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Abstract 

Purpose: Polysaccharide peptide (PSP) extracted from the Coriolus versicolor mushroom is 

frequently suggested as an adjunct to the chemo- or radiotherapy in cancer patients. In 

previous study we have shown that PSP induced a tumor necrosis factor-α (TNF-α)-dependent 

an anapyrexia-like response in rats.  Thus, PSP appears a factor which modifies number of 

pathophysiologic responses.  Because of the fact, the PSP is suggested as an potential adjuvant 

used in the cancer therapy during which frequently cancer patients contract a microbial 

infections accompanied by fever, the aim of the present study was to investigate whether or not 

the PSP can modulate a course of the fever in a response to the antigen, such as LPS. 

Materials and methods: Body temperature (Tb) of the male Wistar rats was measured by 

biotelemetry system.  PSP was injected intraperitoneally (i.p.) at a dose of 100 mg kg
-1

, 2h 

before LPS administration (50 µg kg
-1

; i.p.).  The levels of interleukin (IL)-6 and TNF-α in

the plasma of rats were estimated 3h and 14h post-injection of PSP using a standard sandwich 

ELISA kits. 

Results: We report that i.p. pre-injection of PSP 2h before LPS administration expanded the 

duration of endotoxin fever in rats.  This phenomenon was accompanied by a significant 

elevation of the blood IL-6 level of rats both 3h and 14h post-injection of PSP.  Pre-treatment 

i.p. of the rats with anti-IL-6 antibody (30 µg/rat) prevented the PSP-induced prolongation of

endotoxin fever. 

Conclusions: Based on these data, we conclude that PSP modifies the LPS-induced fever, in 

IL-6-related fashion. 

Running title: Polysaccharide peptide caused fever extension 

Keywords: endotoxin fever, biotelemetry, polysaccharide peptide, 

lipopolisaccharide interleukin 6, Coriolus versicolor 
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1. Introduction

Polysaccharide peptide (PSP) isolated from Coriolus versicolor strain COV-1, has been 

widely used as adjunct therapy in cancer patients undergoing chemo- or radio-therapy [1] and 

its non-toxic properties under acute and chronic conditions have been confirmed [2].  Clinical 

trials showed that PSP improved the quality of life of patients by decreasing cancer treatment- 

related symptoms such as fatigue, loss of appetite, nausea, vomiting, and pain [3].  This 

mushroom-derived polysaccharide exert its activities primarily via immunomodulation [4]. 

Therefore, it can be classified as a biological response modifier, which is defined as an agent 

capable of modifying the host's biological response by stimulating the immune system and 

thereby eliciting various therapeutic effects [5].  Immunostimulatory effect of PSP (in vitro and 

in vivo) includes elevation of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), 

interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) as well as prostaglandin E2 (PGE2) 

and histamine [3], increase in the production of reactive oxygen and nitrogen intermediates [6], 

natural killer cells (NK) activity, activation of complement-3, T-cell proliferation [7] and many 

others. 

The above mentioned cytokines and PGE2 secreted by PSP-stimulated cells are important 

components of the physiological mechanism of fever.  This phenomenon is regarded as a part 

of the acute-phase response to infection, inflammation, injury and trauma [8].  The increase of 

body temperature (Tb) during fever has several advantages over infections: inhibition of 

bacterial growth, increase bactericidal activities of neutrophils and macrophages, T cells 

proliferation and differentiation, B cells proliferation and the production of antibodies or 

stimulation of acute-phase protein synthesis [9-10].  The initial step in the cascade of events 

leading to fever is considered to be a stimulation of a large number of various immune types of 

cells, including monocytes, macrophages and neutrophils by exogenous stimuli, called 

exogenous pyrogens [11].  These stimuli are represented by bacteria walls components such as 

lipopolisaccharide (LPS), viral components such as double-stranded RNA and bacterial 
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DNA (CpG-DNA) [12-13].  Stimulation of the immune cells by the various exogenous 

pyrogens leads to the synthesis of the pro-inflammatory cytokines such as IL-1β, IL-6, TNF-

α, and interferon-γ (IFN-γ), collectively ascribed as endogenous pyrogens [11, 14-16].  These 

cytokines trigger liberation of the arachidonic acid from membrane phospholipids, activation 

of cyclooxygenase (COX), and subsequent production of prostanoids.  It is thought, that 

induction of the expression of COX-2 and generation of PGE2 play a critical role in affecting 

the thermoregulatory centers to start the fever [17]. 

