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Abstract We describe the structure of module categories of finite dimensional al-
gebras over an algebraically closed field for which the cycles of nonzero noniso-
morphisms between indecomposable finite dimensional modules are finite (do not
belong to the infinite Jacobson radical of the module category). Moreover, geometric
and homological properties of these module categories are exhibited.

1 Introduction

Throughout the article K denotes a fixed algebraically closed field.
By an algebra we mean an associative finite dimensional K-algebra with an iden-

tity which we shall assume (without loss of generality) to be basic and connected.
For an algebra A, by an A-module we mean a finite dimensional right A-module.
We shall denote by modA the category of A-modules, by indA its full subcate-
gory formed by the indecomposable modules, by ΓA the Auslander-Reiten quiver
of A, and by τA the Auslander-Reiten translation DTr in ΓA. We shall identify an
indecomposable A-module with the vertex of ΓA corresponding to it. From Drozd’s
Tame and Wild Theorem [30] (see also [26]) the class of algebras may be divided
into two classes. One class consists of the wild algebras whose representation the-
ory comprises the representation theories of all algebras over K (see [68, Chapter
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87-100 Toruń, Poland, e-mail: skowron@mat.uni.torun.pl

1



2 P. Malicki et al.

XIX]). The second class consists of the tame algebras for which the indecompos-
able modules occur, in each dimension d, in a finite number of discrete and a finite
number of one-parameter families. Hence, a classification of the finite dimensional
modules is only feasible for tame algebras. It has been shown by Crawley-Boevey
[26] that, if A is a tame algebra, then, for any dimension d ≥ 1, all but finitely many
isomorphism classes of indecomposable A-modules of dimension d are invariant on
the action of τA, and hence, by a result due to Hoshino [35], lie in stable tubes of
rank one in ΓA. The indecomposable modules over tame algebras which do not lie in
stable tubes of rank one are called discrete. A distinguished class of tame algebras
is formed by the algebras of finite representation type, having only finitely many
isomorphism classes of indecomposable modules, for which the representation the-
ory is presently rather well understood (see [13], [20], [21], [22], [24]). On the other
hand, the representation theory of arbitrary tame algebras is still only emerging. At
present the most accessible seem to be the (tame) algebras of polynomial growth,
for which there exists an integer m such that the number of one-parameter families
of indecomposable modules is bounded, in each dimension d, by dm. This class of
algebras has been subject of intensive research over the last 30 years.

A prominent role in the representation theory of algebras is played by cycles of
modules, or more generally cycles of complexes of modules. Recall that a cycle in
a module category modA is a sequence

X0
f1−−→ X1→ ··· → Xr−1

fr−−→ Xr = X0

of nonzero nonisomorphisms in indA, and the cycle is said to be finite if the ho-
momorphisms f1, . . . , fr do not belong to the infinite Jacobson radical of modA.
Following Ringel [65] a module in indA which does not lie on cycle in indA is
called directing. It has been proved independently by Peng and Xio [53] and the
third named author [74] that the Auslander-Reiten quiver ΓA of an arbitrary algebra
contains at most finitely many τA-orbits containing directing modules. Hence, in
order to obtain information on nondirecting indecomposable modules of a module
category, we may study properties of cycles in modA containing these modules. We
also note that, by a result of Ringel [65] the support algebras of directing modules
are tilted algebras. Following [5] an algebra A is said to be cycle-finite if all cycles
in modA are finite. It has been proved by the third named author in [76] that ev-
ery cycle-finite algebra A is of polynomial growth and the support algebras of the
one-parametric families of indecomposable A-modules are tame concealed algebras
(preprojective tilts of the path algebras of Euclidean quivers) and Ringel’s tubu-
lar algebras, which are distinguished classes of cycle-finite algebras. The class of
cycle-finite algebras is wide and contains the algebras of finite representation type,
the tame tilted algebras [37], the tame double tilted algebras [62], the tame gen-
eralized double tilted algebras [63], the tubular algebras [65], the iterated tubular
algebras [61], the tame quasi-tilted algebras [78], [40], the tame coil and multicoil
algebras [5], [6], [7], the tame generalized multicoil algebras [51], and the strongly
simply connected algebras of polynomial growth [77]. It has been also proved in
[2], [3], [4] that the class of algebras A for which the derived category Db(modA) of
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bounded complexes of A-modules is cycle-finite coincides with the class of piece-
wise hereditary algebras of Dynkin, Euclidean, and tubular type, and consequently
these algebras are also cycle-finite. Moreover, frequently an algebra A admits a Ga-
lois covering R→ R/G = A where R is a cycle-finite locally bounded category and
G is an admissible group of automorphisms of R, which allows to reduce the repre-
sentation theory of A to the representation theory of cycle-finite algebras being finite
convex subcategories of R. For example, every selfinjective algebra A of polynomial
growth admits a canonical standard form A (geometric socle deformation of A) such
that A has a Galois covering R→ R/G = A, where R is a cycle-finite selfinjective
locally bounded category and G is an admissible infinite cyclic group of automor-
phisms of R, the Auslander-Reiten quiver ΓA of A is the orbit quiver ΓR/G of ΓR,
and the stable Auslander-Reiten quivers of A and A are isomorphic (see [69], [80]
for details). We also mention that by the main result of [59], every algebra A which
admits a cycle-finite Galois covering R→ R/G = A with G torsion-free is tame.

One of the objectives of this article is to describe the structure of the category
indA of an arbitrary cycle-finite algebra A, by showing that it can be covered by the
categories of indecomposable modules of tame generalized multicoil algebras and
tame generalized double tilted algebras. Here, a crucial role will be played by de-
scription of support algebras of cyclic components of the Auslander-Reiten quivers
of cycle-finite algebras. The second objective of the article is to exhibit geometric
and homological properties of indecomposable modules over cycle-finite algebras.
We are interested in the class of coherent cycle-finite algebras for which all cyclic
components of the Auslander-Reiten quivers are coherent (see Section 2 for defini-
tion). Every coherent cycle-finite algebra A is triangular, and hence the (geometric)
Tits quadratic form qA and the (homological) Euler form χA of A are well defined.
For a vector d in the Grothendieck group K0(A) of A with nonnegative coordinates,
we denote by modA(d) the affine variety of A-modules of dimension vector d and
by G(d) the corresponding product of general linear groups acting on modA(d) in
such a way that the G(d)-orbits in modA(d) correspond to the isomorphism classes
of A-modules of dimension vector d. The third main aim of the article is to estab-
lish a common bound on the numbers of discrete indecomposable modules in each
dimension vector over cycle-finite algebras, generalizing results proved in [84] for
strongly simply connected algebras of polynomial growth.

For basic background from the representation theory of algebras we refer to the
books [1], [11], [65], [67], [68], [82].

2 Preliminaries

In this section we recall some concepts and results from the representation theory
of algebras important for further considerations.

Let A be an algebra (which by our assumption is basic and connected). Then
there is an isomorphism A ∼= KQ/I of K-algebras, where KQ is the path algebra of
the Gabriel quiver Q = QA of A and I is an admissible ideal of KQ. Equivalently,
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A = KQ/I may be considered as a K-category whose class of objects is the set Q0
of vertices of Q, and the set of morphisms A(x,y) from x to y is the quotient of
K-space KQ(x,y), formed by the K-linear combinations of paths in Q from x to y,
by the subspace I(x,y) = KQ(x,y)∩ I. We shall identify an algebra A with its K-
category. Moreover, the module category modA may be identified with the category
repK(Q, I) of finite dimensional K-linear representations of the bound quiver (Q, I).
An algebra A with QA acyclic (without oriented cycles) is said to be triangular. A
full subcategory C of A is said to be convex if any path in QA with source and target
in QC lies entirely in QC. Recall also that the Jacobson radical rad(modA) of the
module category modA is the ideal of modA generated by all noninvertible mor-
phisms in indA. Then the infinite radical rad∞(modA) of modA is the intersection
of all powers radi(modA), i≥ 1, of rad(modA). A path of length t ≥ 1 in modA is a
sequence of nonzero nonisomorphisms

M0
f1−−→M1→ ··· →Mt−1

ft−−→Mt

and modules M0,M1, . . . ,Mt in indA. Such a path is said to be finite if f1, . . . , ft do
not belong to rad∞(modA), and otherwise infinite. Moreover, if M0 ∼= Mt then the
path is called a cycle of length t. A module M from indA is called directing if it
does not lie on a cycle in modA. For a module M in modA, we denote by dimM its
dimension vector (dimK M(i))i∈Q0 . The support suppM of a module M in modA is
the full subcategory of A given by all vertices i of QA such that M(i) ̸= 0. A module
M in modA with suppM = A is said to be sincere. Recall also that the Grothendieck
group K0(A) = K0(modA) is isomorphic to ZQ0 .

Let A be an algebra and K[x] the polynomial algebra in one variable x. Follow-
ing [30] A is said to be tame if, for any dimension d, there exists a finite number of
K[x]−A-bimodules Mi, 1≤ i≤ nd , which are finitely generated and free as left K[x]-
modules, and all but a finite number of isoclasses of indecomposable A-modules
of dimension d are of the form K[x]/(x− λ )⊗K[x] Mi for some λ ∈ K and some
i ∈ {1, . . . ,nd}. Let µA(d) be the least number of K[x]−A-bimodules Mi satisfying
the above condition for d. Then A is said to be of polynomial growth (respectively,
domestic) if there exists a positive integer m such that µA(d) ≤ dm (respectively,
µA(d) ≤ m) for any d ≥ 1 (see [27], [70]). Recall that from the validity of the sec-
ond Brauer-Thrall conjecture we know that A is representation-finite if and only if
µA(d) = 0 for any d ≥ 1.

The Tits form of a triangular algebra A = KQ/I is the integral quadratic form
qA : ZQ0 → Z, defined, for x = (xi)i∈Q0 ∈ ZQ0 , by

qA(x) = ∑
i∈Q0

x2
i − ∑

(i→ j)∈Q1

xix j + ∑
i, j∈Q0

r(i, j)xix j,

where Q1 is the set of arrows in Q and r(i, j) is the cardinality of L∩ I(i, j), for a
minimal set of generators L⊂

∪
i, j∈Q0

I(i, j) of the ideal I (see [18]). Moreover, the
Euler form of A is the integral quadratic form χA : ZQ0 →Z defined in [65, 2.4] such
that for any module M in modA, we have
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χA(dimM) =
∞

∑
i=0

(−1)i dimK ExtiA(M,M).

Observe that A is of finite global dimension, because A is triangular. It is also known
that if gl dimA ≤ 2 then qA = χA (see [18]). Finally, it is known (see [54]) that,
if A is tame, then qA is weakly nonnegative, that is, qA(x) ≥ 0 for all x ∈ NQ0 .
Unfortunately, the reverse implication is not true in general. However, it has been
proved recently in [25] that a strongly simply connected algebra A is tame if and only
if the Tits form qA is weakly nonnegative. Recall also that a triangular algebra A is
called strongly simply connected [71] if the first Hochschild cohomology H1(C,C)
of every convex subcategory C of A vanishes.

We need also special types of components of the Auslander-Reiten quivers of
algebras.

Recall from [28], [65] that a translation quiver Γ is called a tube if it contains a
cyclical path and if its underlying topological space is homeomorphic to S1×R+,
where S1 is the unit circle and R+ is the nonnegative real line. A tube has only two
types of arrows: arrows pointing to infinity and arrows pointing to the mouth. Tubes
containing neither projective vertices nor injective vertices are called stable, and are
as follows. For the infinite quiver

A∞ : 0→ 1→ 2→ ···

the translation quiver ZA∞ is of the form

(i−1,0) (i,0) (i+1,0) (i+2,0)
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with the translation τ given by τ(i, j) = (i− 1, j) for i ∈ Z, j ∈ N. For each r ≥ 1,
denote by ZA∞/(τr) the translation quiver Γ obtained from ZA∞ by identifying
each vertex (i, j) of ZA∞ with the vertex τr(i, j) and each arrow x→ y in ZA∞ with
the arrow τrx→ τry. The translation quiver ZA∞/(τr) is called the stable tube of
rank r. The τ-orbit of a stable tube Γ formed by all vertices having exactly one
immediate predecessor (equivalently, successor) is called the mouth of Γ . A tube Γ
without injective vertices (respectively, without projective vertices) is called a ray
tube (respectively, coray tube).

Let A be an algebra. A component C of ΓA is called regular if C contains neither
a projective module nor an injective module, and semiregular if C does not contain
both a projective and an injective module. It has been shown in [41] and [87] that
a regular component C of ΓA contains an oriented cycle if and only if C is a stable
tube. Moreover, Liu proved in [42] that a semiregular component C of ΓA contains
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an oriented cycle if and only if C is a ray or coray tube. A component P of ΓA is
called postprojective if P is acyclic and every module in P lies in the τA-orbit of a
projective module. Dually, a component Q of ΓA is called preinjective if Q is acyclic
and every module in Q lies in the τA-orbit of an injective module. A component Γ
of ΓA is said to be coherent if the following two conditions are satisfied:

(C1) For each projective module P in Γ there is an infinite sectional path
P = X1 → X2 → ·· · → Xi → Xi+1 → Xi+2 → ··· (that is, Xi ̸= τAXi+2 for any
i≥ 1) in Γ .

