acyclic connected
valued quiver A with at least three vertices, B = A/ann4 (%) is a tilted algebra
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of the form End g (T), for some wild hereditary artin algebra H and a regular tilt-
ing H-module, and % is the connecting component 7 of I'g determined by T.
Moreover, C. M. Ringel proved in [18] that, for any connected wild hereditary artin
algebra H whose ordinary valued quiver has at least three vertices, there exists
a multiplicity-free regular tilting module 7" in mod H, and consequently the con-
necting component %7 of the Auslander-Reiten quiver I'p of the associated tilted
algebra B = Endgy (T) is an acyclic generalized standard faithful regular compo-
nent of I'g. We refer also to [10] for constructions of tilted algebras having regular
connecting components with arbitrary large composition factors.

Let K be an algebraically closed field, @ an arbitrary connected acyclic wild
quiver with at least three vertices, and H = K(@Q. Then it follows from [10, Corollary
4] that, there are infinitely many pairwise non-isomorphic tilted algebras B =
Endg (T), for multiplicity-free regular tilting modules T' in mod H, such that the
connecting component ¢ determined by T is regular and without simple modules.
Take such a tilted algebra B = Endy(T") and consider the trivial extension algebra
A =T(B) of B by the B-B-bimodule D(B) = Homg (B, K). Then it follows from
[5, Section 5] that the Auslander-Reiten quiver I'y of A consists of two acyclic
generalized standard regular sincere components ¢ = %7 and 2, having sections of
type A = Q°P, and infinitely many components whose stable parts are of the form
ZA . However, it is not clear if ¥ and 2 may have the same composition factors.
It would be interesting to know if such a situation may occur.
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