As we described previously, PSP provoked an anapyrexia-like response rather than fever in 

rats, and the response was TNF-α-dependent [18].  Thus, PSP appears a factor which modifies 

number of pathophysiologic responses.  Because of the fact that, the PSP is suggested as an 

potential adjuvant used in the cancer therapy during which frequently cancer patients contract 

a microbial infections accompanied by fever, the aim of the present study was to investigate 

whether or not the PSP can modulate the course of the fever.  To the best of our knowledge, 

this phenomenon has not yet been studied.  Moreover, our studies aimed to explore the role of 

PSP as a modulator of endotoxin fever in a response to the antigen, such as LPS. 

2. Materials and methods

2.1. Experimental animals and body temperature measurement 

Male Wistar rats weighing from 250g to 300g were obtained from the Mossakowski Medical 

Research Centre Polish Academy of Sciences (Warsaw, Poland).  Animals were housed in 

individual plastic cages and maintained in a temperature/humidity/light- controlled chamber 

set at 23 ± 1°C, 12:12 h light:dark cycle, with light on at 07:00 a.m.  Rodent laboratory food 

and drinking water were provided ad libitum.  A week after the shipment, the rats were 

implanted under sterile conditions with battery-operated miniature biotelemeters (PhysioTel® 

model TA10TA-F40, Data Sciences International, USA) to monitor deep body temperature 

(Tb) with accuracy ± 0.1
o
C as described previously [19].  Described experiments were started
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10 days after surgery.  All procedures were approved by the Local Bioethical Committee for 

Animal Care in Bydgoszcz (Poland; permission no. 17/2013). 

2.2. Polysaccharide peptide and lipopolisaccharide preparation and administration

Polysaccharide peptide (PSP; extract from the Cov 1 strain of Coriolus versicolor; 

MycoMedica, Czech Republic) was dissolved in sterile 0.9% sodium chloride (saline) and 

injected intraperitoneally (i.p.) at a dose of 100 mg kg
-1

.  As we described previously, this was

the dose of PSP, which modulated the normal Tb in male Wistar rats [18].  In our studies, we 

also tested the lower dose of PSP (50 mg kg
-1

) causing the smaller decrease of Tb of rats.

However, since the lower dose of PSP did not provoke any significant effect on the LPS- 

induced febrile response in rats (data not shown), the dose of 100 mg kg
-1

 of PSP was selected

for further experiments. 

LPS extracted from Escherichia coli (0111: B4, Sigma Chemicals) was dissolved in sterile 

0.9% sodium chloride.  Before injection, the stock solution of LPS (2.5 mg ml
-1

) was diluted in 

a warm sterile saline to the desired concentration, and injected i.p. at a dose of 50 µg kg
-1

, as 

described previously [19].  All injection solutions were warmed to 37
o
C before

administration.  PSP was injected at 7:00 a.m., 2h prior to the LPS administration (9:00 a.m.). 

The control rats were administered i.p. with an equivalent volume of pyrogen-free saline.  The 

rats were briefly restrained and not anesthetized during the injections.  Immediately after the 

injections, the animals were placed in their home cages. 

2.3. IL-6 and TNF-α assays 

Blood samples were collected via cardiac puncture onto the solution of ethylenediamine 

tetraacetic acid disodium salt (Na2EDTA, Sigma-Aldrich; cat. no. E 5134) at 3h (10:00) and 

14h (21:00) post-injection of PSP or pyrogen-free saline from rats anesthetized with a mixture 
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of ketamine/xylazine (87 mg kg
-1

 and 13 mg kg
-1

, respectively, intramuscular injection).

After centrifugation (20 min, 1500 x g), the resulting plasma was stored at -20°C until assay. 

Levels of IL-6 and TNF-α were determined by a standard sandwich ELISA kits from R&D 

Systems (cat. no. R6000B and RTA00, with a detection limit of 21 pg ml
-1

 and 5 pg ml
-1

,

respectively) according to the manufacturer’s instructions.  Colorimetric changes in the assays 

were detected using Synergy HT Multi-Mode Microplate Reader (BioTek Instruments, USA). 

2.4. Interleukin 6 antibody injection 

Interleukin 6 (IL-6) antibody (rabbit polyclonal IgG anti rat IL-6; Invitrogen; cat. no. 