(C2) For each injective module I in Γ there is an infinite sectional path · · · →
Yj+2→ Yj+1→ Yj→ ··· → Y2→ Y1 = I (that is, Yj+2 ̸= τAYj for any j ≥ 1) in Γ .
Further, a component Γ of ΓA is said to be almost cyclic if all but finitely many
modules of Γ lie on oriented cycles in ΓA, so contained entirely in Γ . We note that
the stable tubes, ray tubes and coray tubes of ΓA are special types of almost cyclic
coherent components. In general, it has been proved in [50] that a component Γ of
ΓA is almost cyclic and coherent if and only if Γ is a generalized multicoil, which
can be obtained from a family of stable tubes by a sequence of admissible operations
(see Section 4 for algebras having such components). A component Γ of ΓA is said
to be almost acyclic if all but finitely many modules of Γ are acyclic (do not lie
on oriented cycles in ΓA, hence in Γ ), and acyclic if all modules of Γ are acyclic.
Finally, following [73] a component C of ΓA is said to be generalized standard if
rad∞

A (X ,Y ) = 0 for all modules X and Y from C . It has been proved in [73] that
every generalized standard component C of ΓA is almost periodic, that is, all but
finitely many τA-orbits in C are periodic. Clearly, the postprojective and preinjective
components are acyclic, and the Auslander-Reiten quivers of representation-finite
algebras are almost acyclic. Moreover, these components are generalized standard
(see [74]). General results on almost acyclic components and related algebras have
been proved by Reiten and third named author in [62], [63] (see Section 5). For a
component C of ΓA, we denote by annA(C ) the annihilator of C in A, that is, the
intersection of the annihilators annA(X) = {a ∈ A | Xa = 0} of all modules X in C .
We note that C is a component of ΓA/annA(C ). Moreover, if annA(C ) = 0, C is said
to be a faithful component of ΓA. By the support of a subquiver Γ of ΓA we mean the
full subcategory suppΓ of A given by the supports suppM of all modules M in Γ ,
and, if suppΓ = A then Γ is said to be sincere. We note that a faithful component C
of ΓA is sincere.

3 Semiregular components of cycle-finite algebras

In this section we recall the shapes of the Auslander-Reiten quivers of representation-
infinite tilted algebras of Euclidean type and tubular algebras, as well as results from
[76] on semiregular components of the Auslander-Reiten quivers of cycle-finite al-
gebras, important for further considerations.

By a tame concealed algebra we mean a tilted algebra C = EndH(T ), where H
is the path algebra K∆ of a quiver ∆ of Euclidean type (the underlying graph ∆ of
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∆ of type Ãm (m≥ 1), D̃n (n≥ 4), or Ẽp (6≤ p≤ 8)) and T is a (multiplicity-free)
postprojective tilting H-modules. The tame concealed algebras have been described
by quivers and relations by Bongartz [19] and Happel-Vossieck [34]. Recall also
that the Auslander-Reiten quiver ΓC of a tame concealed algebra C is of the form

ΓC = PC ∪T C ∪QC,

where PC is a postprojective component containing all indecomposable projective
C-modules, QC is a preinjective component containing all indecomposable injec-
tive C-modules, and T C is a P1(K)-family T C

λ , λ ∈ P1(K), of pairwise orthogonal
generalized standard stable tubes, all but a finite number of them of rank one. The
ordering from the left to right indicates that there are nonzero homomorphisms only
from any of these classes to itself and to the classes to its right. We refer to [65,
Chapter 4] and [67] for more details on the module categories of tame concealed
algebras.

Recall also that, if B is a representation-infinite tilted algebra of Euclidean type
∆ , then one of the following holds:

(a) B is a domestic tubular extension of a tame concealed algebra C and

ΓB = PB∪T B∪QB,

where PB =PC is the postprojective component of ΓC, T B is a P1(K)-family T B
λ ,

λ ∈ P1(K), of pairwise orthogonal generalized standard ray tubes, obtained from the
P1(K)-family T C of stable tubes of ΓC by ray insertions, and QB is a preinjective
component containing all indecomposable injective B-modules and a section of type
∆ ;

(b) B is a domestic tubular coextension of a tame concealed algebra C and

ΓB = PB∪T B∪QB,

where PB is the postprojective component containing all indecomposable projec-
tive B-modules and a section of type ∆ , T B is a P1(K)-family T B

λ , λ ∈ P1(K),
of pairwise orthogonal generalized standard coray tubes, obtained from the P1(K)-
family T C of stable tubes of ΓC by coray insertions, and QB = QC is the preinjec-
tive component of ΓC. We refer to [65, Chapter 4] and [68, Chapters XV-XVII] for
more details on the module categories of representation-infinite tilted algebras of
Euclidean type.

By a tubular algebra we mean a tubular extension (equivalently tubular coexten-
sion) of a tame concealed algebra of tubular type (2,2,2,2), (3,3,3), (2,4,4), or
(2,3,6), as defined by Ringel in [65, Chapter 5]. Recall that a tubular algebra B ad-
mits two different tame concealed convex subcategories C0 and C∞ such that B is a
tubular extension of C0, and a tubular coextension of C∞, and the Auslander-Reiten
quiver ΓB of B is of the form
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ΓB = PB
0 ∪T B

0 ∪

 ∪
q∈Q+

T B
q

∪T B
∞ ∪QB

∞,

where PB
0 = PC0 is the postprojective component of ΓC0 , T B

0 is a P1(K)-family
of pairwise orthogonal generalized standard ray tubes, obtained from the P1(K)-
family T C0 of stable tubes of ΓC0 by ray insertions, QB

∞ = QC∞ is the preinjective
component of ΓC∞ , T B

∞ is a P1(K)-family of pairwise orthogonal generalized stan-
dard coray tubes, obtained from the P1(K)-family T C∞ of stable tubes of ΓC∞ by
coray insertions, and, for each q ∈Q+ (the set of positive rational numbers) T B

q is
a P1(K)-family of pairwise orthogonal generalized standard stable tubes. We refer
to [65, Chapter 5] for more details on the module categories of tubular algebras.

The following characterization of tame concealed and tubular algebras has been
established in [76, Theorem 4.1].

Theorem 3.1. Let A be an algebra. The following statements are equivalent:

(i) A is cycle-finite and ΓA admits a sincere stable tube.
(ii) A is either tame concealed or tubular.

Moreover, we have also the following consequence [76, Theorem 4.3] of the above
theorem, the tameness of cycle-finite algebras [5, Proposition 1.4], and a result of
Crawley-Boevey [26, Corollary E].

Theorem 3.2. Let A be a cycle-finite algebra. Then A is of polynomial growth.

An algebra A is said to be minimal representation-infinite if A is representation-
infinite but every proper convex subcategory of A is representation-finite. Then we
have the following characterization of minimal representation-infinite cycle-finite
algebras established in [76, Corollary 4.4].

Theorem 3.3. Let A be an algebra. The following statements are equivalent:

(i) A is minimal representation-infinite and cycle-finite.
(ii) A is a tame concealed algebra.

We also have the following characterization of domestic cycle-finite algebras estab-
lished in [76, Theorem 5.1].

Theorem 3.4. Let A be a cycle-finite algebra. The following statements are equiva-
lent:

(i) A is domestic.
(ii) A does not contain a tubular algebra as a convex subcategory.

(iii) All but finitely many components of ΓA are stable tubes of rank one.

In general, we have the following information on the Auslander-Reiten quiver of
a cycle-finite algebra, which is a consequence of results proved in [74], [76], and
results on the shapes of regular components from [41], [87].
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Theorem 3.5. Let A be a cycle-finite algebra. Then every regular component of ΓA
is a generalized standard stable tube. In particular, all but finitely many components
of ΓA are stable tubes.

Finally, we give a complete description of semiregular components of the Auslander-
Reiten quivers of cycle-finite algebras, established in [76, Proposition 3.3].

Theorem 3.6. Let A be a cycle-finite algebra and C be a semiregular component of
ΓA containing a projective module. Then B = suppC is a convex subcategory of A
and one of the following holds:

(i) B is a domestic tubular coextension of a tame concealed algebra and C is the
postprojective component of ΓB.

(ii) B is either a domestic tubular extension of a tame concealed algebra or a tubular
algebra, and C is a generalized standard ray tube of ΓB.

Theorem 3.7. Let A be a cycle-finite algebra and C be a semiregular component of
ΓA containing an injective module. Then B = suppC is a convex subcategory of A
and one of the following holds:

(i) B is a domestic tubular extension of a tame concealed algebra and C is the
preinjective component of ΓB.

(ii) B is either a domestic tubular coextension of a tame concealed algebra or a
tubular algebra, and C is a generalized standard coray tube of ΓB.

4 Tame generalized multicoil algebras

In this section we introduce and exhibit basic properties of the class of tame gen-
eralized multicoil algebras, plying a prominent role in the description of infinite
cyclic components of the Auslander-Reiten quivers of cycle-finite algebras. This is
the class of tame algebras among the class of all algebras having a separating family
of almost cyclic coherent components investigated in [51], [52]. Recall that a family
C = (Ci)i∈I of components of the Auslander-Reiten quiver ΓA of an algebra A is
called separating in modA if the modules in indA split into three disjoint classes
PA, C A = C and QA such that:

(S1) C A is a sincere generalized standard family of components;
(S2) HomA(Q

A,PA) = 0, HomA(Q
A,C A) = 0, HomA(C

A,PA) = 0;
(S3) any morphism from PA to QA factors through the additive category
addC A of C A.

We then say that C A separates PA from QA and write ΓA=PA∪C A∪QA. We note
that then PA and QA are uniquely determined by C A (see [8, (2.1)] or [65, (3.1)]).

We also recall a characterization of generalized standard stable tubes of an
Auslander-Reiten quiver established in [73, Corollary 5.3] (see also [75, Lemma
3.1].

Proposition 4.1. Let A be an algebra and Γ be a stable tube of ΓA. The following
statements are equivalent:
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(i) Γ is generalized standard.
(ii) The mouth of Γ consists of pairwise orthogonal bricks.

(iii) rad∞
A (X ,X) = 0 for any module X in Γ .

Recall that a module X in modA is called a brick if EndA(X)∼= K.
It has been proved in [50, Theorem A] that a connected component Γ of an

Auslander-Reiten quiver ΓA is almost cyclic and coherent if and only if Γ is a gener-
alized multicoil, obtained from a family of stable tubes by a sequence of operations
called admissible. We recall the letter and simultaneously define the corresponding
enlargements of algebras.

We start with the one-point extensions and one-point coextensions of algebras.
Let A be an algebra and M be a module in modA. Then the one-point extension of
A by M is the matrix algebra

A[M] =

[
A 0
M K

]
=

{[
a 0
m λ

]
; λ ∈ K, a ∈ A, m ∈M

}
with the usual addition and multiplication. The quiver QA[M] of A[M] contains the
quiver QA of A as a convex subquiver, and there is an additional (extension) vertex
which is a source. The A[M]-modules are usually identified with the triples (V,X ,φ),
where V is a K-vector space, X an A-module and φ : V → HomA(M,X) is a K-linear
map. An A[M]-linear map (V,X ,φ)→ (W,Y,ψ) is then identified with a pair ( f ,g),
where f : V →W is K-linear, g : X→Y is A-linear and ψ f = HomA(M,g)φ . Dually,
one defines also the one-point coextension of A by M as the matrix algebra

[M]A =

[
K 0

D(M) A

]
.

For K and r ≥ 1, we denote by Tr(K) the r× r-lower triangular matrix algebra

K 0 0 . . . 0 0
K K 0 . . . 0 0
K K K . . . 0 0
...

...
...

. . .
...

...
K K K . . . K 0
K K K . . . K K


Given a generalized standard component Γ of ΓA, and an indecomposable mod-

ule X in Γ , the support S (X) of the functor HomA(X ,−) |Γ is the R-linear category
defined as follows [7]. Let HX denote the full subcategory of Γ consisting of the
indecomposable modules M in Γ such that HomA(X ,M) ̸= 0, and IX denote the
ideal of HX consisting of the morphisms f : M→ N (with M,N in HX ) such that
HomA(X , f ) = 0. We define S (X) to be the quotient category HX/IX . Follow-
ing the above convention, we usually identify the R-linear category S (X) with its
quiver.
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From now on let A be an algebra and Γ be a family of generalized standard
infinite components of ΓA. For an indecomposable brick X in Γ , called the pivot,
one defines five admissible operations (ad 1)-(ad 5) and their dual (ad 1∗)-(ad 5∗)
modifying the translation quiver Γ = (Γ ,τ) to a new translation quiver (Γ ′,τ ′) and
the algebra A to a new algebra A′, depending on the shape of the support S (X) (see
[50, Section 2] for the figures illustrating the modified translation quivers Γ ′).