ARC0062) was injected i.p. at a dose of 30 µg/rat in a volume of 500 µl of phosphate buffered 

saline (PBS, pH 7.4).  This injection was performed 2h (17:00) prior to the earlier observed 

significant difference in Tb between the examined group of rats (PSP/LPS) and the positive 

control (saline/LPS).  Rabbit IgG (Invitrogen; cat. no. 10500C) at a dose of 30 µg/rat was used 

as control injection.  Rats were restrained and not anesthetized during i.p. injections. 

2.5. Statistical analysis 

All values are reported as means ± standard error mean (S.E.M.) and were analyzed by 

analysis of variance (ANOVA) followed by the Student’s t-test with the level of significance 

set at p<0.05.  For the Tb measures, the data were recorded and computed at 5-min intervals 

using Data Acquisition Programme (Data Sciences International, USA). For data 

presentation, these 5-min temperature recordings were pooled into 30-min averages. 

Statistical analyses were performed with GraphPad Prism 5 (USA). 
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3. Results

3.1. Pre-treatment with PSP expands the duration of endotoxin fever in rats 

Effect of PSP on changes of Tb in male Wistar rats during endotoxin fever is illustrated in 

Fig. 1.  The rats were injected i.p. with PSP at a dose of 100 mg kg
-1

 at 7:00 a.m., 2h prior to

the LPS administration.  Pre-treatment of the animals with PSP resulted in a significant 

alterations of the post-LPS Tb that can be regarded as a protraction of the time-course of fever 

response to the administration of endotoxin.  As can be seen in Fig. 1, the rats treated with 

PSP followed by LPS responded with fever, which started 3,5h post-injection of LPS (12:30), 

whereas this phenomenon in the saline/LPS-injected animals was observed 1,5h post-injection 

of LPS (10:30).  Moreover, as we described previously [18], PSP administration caused the 

drop in Tb.  However, the Tb of PSP/LPS-treated rats (38.2±0.2
o
C) was comparable to the Tb 

of saline/LPS-injected rats (38.3±0.1
o
C) measured from 13:30 to 18:00 (p=0.25).  On the

other hand, the rats pre-treated with saline 2h prior to LPS administration returned to Tb 

observed in the non-treated group of animals (NT) 12h post-injection of PSP (19:00), whereas 

this phenomenon was observed in the PSP/LPS-treated rats only after 21h from injection 

(04:00).  The average Tb of the rats counting from 19:00 to 4:00 for the PSP/LPS-treated 

animals was 38.3±0.1
o
C vs. 37.8±0.2

o
C in the saline/LPS treated rats (p<0.01).  Injection i.p.

of sterile 0.9% sodium chloride (solvent for PSP) 2h prior to the i.p. saline administration 

(solvent for LPS) did not induce alterations in Tb of rats (data not shown). 

(Insert Figure 1 here)

3.2. PSP increases the level of plasma IL-6 during endotoxin fever in rats 

The time of blood collection has been adjusted to the most advanced changes in the course of 

Tb.  The levels of plasma IL-6 were determined at 3h (10:00) and at 14h (21:00) post- 

injection of PSP or pyrogen-free saline in the all groups of animals.  Non-treated rats (NT) as 
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like as PSP/saline and saline/saline injected animals did not show any significant elevation of 

IL-6 neither at 3h nor at 14h post-injection of PSP or saline (Fig. 2).  Moreover, the 

concentrations of this cytokine in the these three groups of rats were below the lowest standard 

of ELISA kit, which was 62.5 pg ml
-1

 (respectively 17.3±3 pg ml
-1

, 16.8±2 pg ml
-1 

and 34.8±1

pg ml
-1

 for the plasma concentration measured 3h post-injection; 15.1±3 pg ml
-1

, 21.9±2 pg

ml
-1

 and 38.1±2 pg ml
-1

 for the level of IL-6 estimated 14h post-injection).  In

contrast, the levels of IL-6 in the plasma of rats treated with PSP followed by LPS were 

significantly higher in comparison to the animal’s injected i.p. with pyrogen-free saline 2h 

prior the LPS administration.  This phenomenon was observed in both at 10:00 (1694.2±80 pg 

ml
-1

 vs. 315.9±20 pg ml
-1

; p<0.001) and at 21:00 (379.7±7 pg ml
-1

 vs. 32.9±9 pg ml
-1

;

p<0.001). 

(Insert Figure 2 here)

3.3. PSP decreases the level of plasma TNF-α during endotoxin fever in rats 

The plasma levels of TNF-α as well as IL-6 were also determined at 3h (10:00) and at 14h 

(21:00) post-injection of PSP or pyrogen-free saline.  As can be seen in Fig. 3, the 

concentration of this cytokine in the plasma of rats pre-treated with PSP followed by LPS 

(317.3±40 pg ml
-1

) was significantly lower in comparison to the animals injected i.p. with 

pyrogen-free saline 2h prior to the LPS injection (1342.9±310 pg ml
-1

; p<0.001).  Moreover,

the concentration of TNF-α measured in rats pre-treated with PSP and then injected with LPS 

(317.3±40 pg ml
-1

) were significantly higher compared to PSP/saline-treated animals (225.9±4

pg ml
-1

; p<0.01).  The plasma levels of this cytokine in the all tested groups of rats

measured at 21:00 were below the minimum detectable dose of rat TNF-α in the used ELISA 

kit, which was 5 pg ml
-1

 (data not shown).

(Insert Figure 3 here)
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3.4. Anti-IL-6 antibody prevents the extension of endotoxin fever in rats 

As can be seen in Fig. 4, injection of IL-6 antibody prevented the extension of endotoxin 

fever in rats pre-treated with LPS.  The Tb of rats injected with PSP followed by LPS was 

similar to that observed in the PSP/LPS-treated rats injected at 17:00 with rabbit IgG (38.3 ± 

0.1
o
C vs. 38.2 ± 0.1

o
C; counting from 19:00 to 4:00; p=0.39).  On the other hand, the

PSP/LPS-injected animals treated i.p. with IL-6 antibody responded with decrease in Tb to a 

value, which was observed in the non-treated rats (NT) at 12h post-injection of PSP (19:00). 

The Tb in these two groups of animals (37.8 ± 0.1
o
C and 37.8 ± 0.1

o
C, respectively; p=0.35)

was significantly lower compared to PSP/LPS-treated rats (38.3 ± 0.1
o
C) and PSP/LPS-

treated animals injected with rabbit IgG (38.2 ± 0.1
o
C) counting from 12h (19:00) to 21h

(4:00) post-injection of PSP (p<0.01). 

(Insert Figure 4 here) 

To determinate whether the dose of an anti-IL-6 antibody used in the experiments affects the 

course of Tb in rats, separate group of animals was treated i.p. with sterile 0.9% saline at 7:00 

and 9:00 (control vehicle for PSP and LPS).  Afterwards, the rats were injected i.p. with rabbit 

polyclonal IgG anti rat IL-6 antibody at a dose of 30 µg/rat or with rabbit IgG (control 

injection at the same dose) at 10h (17:00) after the first injection of sterile saline.  As can be 

seen in Fig. 5, administration of IL-6 antibody did not effect on Tb in rats.  The average Tb of 

rats treated i.p. with IL-6 antibody, injected i.p. with rabbit IgG and non-treated (control) 

animals was similar (37.9 ± 0.1
o
C), counting from 17:00 to 6:00.

(Insert Figure 5 here) 

4. Discussion

In the present report we demonstrate for the first time the effect of polysaccharide peptide 

(PSP) on the endotoxin fever in rats.  Pre-treatment with PSP provoked a significant 

alterations of the Tb in LPS-injected rats that can be regarded as a prolongation of fever 
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response to the administration of endotoxin (Fig. 1).  This effect was accompanied by a 

significant elevation of the LPS-induced blood IL-6 level of both 3h and 14h (Fig. 2).  Plasma 

levels of TNF-α (Fig. 3) and IL-6 suggest that PSP-induced extension of endotoxin fever in 

rats is related rather to IL-6 concentration than TNF-α.  The extension of fever was prevented 

by an i.p. injection of anti-IL-6 antibody (Fig. 4).  The dose of this antibody (30 µg/rat) used 

in the experiments affected neither normal Tb nor circadian rhythm of Tb (Fig. 5).  In our 

studies, we also examined the plasma concentration of IL-1β (one of the key cytokine that 

contributes to induction of fever) in the all tested groups of rats, which was, however, below 

the minimum detectable concentration of IL-1β in the used ELISA kit (less than 5 pg ml
-1

;

sandwich ELISA kits from R&D Systems, cat. no. RLB00) both 3h and 14h post-injection of 

PSP (data not shown). 