(ad 1) Assume S (X) consists of an infinite sectional path starting at X :

X = X0→ X1→ X2→ ·· ·

In this case, we let t ≥ 1 be a positive integer, D = Tt(K) and Y1, Y2, . . ., Yt denote
the indecomposable injective D-modules with Y = Y1 the unique indecomposable
projective-injective D-module. We define the modified algebra A′ of A to be the
one-point extension

A′ = (A×D)[X⊕Y ]

and the modified translation quiver Γ ′ of Γ to be obtained by inserting in Γ the

rectangle consisting of the modules Zi j =

(
K,Xi⊕Yj,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t,

and X ′i = (K,Xi,1) for i ≥ 0. The translation τ ′ of Γ ′ is defined as follows: τ ′Zi j =
Zi−1, j−1 if i≥ 1, j ≥ 2,τ ′Zi1 = Xi−1 if i≥ 1,τ ′Z0 j = Yj−1 if j ≥ 2,Z01 is projective,
τ ′X ′0 = Yt ,τ ′X ′i = Zi−1,t if i ≥ 1,τ ′(τ−1Xi) = X ′i provided Xi is not an injective A-
module, otherwise X ′i is injective in Γ ′. For the remaining vertices of Γ ′, τ ′ coincides
with the translation of Γ , or ΓD, respectively.

If t = 0 we define the modified algebra A′ to be the one-point extension A′ = A[X ]
and the modified translation quiver Γ ′ to be the translation quiver obtained from Γ
by inserting only the sectional path consisting of the vertices X ′i , i≥ 0.

The non-negative integer t is such that the number of infinite sectional paths
parallel to X0→ X1→ X2→ ··· in the inserted rectangle equals t +1. We call t the
parameter of the operation.

Since Γ is a generalized standard family of components of ΓA, we then have

Lemma 4.2. Γ ′ is a generalized standard family of components of ΓA′ .

In case Γ is a stable tube, it is clear that any module on the mouth of Γ satisfies
the condition for being a pivot for the above operation. Actually, the above operation
is, in this case, the tube insertion as considered in [28].

(ad 2) Suppose that S (X) admits two sectional paths starting at X , one infinite
and the other finite with at least one arrow:

Yt ← ··· ← Y2← Y1← X = X0→ X1→ X2→ ···

where t ≥ 1. In particular, X is necessarily injective. We define the modified algebra
A′ of A to be the one-point extension A′ = A[X ] and the modified translation quiver
Γ ′ of Γ to be obtained by inserting in Γ the rectangle consisting of the modules

Zi j =

(
K,Xi⊕Yj,

[
1
1

])
for i ≥ 1, 1 ≤ j ≤ t, and X ′i = (K,Xi,1) for i ≥ 1. The
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translation τ ′ of Γ ′ is defined as follows: X ′0 is projective-injective, τ ′Zi j = Zi−1, j−1
if i≥ 2, j≥ 2,τ ′Zi1 =Xi−1 if i≥ 1,τ ′Z1 j =Yj−1 if j≥ 2,τ ′X ′i = Zi−1,t if i≥ 2,τ ′X ′1 =
Yt ,τ ′(τ−1Xi) = X ′i provided Xi is not an injective A-module, otherwise X ′i is injective
in Γ ′. For the remaining vertices of Γ ′,τ ′ coincides with the translation τ of Γ .

The integer t ≥ 1 is such that the number of infinite sectional paths parallel to
X0→ X1→ X2→ ·· · in the inserted rectangle equals t +1. We call t the parameter
of the operation.

Since Γ is a generalized standard family of components of ΓA, we then have

Lemma 4.3. Γ ′ is a generalized standard family of components of ΓA′ .

(ad 3) Assume S (X) is the mesh-category of two parallel sectional paths:

Y1 → Y2 → ··· → Yt
↑ ↑ ↑

X = X0 → X1 → ··· → Xt−1 → Xt → ···

where t ≥ 2. In particular, Xt−1 is necessarily injective. Moreover, we consider the
translation quiver Γ of Γ obtained by deleting the arrows Yi→ τ−1

A Yi−1. We assume
that the union Γ̂ of connected components of Γ containing the vertices τ−1

A Yi−1,
2≤ i≤ t, is a finite translation quiver. Then Γ is a disjoint union of Γ̂ and a cofinite
full translation subquiver Γ ∗, containing the pivot X . We define the modified algebra
A′ of A to be the one-point extension A′ = A[X ] and the modified translation quiver
Γ ′ of Γ to be obtained from Γ ∗ by inserting the rectangle consisting of the modules

Zi j =

(
K,Xi⊕Yj,

[
1
1

])
for i ≥ 1, 1 ≤ j ≤ t, and X ′i = (K,Xi,1) for i ≥ 1. The

translation τ ′ of Γ ′ is defined as follows: X ′0 is projective, τ ′Zi j = Zi−1, j−1 if i ≥ 2,
2 ≤ j ≤ t, τ ′Zi1 = Xi−1 if i ≥ 1,τ ′X ′i = Yi if 1 ≤ i ≤ t, τ ′X ′i = Zi−1,t if i ≥ t + 1,
τ ′Yj = X ′j−2 if 2 ≤ j ≤ t, τ ′(τ−1Xi) = X ′i , if i ≥ t provided Xi is not injective in Γ ,
otherwise X ′i is injective in Γ ′. For the remaining vertices of Γ ′,τ ′ coincides with
the translation τ of Γ ∗. We note that X ′t−1 is injective.

The integer t ≥ 2 is such that the number of infinite sectional paths parallel to
X0→ X1→ X2→ ·· · in the inserted rectangle equals t +1. We call t the parameter
of the operation.

Since Γ is a generalized standard family of components of ΓA, we then have

Lemma 4.4. Γ ′ is a generalized standard family of components of ΓA′ .

(ad 4) Suppose that S (X) consists an infinite sectional path, starting at X

X = X0→ X1→ X2→ ·· ·

and
Y = Y1→ Y2→ ··· → Yt

with t ≥ 1, be a finite sectional path in ΓA. Let r be a positive integer. Moreover, we
consider the translation quiver Γ of Γ obtained by deleting the arrows Yi→ τ−1

A Yi−1.
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We assume that the union Γ̂ of connected components of Γ containing the vertices
τ−1

A Yi−1, 2 ≤ i ≤ t, is a finite translation quiver. Then Γ is a disjoint union of Γ̂
and a cofinite full translation subquiver Γ ∗, containing the pivot X . For r = 0 we
define the modified algebra A′ of A to be the one-point extension A′ = A[X ⊕Y ]
and the modified translation quiver Γ ′ of Γ to be obtained from Γ ∗ by inserting the

rectangle consisting of the modules Zi j =

(
K,Xi⊕Yj,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t,

and X ′i = (K,Xi,1) for i ≥ 1. The translation τ ′ of Γ ′ is defined as follows: τ ′Zi j =
Zi−1, j−1 if i≥ 1, j ≥ 2,τ ′Zi1 = Xi−1 if i≥ 1,τ ′Z0 j = Yj−1 if j ≥ 2,Z01 is projective,
τ ′X ′0 = Yt ,τ ′X ′i = Zi−1,t if i ≥ 1,τ ′(τ−1Xi) = X ′i provided Xi is not injective in Γ ,
otherwise X ′i is injective in Γ ′. For the remaining vertices of Γ ′,τ ′ coincides with
the translation of Γ ∗.

For r ≥ 1, let G = Tr(K), U1,t+1, U2,t+1, . . ., Ur,t+1 denote the indecomposable
projective G-modules, Ur,t+1, Ur,t+2, . . ., Ur,t+r denote the indecomposable injective
G-modules, with Ur,t+1 the unique indecomposable projective-injective G-module.
We define the modified algebra A′ of A to be the triangular matrix algebra of the
form:

A′ =



A 0 0 . . . 0 0
Y K 0 . . . 0 0
Y K K . . . 0 0
...

...
...

. . .
...

...
Y K K . . . K 0

X⊕Y K K . . . K K


with r + 2 columns and rows and the modified translation quiver Γ ′ of Γ to be
obtained from Γ ∗ by inserting the rectangles consisting of the modules Ukl = Yl ⊕

Uk,t+k for 1 ≤ k ≤ r, 1 ≤ l ≤ t, and Zi j =

(
K,Xi⊕Ur j,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤

t + r, and X ′i = (K,Xi,1) for i ≥ 0. The translation τ ′ of Γ ′ is defined as follows:
τ ′Zi j = Zi−1, j−1 if i≥ 1, j ≥ 2,τ ′Zi1 = Xi−1 if i≥ 1,τ ′Z0 j =Ur, j−1 if 2≤ j ≤ t + r,
Z01,Uk1,1≤ k≤ r are projective, τ ′Ukl =Uk−1,l−1 if 2≤ k≤ r, 2≤ l ≤ t+r, τ ′U1l =
Yl−1 if 2≤ l ≤ t +1, τ ′X ′0 =Ur,t+r,τ ′X ′i = Zi−1,t+r if i≥ 1,τ ′(τ−1Xi) = X ′i provided
Xi is not injective in Γ , otherwise X ′i is injective in Γ ′. For the remaining vertices of
Γ ′,τ ′ coincides with the translation of Γ ∗, or ΓG, respectively.

We note that the quiver QA′ of A′ is obtained from the quiver of the double one-
point extension A[X ][Y ] by adding a path of length r+1 with source at the extension
vertex of A[X ] and sink at the extension vertex of A[Y ].

The integers t ≥ 1 and r ≥ 0 are such that the number of infinite sectional paths
parallel to X0→ X1→ X2→ ·· · in the inserted rectangles equals t + r+1. We call
t + r the parameter of the operation.

Since Γ is a generalized standard family of components of ΓA, we then have

Lemma 4.5. Γ ′ is a generalized standard family of components of ΓA′ .

(fad 1) Assume S (X) consists of a finite sectional path starting at X :

X = X0→ X1→ X2→ ··· → Xs
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where s ≥ 0 and Xs is injective. Let t ≥ 1 be a positive integer, D = Tt(K) and Y1,
Y2, . . ., Yt denote the indecomposable injective D-modules with Y = Y1 the unique
indecomposable projective-injective D-module. We define the modified algebra A′

of A to be the one-point extension

A′ = (A×D)[X⊕Y ]

and the modified translation quiver Γ ′ of Γ to be obtained by inserting in Γ the

rectangle consisting of the modules Zi j =

(
K,Xi⊕Yj,

[
1
1

])
for 0≤ i≤ s, 1≤ j≤ t,

X ′i = (K,Xi,1) for 0 ≤ i ≤ s, Y ′j = (K,Yj,1) for 1 ≤ j ≤ t, and W = Sp, where
p is the extension vertex of A[X ]. The translation τ ′ of Γ ′ is defined as follows:
τ ′Zi j = Zi−1, j−1 if i≥ 1, j≥ 2,τ ′Zi1 = Xi−1 if i≥ 1,τ ′Z0 j =Yj−1 if j≥ 2,Z01 is pro-
jective, τ ′X ′0 = Yt ,τ ′X ′i = Zi−1,t if i ≥ 1,τ ′(τ−1Xi) = X ′i provided Xi is not injective
in Γ , otherwise X ′i is injective in Γ ′, τ ′Y ′1 = Xs, τ ′Y ′j = Zs, j−1 if 2≤ j≤ t, τ ′W = Zst .
For the remaining vertices of Γ ′,τ ′ coincides with the translation of Γ , or ΓD, re-
spectively. If t = 0 we define the modified algebra A′ to be the one-point extension
A′ = A[X ] and the modified translation quiver Γ ′ to be the component obtained from
Γ by inserting only the sectional path consisting of the vertices X ′i , 0 ≤ i ≤ s, and
W .

Observe that for s = 0 = t the new translation quiver Γ ′ is obtained from Γ by
adding the projective-injective vertex X ′0 and the vertex W with τ ′W = X0.

(fad 2) Suppose that S (X) admits two finite sectional paths starting at X , each
of them with at least one arrow:

Yt ← ··· ← Y2← Y1← X = X0→ X1→ X2→ ··· → Xs

where t ≥ 1 and s≥ 1. In particular, X and Xs are necessarily injective. We define the
modified algebra A′ of A to be the one-point extension A′ = A[X ] and the modified
translation quiver Γ ′ of Γ to be obtained by inserting in Γ the rectangle consisting

of the modules Zi j =

(
K,Xi⊕Yj,

[
1
1

])
for 1≤ i≤ s, 1≤ j ≤ t, X ′i = (K,Xi,1) for

1≤ i≤ s, Y ′j =(K,Yj,1) for 1≤ j≤ t, and W = Sp, where p is the extension vertex of
A[X ]. The translation τ ′ of Γ ′ is defined as follows: X ′0 is projective-injective, τ ′Zi j =
Zi−1, j−1 if i ≥ 2, j ≥ 2,τ ′Zi1 = Xi−1 if i ≥ 1,τ ′Z1 j = Yj−1 if j ≥ 2,τ ′X ′i = Zi−1,t if
i ≥ 2,τ ′X ′1 = Yt ,τ ′(τ−1Xi) = X ′i provided Xi is not injective in Γ , otherwise X ′i is
injective in Γ ′, τ ′Y ′1 = Xs, τ ′Y ′j = Zs, j−1 if 2 ≤ j ≤ t, τ ′W = Zst . For the remaining
vertices of Γ ′,τ ′ coincides with the translation τ of Γ .