Immunostimulatory effects of PSP (in vitro and in vivo) include elevation of pro- 

inflammatory cytokines, such as IL-6 and TNF-α [3].  Similarly, it is well-known, that 

stimulation of immune cells by exogenous stimuli such as LPS leads to synthesis of pro- 

inflammatory mediators, among which the most important are cytokines such as IL-6 and 

TNF-α [11, 16, 20].  Experimental data strongly suggest important role of IL-6 as endogenous 

mediators in LPS-induced fever.  The presence of IL-6 is critical for fever, as seen by the 

absence of the febrile response to peripheral immune challenge in IL-6 knock-out (KO) mice 

as well as in animals treated with IL-6 antiserum [20-21].  In the present data, we showed that 

the pre-treatment of the rats with PSP expands the duration of LPS-induced fever, and the 

response is IL-6-related.  Therefore, we suppose that PSP may intensify the production of IL-

6 by the immune cells such as monocytes, macrophages and neutrophils.  However, further in 

vitro studies are needed to investigate the reactivity of peripheral blood mononuclear cells 

(PBMCs) isolated from the rats pre-treated with PSP and then injected with LPS.  This 
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reactivity can be measured as the production of pro-inflammatory cytokines (IL-6, TNF-α) by 

PBMCs. 

As we described previously, PSP derived from the mushroom Coriolus versicolor induced a 

TNF-α dependent drop of Tb in rats [18].  In the present studies, the results of measurement 

of the plasma concentration of TNF-α showed that the pre-injection of PSP prevented the 

LPS-induced elevation of plasma TNF-α.  In contrast, the concentration of this cytokine in 

rats pre-treated with PSP and then injected with LPS was significantly higher compared to 

PSP/saline-treated animals (Fig. 3).  Moreover, PSP demonstrates an additive effect on the 

synthesis of IL-6 during the LPS-induced fever (Fig. 2).  Potential explanation of this 

phenomenon may be related to Toll-like receptor 4 (TLR4) signal transduction pathway.  It is 

well-known that LPS constitutes a pathogen-associated molecular pattern (PAMP) recognized 

by TLR4 [22-24].  In contrast, there are only few reports presenting that PSP acts via TLR4. 

Li et al. (2010) showed that PSP up-regulated expression of 22 genes, including five members 

of TLR family: LY64, TLR5, TLR6, TLR7 and finally TLR4 in PBMCs stimulated with PSP 

[25].  Moreover, these authors also observed the increase in an expression of genes related to 

nuclear factor-κB (NF-κB) pathway - one of the most important transcription factor, which is 

necessary for the induction of the synthesis of pro-inflammatory cytokines, including IL-6 and 

TNF-α [26].  It is well-known that a common downstream pathway operates in the signal 

transduction via TLRs involving the myeloid differentiation factor 88 (MyD88)-dependent 

and MAPK-dependent up-regulation of the NF-κB [27].  Similarly, Wang et al. (2013) 

demonstrated that PSP has an immunoregulatory effect through regulation of the TLR4-

TIRAP/MAL-MyD88 signaling pathway in PBMCs from breast cancer patients [28].  There 

are also reports indicating that the compounds derived from Coriolus versicolor and having a 

similar structure as PSP are recognized by TLR4.  Yang et al. (2015) showed that Coriolus 

versicolor mushroom polysaccharides (CVP), which as like as PSP exert a broad range of 
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biological effects, including anti-tumor and immunoregulatory activities [29-30] can bind and 

induce B cell activation using membrane Ig and TLR4 as potential immune receptors. 

Consequently, CVP activates mouse B cells through the MAPK and NF-κB signaling 

pathway [31].  Based on these results we presume that PSP may constitute the PAMP 

recognized by TLR4. 

It has been accepted that TLR4 signal transduction pathway could be divided into two sub-

pathways including myeloid differentiation factor 88 (MyD88)-dependent and TIR-domain-

containing adapter-inducing interferon-β (TRIF)-dependent (MyD88- independent) according 

to the different adaptors.  MyD88 adaptor-like protein (Mal) is an essential adapter protein 

together with the MyD88.  Activated MyD88/Mal activates, i. a. transforming growth factor-

β-activated protein kinase 1 (TAK1), which activates also members of the mitogen-activated 

protein kinases (MAPK) to activate an alternative closely related pathway that 

phosphorylates, i.e. p38 MAPK.  The p38 MAPK is regarded as the essential regulators of 

pro-inflammatory molecules in the cellular responses that occur following induction of 

inflammatory gene transcription [32-33]. 