(fad 3) Assume S (X) is the mesh-category of two finite parallel sectional paths:

Y1 → Y2 → ··· → Yt
↑ ↑ ↑

X = X0 → X1 → ··· → Xt−1 → Xt → ·· · → Xs

where s≥ t−1, t ≥ 2. In particular, Xt−1 and Xs are necessarily injective. We define
the modified algebra A′ of A to be the one-point extension A′=A[X ] and the modified
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translation quiver Γ ′ of Γ to be obtained by inserting in Γ the rectangle consisting

of the modules Zi j =

(
K,Xi⊕Yj,

[
1
1

])
for 1≤ i≤ s, 1≤ j ≤ t, X ′i = (K,Xi,1) for

1≤ i≤ s, Y ′j =(K,Yj,1) for 1≤ j≤ t, and W = Sp, where p is the extension vertex of
A[X ]. The translation τ ′ of Γ ′ is defined as follows: X ′0 is projective, τ ′Zi j = Zi−1, j−1
if i ≥ 2,2 ≤ j ≤ t,τ ′Zi1 = Xi−1 if i ≥ 1,τ ′X ′i = Yi if 1 ≤ i ≤ t,τ ′X ′i = Zi−1,t if i ≥
t + 1,τ ′Yj = X ′j−2 if 2 ≤ j ≤ t, τ ′(τ−1Xi) = X ′i , if i ≥ t provided Xi is not injective
in Γ , otherwise X ′i is injective in Γ ′. In both cases, X ′t−1 is injective, τ ′Y ′1 = Xs,
τ ′Y ′j = Zs, j−1 if 2≤ j ≤ t, τ ′W = Zst . For the remaining vertices of Γ ′,τ ′ coincides
with the translation τ of Γ . Observe that for s = t−1 we have Ztt =Y ′t and X ′t =W .

(fad 4) Suppose that S (X) consists of a finite sectional path starting at X :

X = X0→ X1→ X2→ ··· → Xs

with s≥ 1 and Xs injective, and

Y = Y1→ Y2→ ··· → Yt

t ≥ 1, be a finite sectional path in ΓA. Let r be a positive integer. For r = 0 we
define the modified algebra A′ of A to be the one-point extension A′ = A[X ⊕Y ]
and the modified translation quiver Γ ′ of Γ to be obtained by inserting in Γ the

rectangle consisting of the modules Zi j =

(
K,Xi⊕Yj,

[
1
1

])
for 0≤ i≤ s, 1≤ j≤ t,

X ′i = (K,Xi,1) for 0 ≤ i ≤ s, Y ′j = (K,Yj,1) for 1 ≤ j ≤ t, and W = Sp, where p is
the extension vertex of A[X ]. The translation τ ′ of Γ ′ is defined as follows: τ ′Zi j =
Zi−1, j−1 if i≥ 1, j ≥ 2,τ ′Zi1 = Xi−1 if i≥ 1,τ ′Z0 j = Yj−1 if j ≥ 2,Z01 is projective,
τ ′X ′0 = Yt ,τ ′X ′i = Zi−1,t if i ≥ 1,τ ′(τ−1Xi) = X ′i provided Xi is not injective in Γ ,
otherwise X ′i is injective in Γ ′, τ ′Y ′1 = Xs, τ ′Y ′j = Zs, j−1 if 2≤ j ≤ t, τ ′W = Zst . For
the remaining vertices of Γ ′,τ ′ coincides with the translation of Γ .

For r ≥ 1, let G = Tr(K), U1,t+1, U2,t+1, . . ., Ur,t+1 denote the indecomposable
projective G-modules, Ur,t+1, Ur,t+2, . . ., Ur,t+r denote the indecomposable injective
G-modules, with Ur,t+1 the unique indecomposable projective-injective G-module.
We define the modified algebra A′ of A to be the triangular matrix algebra of the
form:

A′ =



A 0 0 . . . 0 0
Y K 0 . . . 0 0
Y K K . . . 0 0
...

...
...

. . .
...

...
Y K K . . . K 0

X⊕Y K K . . . K K


with r + 2 columns and rows and the modified translation quiver Γ ′ of Γ to be
obtained by inserting in Γ the rectangles consisting of the modules Ukl =Yl⊕Uk,t+k

for 1 ≤ k ≤ r, 1 ≤ l ≤ t, Zi j =

(
K,Xi⊕Ur j,

[
1
1

])
for 0 ≤ i ≤ s, 1 ≤ j ≤ t + r,

X ′i = (K,Xi,1) for 0 ≤ i ≤ s, Y ′j = (K,Ur j,1) for 1 ≤ j ≤ t + r, and W = Sp, where
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p is the extension vertex of A[X ]. The translation τ ′ of Γ ′ is defined as follows:
τ ′Zi j = Zi−1, j−1 if i≥ 1, j ≥ 2,τ ′Zi1 = Xi−1 if i≥ 1,τ ′Z0 j =Ur, j−1 if 2≤ j ≤ t + r,
Z01,Uk1,1≤ k≤ r are projective, τ ′Ukl =Uk−1,l−1 if 2≤ k≤ r, 2≤ l ≤ t+r, τ ′U1l =
Yl−1 if 2≤ l ≤ t +1, τ ′X ′0 =Ur,t+r,τ ′X ′i = Zi−1,t+r if i≥ 1,τ ′(τ−1Xi) = X ′i provided
Xi is not injective in Γ , otherwise X ′i is injective in Γ ′, τ ′Y ′1 = Xs, τ ′Y ′j = Zs, j−1 if
2 ≤ j ≤ t + r, τ ′W = Zs,t+r. For the remaining vertices of Γ ′,τ ′ coincides with the
translation of Γ , or ΓG, respectively.

(ad 5) We define the modified algebra A′ of A to be the iteration of the extensions
described in the definitions of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4),
and their finite versions corresponding to the operations (fad 1), (fad 2), (fad 3) and
(fad 4). The modified translation quiver Γ ′ of Γ is obtained in the following three
steps: first we are doing on Γ one of the operations (fad 1), (fad 2) or (fad 3), next
a finite number (possibly empty) of the operation (fad 4) and finally the operation
(ad 4), and in such a way that the sectional paths starting from all the new projective
vertices have a common cofinite (infinite) sectional subpath.

Since Γ is a generalized standard family of components of ΓA, we then have

Lemma 4.6. Γ ′ is a generalized standard family of components of ΓA′ .

Finally, together with each of the admissible operations (ad 1), (ad 2), (ad 3),
(ad 4) and (ad 5), we consider its dual, denoted by (ad 1∗), (ad 2∗), (ad 3∗), (ad 4∗)
and (ad 5∗). These ten operations are called the admissible operations. Following
[50] a connected translation quiver Γ is said to be a generalized multicoil if Γ can be
obtained from a finite family T1,T2, . . . ,Ts of stable tubes by an iterated application
of admissible operations (ad 1), (ad 1∗), (ad 2), (ad 2∗), (ad 3), (ad 3∗), (ad 4), (ad 4∗),
(ad 5) or (ad 5∗). If s = 1, such a translation quiver Γ is said to be a generalized coil.
The admissible operations of types (ad 1), (ad 2), (ad 3), (ad 1∗), (ad 2∗) and (ad 3∗)
have been introduced in [5], [7], [8], and the admissible operations (ad 4) and (ad 4∗)
for r = 0 in [45].

Observe that any stable tube is trivially a generalized coil. A tube (in the sense of
[28]) is a generalized coil having the property that each admissible operation in the
sequence defining it is of the form (ad 1) or (ad 1∗). If we apply only operations of
type (ad 1) (respectively, of type (ad 1∗)) then such a generalized coil is called a ray
tube (respectively, a coray tube). Observe that a generalized coil without injective
(respectively, projective) vertices is a ray tube (respectively, a coray tube). A quasi-
tube (in the sense of [70]) is a generalized coil having the property that each of the
admissible operations in the sequence defining it is of type (ad 1), (ad 1∗), (ad 2) or
(ad 2∗). Finally, following [7] a coil is a generalized coil having the property that
each of the admissible operations in the sequence defining it is one of the forms
(ad 1), (ad 1∗), (ad 2), (ad 2∗), (ad 3) or (ad 3∗). We note that any generalized
multicoil Γ is a coherent translation quiver with trivial valuations and its cyclic part
cΓ (the translation subquiver of Γ obtained by removing from Γ all acyclic vertices
and the arrows attached to them) is infinite, connected and cofinite in Γ , and so Γ is
almost cyclic.

Let C be the product C1× . . .×Cm of a family C1, . . . ,Cm of tame concealed alge-
bras and T C the disjoin union T C1 ∪ . . .∪T Cm of P1(K)-families T C1 , . . . ,T Cm of
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pairwise orthogonal generalized standard stable tubes of ΓC1 , . . . ,ΓCm , respectively.
Following [51], we say that an algebra A is a generalized multicoil enlargement of
C1, . . . ,Cm if A is obtained from C by an iteration of admissible operations of types
(ad 1)-(ad 5) and (ad 1∗)-(ad 5∗) performed either on stable tubes of T C or on gener-
alized multicoils obtained from stable tubes of T C by means of operations done so
far. It follows from [51, Corollary B] that then A is a triangular algebra, and hence
the Tits and Euler forms qA and χA of A are defined. In fact, in [51] generalized
multicoil enlargements of finite families of arbitrary concealed canonical algebras
have been introduced and investigated. But in the tame case we may restrict to the
generalized multicoil enlargements of tame concealed algebras. Namely, we have
the following consequence of [51, Theorems A and F].

Theorem 4.7. Let A be an algebra. The following statements are equivalent:

(i) A is tame and ΓA admits a separating family of almost cyclic coherent compo-
nents.

(ii) A is a tame generalized multicoil enlargement of a finite family of tame concealed
algebras.

(iii) A is a generalized multicoil enlargement of a finite family of tame concealed
algebras and the Tits form qA is weakly nonnegative.

From now on, by a tame generalized multicoil algebra we mean a connected tame
generalized multicoil enlargement of a finite family of tame concealed algebras.
The following consequence of [51, Theorems C and F] describes the structure of
the Auslander-Reiten quivers of tame generalized multicoil algebras.

Theorem 4.8. Let A be a tame generalized multicoil algebra obtained from a family
C1, . . . ,Cm of tame concealed algebras. There are convex subcategories A(l) =A(l)

1 ×
. . .×A(l)

m and A(r) = A(r)
1 × . . .×A(r)

m of A such that the following statement hold:

(i) For each i ∈ {1, . . . ,m}, A(l)
i is a domestic tubular or tubular coextension of the

tame concealed algebra Ci.
(ii) For each i ∈ {1, . . . ,m}, A(r)

i is a domestic tubular or tubular extension of the
tame concealed algebra Ci.

(iii) The Auslander-Reiten quiver ΓA of A is of the form

ΓA = PA∪C A∪QA,

where C A is a family of generalized multicoils separating PA from QA such
that:

(1) C A is obtained from the P1(K)-families T C1 , . . . ,T Cm of stable tubes of ΓC1 , . . . ,ΓCm

by admissible operations corresponding to the admissible operations leading
from C1, . . . ,Cm to A;

(2) PA is the disjoint union PA(l)
1 ∪ . . .∪PA(l)

m , where, for each i∈{1, . . . ,m}, PA(l)
i

is either the postprojective component of Γ
A(l)

i
, if A(l)

i is tilted of Euclidean type,

or PA(l)
i = P

A(l)
i

0 ∪T
A(l)

i
0 ∪

(∪
q∈Q+ T

A(l)
i

q

)
, if A(l)

i is a tubular algebra;
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(3) QA is the disjoint union QA(r)
1 ∪ . . .∪QA(r)

m , where, for each i ∈ {1, . . . ,m}, QA(r)
i

is either the preinjective component of Γ
A(r)

i
, if A(r)

i is tilted of Euclidean type, or

QA(r)
i =

(∪
q∈Q+ T

A(r)
i

q

)
∪T

A(r)
i∞ ∪Q

A(r)
i∞ , if A(r)

i is a tubular algebra.

In particular, we have the following consequence of Theorems 3.1 and 4.8.

Corollary 4.9. Let A be a tame generalized multicoil algebra. Then A is cycle-finite.

Further, as a consequence of Theorems 3.4 and 4.8, we obtain the following fact.

Corollary 4.10. Let A be a tame generalized multicoil algebra and ΓA =PA∪C A∪
QA the canonical decomposition of ΓA. The following statements are equivalent:

(i) A is domestic.
(ii) PA is a disjoint union of postprojective components of Euclidean type and QA

is a disjoint union of preinjective components of Euclidean type.

Moreover, the following consequence of [51, Theorem E] describes the homological
properties of modules over tame generalized multicoil algebras.

Theorem 4.11. Let A be a tame generalized multicoil algebra and ΓA =PA∪C A∪
QA the canonical decomposition of ΓA described above. Then the following state-
ments hold:

(i) pdAX ≤ 1 for any module X in PA.
(ii) idAX ≤ 1 for any module X in QA.

(iii) pdAX ≤ 2 and idAX ≤ 2 for any module X in C A.
(iv) gl dimA≤ 3.

5 Tame generalized double tilted algebras

In this section we introduce and describe basic properties of the class of tame gen-
eralized double tilted algebras, which is the class of tame algebras in the class of
generalized double tilted algebras investigated in [62], [63], [79].

Let H be a hereditary algebra, T a (multiplicity-free) tilting module in modH
and B = EndH(T ) the associated tilted algebra. Then T induces the torsion pair
(T (T ),F (T )) in modH, with the torsion class T (T )= {M ∈modH;Ext1A(T,M)=
0} and the torsion-free class T (F) = {N ∈modH;HomH(T,N) = 0}, and the tor-
sion pair (X (T ),Y (T )) in modB, with the torsion class X (T )= {X ∈modB;X⊗B
T = 0} and the torsion-free class Y (T ) = {Y ∈ modH;TorB

1 (Y,T ) = 0}. Then, by
the Brenner-Butler theorem, the functors HomA(T,−) and −⊗B T induce quasi-
inverse equivalence between T (T ) and Y (T ), and the functors Ext1A(T,−) and
TorB

1 (−,T ) induce quasi-inverse equivalence between F (T ) and X (T ) (see [23],
[33]). Moreover, (X (T ),Y (T )) is a splitting torsion pair of modB, that is, every
indecomposable module in modB belongs either to X (T ) or Y (T ). Further, the
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images HomH(T, I) of the indecomposable injective H-modules I via the functor
HomH(T, I) form a section Σ of an acyclic component CT of ΓB such that Σ is iso-
morphic to the opposite quiver Qop

H of the quiver QH of H, any predecessor of Σ
in CT lies in Y (T ), and any proper successor of Σ in CT lies in X (T ). Therefore,
the component CT of ΓB connects the torsion-free part Y (T ) with the torsion part
X (T ) along the section Σ , and hence CT is called the connecting component of ΓB
determined by T .

The following theorem proved independently by Liu [43] and Skowroński [72]
gives a handy criterion for an algebra to be a tilted algebra.

Theorem 5.1. An algebra B is a tilted algebra if and only if ΓB contains a component
C with a faithful section Σ such that HomB(U,τBV ) = 0 for all modules U,V from
Σ . Moreover, in this case, the direct sum T of all modules on Σ is a tilting B-module,
H = EndB(T ) is a hereditary algebra, T ∗ = D(HT ) is a tilting H-module with B∼=
EndH(T ∗), and C is the connecting component CT ∗ of ΓB determined by T ∗.

The general shape of the Auslander-Reiten quiver of a tilted algebra has been de-
scribed by Kerner in [37]. We will describe only the Auslander-Reiten quivers of
tame tilted algebras, which are exactly the cycle-finite tilted algebras.

Theorem 5.2. Let H = K∆ be a hereditary algebra, T a tilting H-module, and as-
sume that the associated tilted algebra B = EndH(T ) is tame. Then the connecting
component CT of ΓB determined by T admits a finite (possibly empty) family of
pairwise disjoint translation subquivers D

(l)
1 , . . . ,D

(l)
m , D

(r)
1 , . . . ,D

(r)
n such that the

following statements hold.

(i) For each i∈{1, . . . ,m}, there exists an isomorphism of translation quivers D
(l)
i
∼=

N∆ (l)
i , where ∆ (l)

i is a connected convex subquiver of ∆ of Euclidean type and
D

(l)
i is closed under predecessors in CT .

(ii) For each j∈{1, . . . ,n}, there exists an isomorphism of translation quivers D
(r)
j
∼=

(−N)∆ (r)
j , where ∆ (r)

j is a connected convex subquiver of ∆ of Euclidean type

and D
(r)
j is closed under successors in CT .

(iii) All but finitely many modules of CT lie in D
(l)
1 ∪·· ·∪D

(l)
m ∪D

(r)
1 ∪·· ·∪D

(r)
n .

(iv) For each i ∈ {1, . . . ,m}, there exists a tilted algebra B(l)
i = End

H(l)
i
(T (l)

i ), where

H(l)
i is the path algebra K∆ (l)

i , T (l)
i is a tilting H(l)

i -module without nonzero prein-
jective direct summands, B(l)

i is a quotient algebra of B, and D
(l)
i coincides with

the torsion-free part Y (T (l)
i )∩C

T (l)
i

of the connecting component C
T (l)

i
of Γ

B(l)
i

determined by T (l)
i .

(v) For each j ∈ {1, . . . ,n}, there exists a tilted algebra B(r)
j = End

H(r)
j
(T (r)

j ), where

H(r)
j is the path algebra K∆ (r)

j , T (r)
j is a tilting H(r)

j -module without nonzero post-

projective direct summands, B(r)
j is a quotient algebra of B, and D

(r)
j coincides
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with the torsion part X (T (r)
j )∩C

T (r)
j

of the connecting component C
T (r)

j
of Γ

B(r)
j

determined by T (r)
j .

(vi) Y (T ) = add(Y (T (l)
1 )∪·· ·∪Y (T (l)

m )∪ (Y (T )∩CT )).

(vii) X (T ) = add((X (T )∩CT )∪X (T (r)
1 )∪·· ·∪X (T (r)

n )).
(viii) The Auslander-Reiten quiver ΓB of B has the disjoint union decomposition

ΓB =

(
m∪

i=1

Y Γ
B(l)

i

)
∪CT ∪

(
n∪

j=1

X Γ
B(r)

j

)
,

where

(a) For each i ∈ {1, . . . ,m}, Y Γ
B(l)

i
is the union of all components of Γ

B(l)
i

contained

entirely in Y (T (l)
i ), and hence consists of a unique postprojective component

PB(l)
i and a P1(K)-family T B(l)

i = (T
B(l)

i
λ )λ∈P1(K) of pairwise orthogonal gen-

eralized standard ray tubes;
(b) For each j ∈ {1, . . . ,n}, X Γ

B(r)
j

is the union of all components of Γ
B(r)

j
contained

entirely in X (T (r)
j ), and hence consists of a unique preinjective component QB(r)

j

and a P1(K)-family T B(r)
j = (T

B(r)
j

λ )λ∈P1(K) of pairwise orthogonal generalized
standard coray tubes.

The following theorem follows from [18](part (i)) and [65, p.376](parts (ii) and
(iii)).

Theorem 5.3. Let A be a cycle-finite algebra, X a directing module in modA, and
B = suppX. Then the following statements hold:

(i) B is a convex subcategory of A.
(ii) B is a tame tilted algebra.

(iii) X belongs to a connecting component of ΓB.

We refer to [17] and [29] (respectively, [55] and [56]) for a classification of
representation-finite (respectively, tame representation-infinite) tame tilted algebras
with sincere directing modules.

The class of tilted algebras was extended in [62] to the class of double tilted al-
gebras, and next in [63] to the class of generalized double tilted algebras, containing
the class of all algebras of finite type, by extending the concept of a section to the
concept of a multisection.

Following [63], a full connected subquiver ∆ of a component C of the Auslander-
Reiten quiver ΓA of an algebra A is said to be a multisection if the following condi-
tions are satisfied:

(i) ∆ is almost acyclic.
(ii) ∆ is convex in C .
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(iii) For each τA-orbit O in C , we have 1≤ |∆ ∩O|< ∞.
(iv) |∆ ∩O|= 1 for all but finitely many τA-orbits O in C .
(v) No proper full convex subquiver of ∆ satisfies (i)–(iv).

It has been proved in [63, Theorem 2.5] that a component C of ΓA is almost
acyclic if and only if C admits a multisection ∆ . Moreover, for a multisection ∆ of
a component C of ΓA, the following full subquivers of C were defined in [63]:

(i) ∆ ′l = {X∈∆ ; there is a nonsectional path in C from X to a projective module P},
(ii) ∆ ′r = {X ∈∆ ; there is a nonsectional path in C from an injective module I to X},

(iii) ∆ ′′l = {X ∈ ∆ ′l ;τ−1
A X /∈ ∆ ′l}, ∆ ′′r = {X ∈ ∆ ′r;τAX /∈ ∆ ′r},

(iv) ∆l = (∆ \∆ ′r)∪ τA∆ ′′r , ∆c = ∆ ′l ∩∆ ′r, ∆r = (∆ \∆ ′l )∪ τ−1
A ∆ ′′l .

Then ∆l is called the left part of ∆ , ∆r the right part of ∆ , and ∆c the core of ∆ .

Lemma 5.4. Let A be an algebra, C a component of ΓA and ∆ a multisection of C .
The following statements hold

(i) Every cycle of C lies in ∆c.
(ii) ∆c is finite.

(iii) Every indecomposable module X in C is in ∆c, or a predecessor of ∆l or a
successor of ∆r in C .

(iv) ∆ is faithful if and only if C is faithful.

Moreover, in [63] a numerical invariant w(∆) ∈ N∪{∞} of a multisection ∆ of C ,
called the width of ∆ , was introduced such that C is acyclic if and only if w(∆)< ∞,
and w(∆) = 1 if and only if ∆ is a section.

The following facts proved in [63, Proposition 2.11] show that the core and the
width of a multisection of an almost cyclic component C are uniquely determined
by C .

Proposition 5.5. Let A be an algebra, C a component of ΓA and ∆ ,Σ multisections
of C . Then ∆c = Σc and w(∆) = w(Σ).

Following [63], an algebra B is said to be a generalized double tilted algebra if
the following conditions are satisfied:

(1) ΓB admits a component C with a faithful multisection ∆ .
(2) There exists a tilted quotient algebra B(l) of B (not necessarily connected) such

that ∆l is a disjoint union of sections of the connecting components of the con-
nected parts of B(l) and the category of all predecessors of ∆l in indB coincides
with the category of all predecessors of ∆l in indB(l).

(3) There exists a tilted quotient algebra B(r) of B (not necessarily connected) such
that ∆r is a disjoint union of sections of the connecting components of the con-
nected parts of B(r), and the category of all successors of ∆r in indB coincides
with the category of all successors of ∆r in indB(r).

Then B(l) is called a left tilted part of B and B(r) a right tilted part of B.
The following generalization of Theorem 5.1, proved in [63, Theorem 3.1], gives

a handy criterion for an algebra to be a generalized double tilted algebra.
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Theorem 5.6. Let B be an algebra. The following conditions are equivalent:

(i) B is a generalized double tilted algebra.
(ii) The quiver ΓB admits a component C with a faithful multisection ∆ such that

HomB(U,τBV ) = 0, for all modules U ∈ ∆r and V ∈ ∆l .
(iii) The quiver ΓB admits a faithful generalized standard almost acyclic component

C .

In particular, we obtain the following characterization of tame generalized double
tilted algebras.

Theorem 5.7. Let B be a generalized double tilted algebra, C a faithful generalized
standard almost cyclic component of ΓB, and ∆ a multisection of C . The following
conditions are equivalent:

(i) B is tame.
(ii) B is cycle-finite.

(iii) ∆l and ∆r are disjoint unions of Euclidean quivers.
(iv) The tilted algebras B(l) and B(r) are tame.
(v) The Auslander-Reiten quiver ΓB of B has disjoint union decomposition

ΓB = Y ΓB(l) ∪C ∪X ΓB(r) ,

where

(a) Y ΓB(l) is the union of all connected components of ΓB(l) contained entirely in the
torsion-free part Y (B(l)), and Y ΓB(l) is a disjoint union of postprojective compo-
nents of Euclidean type and P1(K)-families of pairwise orthogonal generalized
standard ray tubes.

(b) X ΓB(r) is the union of all connected components of ΓB(r) contained entirely in
the torsion part X (B(r)), and X ΓB(r) is a disjoint union of preinjective compo-
nents of Euclidean type and P1(K)-families of pairwise orthogonal generalized
standard coray tubes.

We end this section with an example of a tame generalized double tilted algebra,
illustrating the above considerations.

Example 5.8. Let B = KQ/I, where Q is the quiver
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and I is the ideal of KQ generated by all paths of Q of length 2 (see [63, Example
4.3]). Then B is a tame generalized double tilted algebra of global dimension 4 and
ΓB admits a generalized standard component C of the form
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with a faithful multisection ∆ formed by the indecomposable injective modules
I1, I2, I3, I4, I5, I6 (at the vertices 1, 2, 3, 4, 5, 6), the indecomposable projective mod-
ules P6,P7,P8 (at the vertices 6, 7, 8), the simple modules S5,S6,S7 (at the vertices 5,
6, 7) and the modules P7/S6, R = τ−1

B S5 = τBS7. Then the left part ∆l of ∆ consists
of the modules I1, I2, I3, I4,S5,P6 and is a section of the preinjective connecting com-
ponent of the tame tilted algebra B(l) being the convex subcategory of B given by
the vertices 1, 2, 3, 4, 5, 6. The right part ∆r of ∆ consists of the modules I6,S7,P8
and is a section of the postprojective connecting component of the tame tilted alge-
bra B(r) being the convex subcategory of B given by the vertices 6, 7, 8. Moreover,
the core ∆c of ∆ consists of the modules S6,P7,P7/S6,R, I5 and is the cyclic part
of the Auslander-Reiten quiver ΓB(c) of the representation-finite convex subcategory
B(c) = supp∆c of B given by the vertices 5, 6, 7. We also note that every module in
indB belongs to one of its full subcategories indB(l), indB(c), or indB(r).

6 Cyclic components of cycle-finite algebras

Let A be an algebra. We denote by cΓA the translation subquiver of ΓA, called the
cyclic part of ΓA, obtained by removing from ΓA all acyclic modules and the arrows
attached to them. The connected components of cΓA are said to be cyclic components
of ΓA (see [50]). The following result from [50, Proposition 5.1] will be very useful.

Proposition 6.1. Let A be an algebra and X, Y be two cyclic modules of ΓA. Then X
and Y belong to the same cyclic component of ΓA if and only if there is an oriented
cycle in ΓA passing through X and Y .

Moreover, we have the following property of the support algebras of cyclic compo-
nents of the Auslander-Reiten quivers of cycle-finite algebras (see [49]).

Proposition 6.2. Let A be a cycle-finite algebra, Γ a cyclic component of ΓA and
B = suppΓ . Then B is a convex subcategory of A.
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Let A be an algebra and C be a component of ΓA. We denote by lC the left
stable part of C , obtained by removing from C the τA-orbits containing projective
modules, and by rC the right stable part of C , obtained by removing from C the
τA-orbits containing injective modules. We note that if C is an infinite component
of ΓA then lC or rC is not empty.

The following theorem from [49, Theorem 1] describes the supports of infinite
cyclic components of the Auslander-Reiten quivers of cycle-finite algebras.

Theorem 6.3. Let A be a cycle-finite algebra and Γ an infinite cyclic component of
ΓA. Then there exist infinite full translation subquivers Γ1, . . . ,Γr of Γ such that the
following statements hold.

(i) For each i ∈ {1, . . . ,r}, Γi is a cyclic coherent full translation subquiver of ΓA.
(ii) For each i∈ {1, . . . ,r}, B(i) = suppΓi is a tame generalized multicoil algebra and

a quotient algebra of A.
(iii) Γ1, . . . ,Γr are pairwise disjoint full translation subquivers of Γ and Γ cc = Γ1 ∪

. . .∪Γr is a maximal cyclic coherent and cofinite full translation subquiver of Γ .
(iv) B(Γ \Γ cc) = A/annA(Γ \Γ cc) is of finite representation type.

The following example illustrates the above theorem.

Example 6.4. Let A = KQ/I, where Q is the quiver
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and I is the ideal in the path algebra KQ of Q generated by the elements αβ −σγ ,
ξ η−µν , πλ −ξ ηραβ , ρφ , ψρ , jl, dc, ed, gd, hg, h f , ih. Then A is a cycle-finite
and ΓA admits a component C of the form
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The cyclic part Γ of C is obtain by removing from C the (directing) modules
S12,S17,S18,P17 and the arrows attached to them. The maximal cyclic coherent part
Γ cc of Γ is the full translation subquiver of C obtained by removing the modules
S12, I12, T , S14, P14 = I13, S15, P21, S22, L, P22, R, I15, I22, S21, P20 = I21, S20, S17, P17,
S18 and the arrows attached to them. Further, Γ cc is the cyclic part of the maximal
almost cyclic coherent full translation subquiver Γ ∗ of C obtained by removing the
modules P14 = I13, S15, P21, S22, L, P22, R, I15, I22, S21, P20 = I21 and the arrows
attached to them.

Let B = A/annΓ . Then B = A/annΓ ∗, because annΓ = annΓ ∗. Observe that
B = KQB/IB, where QB is the full subquiver of Q given by all vertices of Q except
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15, 21, 22, and IB = I∩KQB. We claim that B is a tame generalized multicoil alge-
bra. Consider the path algebra C = K∆ of the full subquiver of Q given by the ver-
tices 4, 5, 6, 7, 8, 9. Then C is a hereditary algebra of Euclidean type D̃5, and hence
a tame concealed algebra. It is know that ΓC admits P1(K)-family T C

λ , λ ∈ P1(K),
of pairwise orthogonal generalized standard stable tubes, having a unique stable
tube Tλ of rank 3 with the mouth formed by the modules S6 = τCS7, S7 = τCE,
E = τCS6, where E is the unique indecomposable C-module with the dimension

vector dimE =

1
1

1

1
1

1

, (see [67, Theorem XIII 2.9]).

Then B is the generalized multicoil enlargement of C, obtained by applications

• two admissible operations of types (ad 1∗) with the pivots S6 and S12, creating
the vertices 11, 12, 13 and the arrows φ , a, b, c;

• two admissible operations of types (ad 1∗) with the pivots E and S2, creating the
vertices 3, 2, 1, 0 and the arrows β , γ , λ , ω , θ ;

• two admissible operations of types (ad 1) with the pivots S7 and S16, creating the
vertices 16, 17, 18, 19, 20 and the arrows ψ , l, m, j, i;

• one admissible operation of type (ad 3) with the pivot the radical of P10, creating
the vertex 10 and the arrows ξ , µ , π .

Then the left part B(l) of B is the convex subcategory of B (and of A) given by
the vertices 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, and is a tilted algebra of Eu-
clidean type D̃13 with the connecting postprojective component PB(l)

containing all
indecomposable projective B(l)-modules. The right part B(r) of B is the convex sub-
category of B (and of A) given by the vertices 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, and
is a tilted algebra of Euclidean type D̃10 with the connecting preinjective component
QB(r)

containing all indecomposable injective B(r)-modules. We also note that the
algebra B(Γ \Γ cc) = A/annA(Γ \Γ cc) is the representation-finite convex subcate-
gory of A given by the vertices 12, 13, 14, 15, 20, 21, 22. It follows from Theorem
4.8 that the Auslander-Reiten quiver ΓB of the generalized multicoil enlargement B
of C is of the form

ΓB = PB∪C B∪QB,

where PB = PB(l)
, QB = QB(r)

, and C B is the P1(K)-family C B
λ , λ ∈ P1(K), of

pairwise orthogonal generalized multicoils such that C B
1 =Γ ∗ and C B

λ =T C
λ for all

λ ∈ P1(K)\{1}. Hence ΓA is of the form

ΓA = PA∪C A∪QA,

where PA = PB(l)
, QA = QB(r)

, and C A is the P1(K)-family C A
λ , λ ∈ P1(K), of

pairwise orthogonal generalized standard components such that C A
1 =C , C A

λ =T C
λ

for all λ ∈ P1(K)\{1}. Moreover, we have

HomA(C
A,PA) = 0,HomA(Q

A,C A) = 0,HomA(Q
A,PA) = 0.
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In particular, A is a cycle-finite algebra with (rad∞(modA))3 = 0.

The following theorem from [49, Theorem 2] describes the supports of finite
cyclic components of the Auslander-Reiten quivers of cycle-finite algebras.

Theorem 6.5. Let A be a cycle-finite algebra and Γ a finite cyclic component of ΓA.
Then the following statements hold.

(i) B = suppΓ is a tame generalized double tilted algebra.
(ii) Γ is the core of the connecting component CB of ΓB.

We note that if the core of an almost cyclic component of an Auslander-Reiten
quiver ΓA is not empty that it contains a projective module and an injective module.
Then we obtain the following consequence of Theorem 6.5.

Corollary 6.6. Let A be a cycle-finite algebra. Then the number of finite cyclic com-
ponents of ΓA is bounded by the rank of K0(A).

Observe also that for a cycle-finite algebra A of infinite representation type there
are infinitely many (infinite) cyclic components of ΓA, since ΓA contains infinitely
many stable tubes (see Theorems 3.1 and 3.3).

7 The structure theorems

Let A be a cycle-finite algebra and X a module in indA. Then X is a directing module
if and only if X is an acyclic vertex of ΓA. Hence X is nondirecting if and only if
X belongs to a cyclic component of ΓA. Then the following structure theorem is a
direct consequence of Theorems 5.3, 6.3 and Propositions 6.1, 6.2.

Theorem 7.1. Let A be a cycle-finite algebra. Then there exist quotient algebras
B1, . . . ,Bp of A such that the following statements hold.

(i) For each i ∈ {1, . . . , p}, Bi is either a tame generalized multicoil algebra or a
tame generalized double tilted algebra.

(ii) indA =
∪p

i=1 indBi.

It follows from Theorem 5.2 that for a tame tilted algebra B, all but finitely
many modules in indB are indecomposable modules over the left tilted algebras
B(l)

1 , . . . ,B(l)
m of Euclidean types or over the right tilted algebras B(r)

1 , . . . ,B(r)
n of Eu-

clidean types. Moreover, all representation-infinite tilted algebras of Euclidean types
and all tubular algebras are tame generalized multicoil algebras. Therefore, applying
Theorem 4.8, we obtain the following completion to Theorem 7.1.

Theorem 7.2. Let A be a cycle-finite algebra. Then there exist tame generalized
multicoil quotient algebras B1, . . . ,Bq of A whose indecomposable finite dimen-
sional modules exhaust all but finitely many isoclasses of modules in indA.

Moreover, we have the following information on nondirecting indecomposable
modules over cycle-finite algebras.
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Theorem 7.3. Let A be a cycle-finite algebra. Then there exist tame generalized
multicoil quotient algebras B1, . . . ,Bq of A such that all but finitely many isomor-
phism classes of nondirecting modules in indA belong to generalized multicoils of
the Auslander-Reiten quivers ΓB1 , . . . ,ΓBq of B1, . . . ,Bq.

We exhibit an example of a cycle-finite algebra having a nongeneralized standard
Auslander-Reiten component.

Example 7.4. Let Q be the quiver
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I the ideal in the path algebra KQ of Q generated by the elements γα , σβ , ηγ , ξ γ ,
δξ , δη , and A = KQ/I the associated bound quiver algebra. Then A is a cycle-finite
algebra whose Auslander-Reiten quiver ΓA has the disjoint union form

ΓA = C ∪ (
∪

λ∈P1(K)

Tλ ),

where Tλ , λ ∈ P1(K), is the family of stable tubes of rank 1 over the Kronecker
path algebra H = K∆ given by the subquiver ∆ of Q formed by the arrows ξ and
η , and C is the following glueing of the preprojective component P(H) and the
preinjective component Q(H) of ΓA into a component of ΓA

τAI3

##HH
HH

##HH
HH

I3

��?
??

��?
??

· · ·

>>}}}}
>>}}}} τAS6

<<zzzz
<<zzzz

S6

��@
@@

I4

��@
@@@

P5

??~~~~

  @
@@@

S5

P2

!!B
BB

B S4

??~~~
I6

>>~~~~

S1

;;xxxxx

""E
EE

EE
I1

@@����

��;
;;

; P6

!!C
CC

C

!!C
CC

C
τ−A P6

��@
@@

@

��@
@@

@

P4

>>}}}}}
S2

��>
>>

> S3

@@����
@@����

τ−A S3

;;wwww
;;wwww

· · ·

P3

??����

Observe that the simple module S3 is the socle of the injective module I3 and
the canonical monomorphism S3 → I3 belongs to rad∞(modA), because it factors
through any stable tube Tλ . Hence C is not generalized standard. On the other hand,
every cycle in indA consists of modules of a stable tube Tλ and hence is finite, be-
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cause the stable tubes Tλ are generalized standard. Therefore, A is a cycle-finite
algebra.

We end this section with an example of an algebra A with partially ordered
Auslander-Reiten components of ΓA which is not cycle-finite.

Example 7.5. Let Q be the quiver
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I the ideal in the path algebra KQ of Q generated by the elements δα , δβ , ξ η and
ηγ , and A = KQ/I the associated bound quiver algebra. Then A is a tame algebra
whose Auslander-Reiten quiver ΓA has the disjoint union form

ΓA = P(A)∪T A∪C ,

where P(A) is a preprojective component, T A = (T A
λ )λ∈P1(K)\{1} is a family of

pairwise orthogonal generalized standard stable tubes, and C is a component of the
form below
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(see [36, Example2.6]). Then we obtain that the components of ΓA are partially
ordered in indA. In particular, we conclude that for every cycle X0 → X1 → ··· →
Xr−1→ Xr =X0 in indA, all modules X0,X1, . . . ,Xr−1 belong to the same component
of ΓA. On the other hand, we have in indA a cycle

I3
f1−−−→ P7

f2−−−→ P6
f3−−−→ I3

consisting of modules from C and with f3 in rad∞(modA), because there is no path
in C from P6 to I3. Therefore, A is not a cycle-finite algebra.

8 Discrite indecomposable modules

The aim of this section is to establish a common bound on the number of discrete
indecomposable modules of a fixed dimension vector over a cycle-finite algebra.

Lemma 8.1. Let A be an algebra, Γ a generalized standard generalized multicoil
of ΓA, n the rank of K0(A), and d a nonnegative vector of K0(A). Then the number
of indecomposable modules X in Γ with dimX = d is bounded by n. Moreover, if Γ
consists of modules which do not lie on infinite cycles then the number of indecom-
posable modules X in Γ with dimX = d is bounded by n−1.

Proof. Without loss of generality we may assume that A is the support algebra of Γ .
Let Γ be an arbitrary generalized multicoil of ΓA which is generalized standard. We
shall prove our claim by induction on the number m of admissible operations which
we have to do on a finite family T1,T2, . . . ,Ts of generalized standard stable tubes
in order to obtain the generalized multicoil Γ . If m = 1, then we can only do the
admissible operation (ad 1) or (ad 1∗), so s = 1. In this case our statement follows
from [46, Proposition 4.1].

Let m > 1. If the mth admissible operation is of type (ad 1), then by definition of
(ad 1) we have dimV = dimW for any modules V,W ∈ {Zi j,X ′i }, i ≥ 0, 1 ≤ j ≤ t
such that V ̸=W . Therefore, the number of indecomposable modules with the same
dimension vector does not change. If it is of type (ad 1∗) then the situation is the
same. If the mth admissible operation is of type (ad 2), then in the sequence of ear-
lier m− 1 admissible operations, there is an operation of type (ad 1∗) or (ad 5∗)
which contains an operation (fad 1∗) which gives rise to the pivot X of (ad 2), and
the operations done between these two must not affect the support of HomA(X ,−)
restricted to the generalized multicoil containing X . Let t be the parameter of such
operation (ad 1∗) or like in definition of (fad 1∗). Note that in general, in the se-
quence of earlier m− 1 admissible operations can be an operation of type (ad 5)
which contains an operation (fad 4) which gives rise to the pivot X of (ad 2) but
from Lemma [51, Lemma 3.10] this case can be reduced to (ad 5∗) which contains
an operation (fad 1∗). Moreover, from [46, Lemma 3.3] we know that, for a fixed
e ∈ K0(A), each ray and coray in Γ contains at most one module Z with dimZ = e.
Therefore, we get that the number of new indecomposable modules with the same
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dimension vector is at most t +1 while after applying operations (ad 1∗) and (ad 2)
or (fad 1∗) and (ad 2) the number of new vertices in ordinary quiver of A increases
by t + 2. If the mth admissible operation is of type (ad 2∗), then the proof is dual.
If the mth admissible operation is of type (ad 3), then in the sequence of earlier
m− 1 admissible operations, there must be at least one operation of type (ad 1∗)
or (ad 5∗) which contains the operation (fad 1∗) which gives rise to the pivot X of
(ad 3) and to the modules Y1,Y2, . . . ,Yt in the support of HomA(X ,−) restricted to the
generalized multicoil containing X . The operations done after must not affect this
support. Again, in general, in the sequence of earlier m− 1 admissible operations
can be an operation of type (ad 5) which contains an operation (fad 4) which gives
rise to the pivot X of (ad 3) but from [51, Lemma 3.10] this case can be reduced to
(ad 5∗) which contains an operation (fad 1∗). Suppose that we had r such consecu-
tive operations of types (ad 1∗) or (fad 1∗), the first of which had Xt as a pivot, and
these admissible operations built up a branch L in A with points a,a1,a2, . . . ,at in
QA, so that Xt−1 and Yt are the indecomposable injective A-modules corresponding
respectively to a and a1, and both Y1 and τ−1

A Y1 are coray modules in the general-
ized multicoil containing the (ad 3)-pivot X . Again, from [46, Lemma 3.3] we know
that, for a fixed e ∈ K0(A), each ray and coray in Γ contains at most one module Z
with dimZ = e. Therefore, we get that the number of new indecomposable modules
with the same dimension vector is at most t + 1 while after applying r consecutive
operations of types (ad 1∗) and (ad 3) or r consecutive operations of types (fad 1∗)
and (ad 3) the number of new vertices in ordinary quiver of A increases by t + 2.
If the mth admissible operation is of type (ad 3∗), then the proof is dual. If the mth
admissible operation is of type (ad 4), then A is the algebra obtained from another
one, say A′, by applying this admissible operation with pivot X and the begin Y1 of
a finite sectional path Y1→ Y2→ ··· → Yt . Note that this finite sectional path is the
linearly oriented quiver of type At and its support algebra Λ (given by the vertices
corresponding to the simple composition factors of the modules Y1,Y2, . . . ,Yt ) is a
tilted algebra of the path algebra D of the linearly oriented quiver of type At . From
[65, (4.4)(2)] we know that Λ is a bound quiver algebra given by a truncated branch
in x, where x corresponds to the unique projective-injective D-module. Moreover,
the modules Y1,Y2, . . . ,Yt are directing in ΓA′ . Again, from [46, Lemma 3.3] we know
that, for a fixed e ∈ K0(A), each ray and coray in Γ contains at most one module Z
with dimZ = e. Therefore, we get that the number of new indecomposable modules
with the same dimension vector is at most t + r+1 while after applying operations
which give rise to the finite sectional path Y1→Y2→ ···→Yt and (ad 4) the number
of new vertices in ordinary quiver of A increases by t + r+2. If the mth admissible
operation is of type (ad 4∗), then the proof is dual. There remains to consider the
case where the mth admissible operation is of type (ad 5). Since in the definition of
admissible operation (ad 5) we use the finite versions (fad 1), (fad 2), (fad 3), (fad 4)
of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4) and the admissible opera-
tion (ad 4), we conclude that the lemma follows from the above considerations. If it
is of type (ad 5∗), then the proof is dual and this finishes the proof of the lemma. ⊓⊔

The following proposition is essential for the proof of Theorem 8.3.
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Proposition 8.2. Let A be a tame generalized multicoil algebra, n the rank of K0(A),
and d a nonnegative vector of K0(A). Then

(i) The number of isomorphism classes of discrete indecomposable A-modules X
with dimX = d is bounded by n+2.

(ii) The number of isomorphism classes of indecomposable A-modules X with dimX
= d and qA(dimX) ̸= 0 is bounded by n−1.

(iii) The number of isomorphism classes of indecomposable A-modules X with dimX
= d and χA(dimX) ̸= 0 is bounded by n−1.

Proof. It is known that an indecomposable A-module M in ΓA which does not lie
on oriented cycle in ΓA is uniquely determined by [M]. Moreover, if T is a stable
tube in ΓA then the support of T is a tame concealed or tubular convex subcategory
of A. Hence, for any indecomposable A-module X lying in a stable tubes of rank
one, we have qA(dimX) = χA(dimX) = 0. Let d be a nonnegative vector in K0(A)
such that there exists a nondirecting, discrete indecomposable A-module X with
dimX = d. Then X belongs to a generalized multicoil Γ of ΓA. Assume first that
HomA(P,X) ̸= 0 for some indecomposable projective module in Γ . Then it follows
from the proof of [46, Proposition 3.5] that any indecomposable A-module Y with
dimY = d also lies in Γ . Applying now Lemma 8.1 we conclude that the number
of isomorphism classes of indecomposable A-modules Z with dimZ = dimX = d
is bounded by n− 1. We get the same statement in the case when HomA(X , I) ̸= 0
for an indecomposable injective module I in Γ . Note that different tame concealed
algebras and different tubular algebras give modules in A with different dimension
vectors. Hence, it remains to consider the case when the support of X is contained
in a convex subcategory, say C, which is tame concealed or tubular. Then X belongs
to a P1(K)-family T = (Tλ )λ∈P1(K) of standard stable tubes of ΓC. Moreover, if Z
is a indecomposable A-module with dimZ = dimX = d then Z is a C-module and
lies in one of the tubes Tλ (see [65] or [75]). Denote by m the rank of K0(C), and
by rλ the rank of the tube Tλ , λ ∈ P1(K). Then the following equality holds

∑
λ∈P1(K)

(rλ −1) = m−2

(see [75]). Further, if Y ∈Tλ and Z ∈Tµ are two nonisomorphic modules in T with
dimY = dimZ then the quasi-length of Y is divisible by rλ and the quasi-length of
Z is divisible by rµ . We note that then qA(dimY ) = qC(dimY ) = χA(dimY ) = 0
and qA(dimZ) = qC(dimZ) = χA(dimZ) = 0, since gl dimC ≤ 2. Now a simple
inspection of tubular types of tame concealed and tubular algebras shows that, if
λ1, . . . ,λt are all indices λ ∈ P1(K) with rλ ̸= 1, then rλ1 + . . .+rλt ≤m+2≤ n+2.
Therefore, the number of isomorphism classes of indecomposable A-modules Z with
dimZ = dimX = d is bounded by n+2. ⊓⊔

Theorem 8.3. Let A be a cycle-finite algebra. Then there is a positive integer m such
that, for each nonnegative vector d ∈ K0(A), the number of isomorphism classes of
discrete indecomposable A-modules of dimension vector d is bounded by m.
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Moreover, if A is coherent, n is the rank of K0(A), then the following statements
hold:

(i) The number of isomorphism classes of discrete indecomposable A-modules X
with dimX = d is bounded by n+2.

(ii) The number of isomorphism classes of indecomposable A-modules X with dimX
= d and qA(dimX) ̸= 0 is bounded by n−1.

(iii) The number of isomorphism classes of indecomposable A-modules X with dimX
= d and χA(dimX) ̸= 0 is bounded by n−1.

Proof. It follows from a result due to Ringel [65, (2.4)(8)] that, if X ,Y are mod-
ules in indA with dimX = dimY and X is directing, then X and Y are isomorphic.
Further, by Theorem 7.3, there exist tame generalized multicoil quotient algebras
B1, . . . ,Bq of A such that all but finitely many isomorphism classes of nondirecting
modules in indA belong to generalized multicoils of the Auslander-Reiten quivers
ΓB1 , . . . ,ΓBq of B1, . . . ,Bq. Moreover, it follows from the proof of Theorem 6.3 that,
if X and Y are nondirecting discrete modules in indA with dimX = dimY lying in
generalized multicoils of ΓB1 , . . . ,ΓBq , then X and Y belong to the same generalized
multicoil of ΓBp , for a fixed p ∈ {1, . . . ,q}. Then there is a positive integer m such
that, for each nonnegative vector d ∈ K0(A), the number of isomorphism classes of
discrete indecomposable A-modules of dimension d is bounded by m. Finally, if A
is coherent, then all nondirecting modules in indA lie in generalized multicoils of
ΓB1 , . . . ,ΓBq , and the statements (i), (ii), (iii) are consequences of Proposition 8.2.

⊓⊔

9 Homological properties of indecomposable modules

Let A be an algebra and X be a nonprojective module in indA. Then we have an
almost split sequence

0→ τAX →
s(X)⊕
i=1

Yi→ X → 0

in modA with Y1, . . . ,Ys(X) indecomposable modules. We note that τA = DTr , where
D = HomK(−,K) is the standard duality on modA and the transpose TrX of a mod-
ule X in indA is the cokernel of the homomorphism HomA( f ,A) in modAop asso-

ciated to a minimal projective presentation P1
f−−−→ P0 → X → 0 of X in modA.

Hence τA is a homological operator, and s(X) is a numerical homological invariant
of a nonprojective module X in indA.

We also recall that for an indecomposable nonsimple projective-injective module
P in modA there is a canonical (up to isomorphism) almost split sequence having P
as a middle term, namely

0→ radP→ P⊕ radP/socP→ P/socP→ 0
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(see [1, Proposition IV.3.11]).
The following theorem has been proved by Bautista and Brenner in [12] (see also

[44]).

Theorem 9.1. Let A be an algebra of finite representation type and X a nonprojec-
tive module in indA. Then

(i) s(X)≤ 4.
(ii) If s(X) = 4, then one of the indecomposable middle terms Yi of an almost split

sequence for X is projective-injective.

It has been conjectured by Brenner that, for any tame algebra A and every non-
projective module X in indA, we have s(X)≤ 5. It is still an open problem. The fol-
lowing theorem proved in [60, Theorem 3] by the second named author and Takane
confirms the Brenners’s conjecture, and extends Theorem 9.1, to cycle-finite alge-
bras.

Theorem 9.2. Let A be a cycle-finite algebra and X a nonprojective module in indA.
Then

(i) s(X)≤ 5.
(ii) If s(X) = 5, then one of the indecomposable middle terms Yi of an almost split

sequence for X is projective-injective.

It has been proved by Ringel [65, (2.4)(8)] that, for any directing indecomposable
module X over an algebra A, we have EndA(X) ∼= K and ExtrA(X ,X) = 0 for r ≥ 0.
On the other hand, by [52, Theorem B], for a tame generalized multicoil algebra A
and an arbitrary module X in indA, we have dimK Ext1A(X ,X)≤ dimK EndA(X) and
ExtrA(X ,X) = 0 for r ≥ 2. Hence, applying Theorems 6.3 and 6.5 (and Corollary
6.6) we obtain the following theorem.

Theorem 9.3. Let A be a cycle-finite algebra. Then for all but finitely many isomor-
phism classes of module X in indA we have dimK Ext1A(X ,X)≤ dimK EndA(X) and
ExtrA(X ,X) = 0 for r ≥ 2.

We conclude from the above theorem that, for a cycle-finite algebra A and all but
finitely many isomorphism classes X in indA, the Euler form

χA([X ]) =
∞

∑
r=0

(−1)r dimK ExtrA(X ,X)

of X is defined and is nonnegative. For A a coherent cycle-finite algebra, it is the
case for all modules X in indA.

It is known from [32, Theorem 2.3] and [63, Theorem 3.4] that if A is a quasitilted
algebra or a generalized double tilted algebra then, for all but finitely many isomor-
phism classes of modules X in indA, we have pdAX ≤ 1 or idAX ≤ 1. Moreover, it
has been conjectured in [79] that the converse implication also holds.

We end this section by the following recent result by the third named author and
Skowyrski [81] which confirms this conjecture for cycle-finite algebras.
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Theorem 9.4. Let A be a cycle-finite algebra such that pdAX ≤ 1 or idAX ≤ 1 for
all but finitely many isomorphism classes of modules in indA. Then A is a tame
quasitilted algebra or a tame generalized double tilted algebra.

10 Geometric properties of indecomposable modules

The aim of this section is to present some results describing geometric properties of
indecomposable modules over cycle-finite algebras.

Let A be an algebra and A ∼= KQ/I its bound presentation. Then I is an ad-
missible ideal in the path algebra KQ of Q generated by a finite system of forms
∑1≤ j≤t λ jαm j , j . . .α1, j (called K-linear relations), where λ1, . . . ,λt are elements of
K and αm j , j, . . . ,α1, j, 1 ≤ j ≤ t, are paths of length ≥ 2 in Q having a common
source and a common end. Denote by Q0 the set of vertices of Q, by Q1 the set
of arrows of Q, and by s,e : Q1 → Q0 the maps which assign to each arrow α1 its
source s(α) and its end e(α). The category modA of finite dimensional right A-
modules is equivalent to the category repK(Q, I) of all finite dimensional represen-
tations V = (Vi,φα)i∈Q0,α∈Q1 of Q, where Vi, i∈Q0, are finite dimensional K-vector
spaces and φα : Vs(α)→ Ve(α), α ∈ Q1, are K-linear maps satisfying the equations
∑1≤ j≤t λ jφαm j , j

. . .φα1, j = 0 for all K-linear relations ∑1≤ j≤t λ jαm j , j . . .α1, j ∈ I (see

[1]). Fix now a vector d = (di)i∈Q0 ∈ K0(A) = ZQ0 with nonnegative coordinates.
Denote by modA(d) the set of all representations V = (Vi,φα) in repK(Q, I) with
Vi = Kdi for all i ∈ Q0. A representation V in modA(d) is given by de(α)× ds(α)-
matrices V (α) determining the maps φα : Ks(α)→ Ke(α), α ∈ Q1, in the canonical
bases of Kdi , i ∈ Q0. Moreover, the matrices V (α), α ∈ Q1, satisfy the relations

∑
1≤ j≤t

λ jV (αm j , j) . . .V (α1, j) = 0

for all K-linear relations ∑1≤ j≤t λ jαm j , j . . .α1, j ∈ I. Therefore, modA(d) is a closed
subset of A(d) = ∏α∈Q1 Kde(α)×ds(α) in the Zariski topology, and so modA(d) is
an affine variety. We note that modA(d) is not necessarily irreducible. The affine
(reductive) algebraic group G(d) = ∏i∈Q0 GL di(K) acts on the variety modA(d) by
conjugation

(gV )(α) = ge(α)V (α)g−1
s(α)

for g = (gi) ∈ G(d), V ∈ modA(d), α ∈ Q1. We shall identify an A-module V of
dimension vector d with the corresponding point of the variety modA(d). The G(d)-
orbit G(d)M of a module M in modA(d) will be denoted by O(M). Observe that
two modules M and N in modA(d) are isomorphic if an only if O(M) = O(N). For
M,N ∈ modA(d), we say that N is a degeneration of M if N belongs to the Zariski
closure O(M) of O(M) in modA(d), and we denote this fact by M ≤deg N. We note
that ≤deg is a partial order in modA(d). If N ∈ O(M) implies O(N) = O(M), then
the orbit O(N) is said to be maximal. Clearly, an orbit in modA(d) of maximal
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dimension is maximal, but the converse is not true in general. It is known that the
union of all G(d)-orbits in modA(d) of maximal dimension is an open subset of
modA(d), called an open sheet (see [38], [39]). We note also that for a module M
in modA(d), we have dimO(M) = dimG(d)− dimK EndA(M) (see [38]). Given a
module M ∈ modA(d) we denote by TM(modA(d)) the tangent space of modA(d)
at M and by TM(O(M)) the tangent space to O(M) at M. Then there is a canonical
monomorphism of K-vector spaces

TM(modA(d))/TM(O(M)) ↪→ Ext1A(M,M)

(see [39, (2.7)]. In particular, if Ext1A(M,M) = 0 then O(M) is an irreducible com-
ponent of modA(d) and O(M) is an open sheet of modA(d). The local dimension
dimM modA(d) of modA(d) is the maximal dimension of the irreducible compo-
nents of modA(d) containing M. We have dimTM(modA(d))≥ dimM modA(d). Fur-
ther, M ∈modA(d) is said to be a nonsingular point of modA(d) if dimM modA(d) =
dimTM(modA(d)). If M is a nonsingular point of modA(d) then M belongs to ex-
actly one irreducible component of modA(d) [66, (II.2.6)]. The nonsingular points
of modA(d) form an open nonempty subset. It is known that a module M in modA(d)
is nonsingular provided Ext2A(M,M) = 0. A module variety modA(d) is said to be
a complete intersection provided the vanishing ideal of modA(d) in the coordi-
nate ring K[A(d)] of the affine space A(d) = ∏α∈Q1 Kde(α)×ds(α) is generated by
dimA(d)−dimmodA(d) polynomials. Finally, a module variety modA(d) is said to
be normal if the local ring OM of any module M in modA(d) is integrally closed in
its total quotient ring. It is known that if modA(d) is normal then it is nonsingular
in codimension one, that is, the set of singular points in modA(d) is of codimen-
sion at most two (see [31, Chapter 11]). If modA(d) is a complete intersection, then
modA(d) is normal if and only if modA(d) is nonsingular in codimension one (con-
sequence of Serre’s normality criterion). In the study of the degeneration order on a
module variety modA(d) an important role is played by the following related partial
orders. Let M and N be modules in a module variety. We define:

• M ≤ext N:⇔ there are modules Mi, Ui, Vi and short exact sequences 0→Ui→
Mi→Vi→ 0 in modA such that M =M1, Mi+1 =Ui⊕Vi, 1≤ i≤ s, and N =Ms+1
for some natural number s.

• M ≤R N:⇔ there exists in modA an exact sequence of the form 0→ N→M⊕
Z→ Z→ 0.

• M ≤ N:⇔ dimK HomA(M,X)≤ dimK HomA(N,X) for all modules X in modA.

It follows from the result due to Auslander [9] that ≤ is a partial order on the iso-
morphism classes of modules with the same dimension vector. Further, for mod-
ules M and N in modA(d), we have M ≤ N if and only if dimK HomA(X ,M) ≤
dimK HomA(X ,N) for all modules X in modA by a result of Auslander and Reiten
[10]. Moreover, by a result of Zwara [88], we have M≤R N if and only if there exists
in modA a short exact sequence of the form 0→ Z′→ Z′⊕M→ N→ 0.

The following fundamental result of Zwara from [90] (see also [64] for the suffi-
ciency part) gives an algebraic characterization of degenerations of modules.



Cycle-finite module categories 37

Theorem 10.1. Let A be an algebra, d a vector in K0(A) with nonnegative coordi-
nates, and M, N modules in modA(d). Then M ≤deg N if and only if M ≤R N.

In general, we have the following relations between the introduced orders. For mod-
ules M and N in the module variety modA(d) the following implications hold

M ≤ext N =⇒M ≤deg N =⇒M ≤ N.

Unfortunately, the reverse implications are not true in general, and it would be in-
teresting to find out when there are true.

The following result of Zwara from [89] gives a combinatorial description of
degenerations for modules over algebras of finite representation type.

Theorem 10.2. Let A be an algebra of finite representation type, d a vector in K0(A)
with nonnegative coordinates, and M, N modules in modA(d). Then M≤deg N if and
only if M ≤ N.

We also exhibit the following results from [85] and [86] on degenerations of mod-
ules from the additive categories of generalized standard Auslander-Reiten compo-
nents.

Theorem 10.3. Let A be an algebra, C a generalized standard quasi-tube of ΓA, and
M, N modules in add(C ). Then M ≤deg N if and only if M ≤ext N.

Theorem 10.4. Let A be an algebra, C a generalized standard component of ΓA,
N a module in add(C ), and M a module in modA. If M ≤deg N then M belongs to
add(C ).

Theorem 10.5. Let A be an algebra, C a generalized standard component of ΓA,
M,N modules in add(C ) with dimM = dimN. The following conditions are equiv-
alent.

(i) M ≤deg N.
(ii) There exists an exact sequence 0→ N→M⊕Z→ Z→ 0 in modA with Z from

add(C ).
(iii) There exists an exact sequence 0→ Z′→ Z′⊕M→N→ 0 in modA with Z′ from

add(C ).
(iv) dimK HomA(M,X)≤ dimK HomA(N,X) for all modules X in C .
(v) dimK HomA(X ,M)≤ dimK HomA(X ,N) for all modules X in C .

Let A be an algebra and M,N be nonisomorphic modules in indA with dimM =
dimN. Then M≤N forces the inequalities dimK HomA(M,M)≤ dimK HomA(N,M)
and dimK HomA(M,M) ≤ dimK HomA(M,N), and consequently we have a cycle
M→ N→M. Since M ≤deg N implies M ≤ N, we conclude that the directing mod-
ules in indA are never involved in proper degenerations of indecomposable modules.
Observe also that, if A is a cycle-finite algebra and M <deg N, then M and N belong
to the same cyclic component of ΓA. The degenerations of modules in the additive
categories of generalized multicoils of Auslander-Reiten quivers of algebras were
investigated in [47], [48], [83], [85]. Then, using Theorems 6.3 and 6.5, we obtain
the following results.
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Theorem 10.6. Let A be a cycle-finite algebra. Then there exists a positive integer t
such that for any sequence

Mr <deg Mr−1 <deg . . . <deg M2 <deg M1

with M1, . . . ,Mr modules in indA, the inequality r ≤ t holds.

Theorem 10.7. Let A be a coherent cycle-finite algebra and M,M′,N be modules in
modA such that M <deg N, M′ <deg N and N is indecomposable. Then M ∼= M′ and
is indecomposable.

The geometry of directing modules over tame algebras has been described in
[14]. In particular, we have the following consequence of [14, Theorems 1 and 2].

Theorem 10.8. Let A be a tame algebra, M a directing module in indA, and d =
dimM. Then the following statements hold.

(i) modA(d) is a complete intersection and has at most two irreducible components.
(ii) The maximal G(d)-orbits in modA(d) consist of nonsingular modules.

(iii) O(M) is an open sheet of modA(d).
(iv) All but finite number of G(d)-orbits in modA(d) have codimension at least two.
(v) All G(d)-orbits of codimension one are contained in O(M).

(vi) If M is not projective-injective over suppM then modA(d) = O(M), is normal
and a complete intersection.

It follows from Theorems 3.1 and 3.3 that the regular components of the Auslander-
Reiten quivers of cycle-finite algebras are stable tubes and their supports are tame
concealed or tubular algebras. Then the following result from [16, Theorem 1] de-
scribes the geometry of modules from the additive categories of regular components
of cycle-finite algebras.

Theorem 10.9. Let A be a tame concealed or tubular algebra and d the dimension
vector of a module in modA which is periodic with respect to the action of τA.
Then the affine variety modA(d) is irreducible, normal, a complete intersection,
dimmodA(d) = dimG(d)− qA(d) and the maximal G(d)-orbits in modA(d) form
the open sheet consisting of nonsingular points. Moreover, a module M in modA(d)
is a nonsingular point if and only if Ext2A(M,M) = 0.

We refer also to [15] for the geometry of indecomposable modules over tame
quasi-tilted algebras, which give information on the geometry of indecomposable
nondirecting modules of semiregular tubes of cycle-finite algebras (see Theorems
3.6 and 3.7).

We end this section with the following consequence of [52, Theorems A and
B] and Theorem 6.3, extending [57, Theorem A] from strongly simply connected
algebras of polynomial growth to coherent cycle-finite algebras.

Theorem 10.10. Let A be a coherent cycle-finite algebra, M a module in indA and
d = dimM. Then the following statements hold.

(i) M is a nonsingular point of modA(d).
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(ii) qA(d)≥ χA(d) = dimK EndA(M)−dimK Ext1A(M,M)≥ 0.
(iii) dimM modA(d) = dimG(d)−χA(d).

We note that there are indecomposable modules M over coherent cycle-finite
algebras A with arbitrary large χA(dimM) (see [58, (5.3)]).
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4. Assem, I., Skowroński, A.: Algebras with cycle-finite derived categories. Math. Ann. 280,

441–463 (1988)
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40. Lenzing H., Skowroński, A.: Quasi-tilted algebras of canonical type. Colloq. Math. 71, 161–

181 (1996)
41. Liu, S.: Degrees of irreducible maps and the shapes of the Auslander-Reiten quivers. J. London

Math. Soc. 45, 32–54 (1992)
42. Liu, S.: Semi-stable components of an Auslander-Reiten quiver. J. London Math. Soc. 47,

405–416 (1993)
43. Liu, S.: Tilted algebras and generalized standard Auslander-Reiten components. Archiv. Math.

(Basel) 61, 12–19 (1993)
44. Liu, S.: Almost split sequences for non-regular modules. Fund. Math. 143, 183–190 (1993)
45. Malicki, P.: Generalized coil enlargements of algebras. Colloq. Math. 76, 57–83 (1998)
46. Malicki, P.: On the composition factors of indecomposable modules in almost cyclic coherent

Auslander-Reiten components. J. Pure Appl. Algebra 207, 469–490 (2006)
47. Malicki, P.: Degenerations in the module varieties of almost cyclic coherent Auslander-Reiten

components. Colloq. Math. 114, 253-276 (2009)



Cycle-finite module categories 41

48. Malicki, P.: Degenerations for indecomposable modules in almost cyclic coherent Auslander-
Reiten components, J. Pure Appl. Algebra 214, 1701-1717 (2010)
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