In addition to the above-mentioned signal transduction pathways, among the many 

inflammatory mediators induced by the LPS, which signals via TLR4, IL-6 trans-signaling via 

STAT3 is a critical modulator of LPS-driven pro-inflammatory responses through cross-talk 

regulation of the TLR4/Mal signaling pathway [34].  IL-6 mediates its biological activities 

through a receptor complex composed of the specific signal-transducing receptor subunit 

gp130.  After ligand binding, the gp130 recruits transcription factors of the STAT family (i.e., 

STAT3).  Activated STATs translocate to the nucleus, and bind to enhancer elements of target 

genes [35]. 

The hyperresponsiveness of gp130F/F mice to LPS involved the specific up-regulation of IL-

6 in a gp130/STAT3- and TLR4/Mal-dependent manner, suggesting both pathways synergize 
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to promote the production of IL-6 in response to LPS.  Moreover, there is the preferential up-

regulation of IL-6 after LPS stimulation compared with TNF-α in an in vivo disease model 

(i.e., gp130F/F mice) [36].  Although the mechanism of this phenomenon remains unclear, it 

is likely to reflect subtle differences in the transcriptional regulation of specific pro-

inflammatory genes produced via TLR4 signaling cascades.  For instance, activation of p38 

MAPK is required for the LPS/TLR4-induced expression of TNF-α, but not IL-6 [37-38]. 

Moreover, in vitro studies have shown that blocking STAT3 activity preferentially inhibits 

LPS-mediated IL-6 production, but not TNF-α in RAW264.7 cells [39], and STAT3 

activation does not directly regulate LPS-induced TNF-α production in human monocytes 

[40].  Based on these results, it can be concluded that the LPS/TLR4-induced production of 

TNF-α, but not IL-6, requires the activity of p38 MAPK.  On the other hand, signaling 

pathway via STAT3 is a critical for increasing the expression of IL-6, but not TNF-α.  In the 

present studies, we have shown that PSP alone (without LPS) induces TNF-α, but not IL-6 

expression in rats. Therefore, we suppose that PSP may act via TLR4/p38 MAPK signaling 

pathway.  Our assumptions are consistent with the observations of Yang et al. (2015), who 

demonstrated that Coriolus versicolor mushroom polysaccharides induced, in a time- 

dependent manner, the increase of phosphorylation of p38 MAPK [31]. 

Our results also demonstrated that PSP and LPS showed the additive effect on the IL-6 

expression, whereas the injection of PSP alone (without LPS) did not induce the secretion of 

IL-6 (plasma level measured 3h post-injection of PSP).  Based on these results we presume, 

that PSP alone is not able to activate the both TLR4-induced signal transduction pathways, 

involving p38 MAPK and STAT3.  On the other hand, the simultaneous activation of the 

TLR4 signaling pathway by LPS and PSP causes the additive effect on IL-6 production.  This 

phenomenon may result due to the fact, that PSP as well as LPS induces TLR4 signaling 

pathway, which leads to the activation of NF-κB [25; 31-32].  Moreover, the both inducers 
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may also active signaling pathway via STAT3.  The other potential explanation of this 

phenomenon may result from the fact that in our experiment PSP was injected in rats 2h prior 

to the LPS administration.  As we described previously, PSP induced a significant elevation 

of the blood TNF-α level 2h post-injection [18].  It can be assumed that raised concentration 

of TNF-α causes the increase of LPS-induced IL-6 production.  Ghezzi et al. (2000) showed 

that the anti-TNF-α antibodies inhibited LPS-induced IL-6 production in three different 

models: IL-6 production by mouse peritoneal macrophages in vitro; serum IL-6 levels 

induced by an i.p. injection of LPS, and brain IL-6 concentration induced by an 

intracerebroventricular (i.c.v.) administration of LPS [41].  Similarly, Benigni et al. (1996) 

demonstrated that i.c.v. injection of LPS into TNF receptor-deficient mice produces lower 

brain IL-6 levels than in wild type mice [42].  To the best of our knowledge, this phenomenon 

has not yet been examined.  Therefore, detailed studies on the TLR4 signal transduction 

pathway, involving p38 MAPK and STAT3, in the PSP/LPS-treated rats are required. 

PSP is considered as a useful adjuvant especially combined with chemotherapy in clinical 

treatment of cancer patients [1-2].  For this reason, it is important to examine the effect of PSP 

in these patients who may experience fever during microbial infections.  Moreover, there are 

clinical reports suggesting a decreased frequency of fever, or even the lack of capability of 

generating fever within certain groups of patients, especially amongst cancer patients [43].  It 

is also well documented that fever directly activates defense against various dangers, 

including cancer cells [44-45] and the endogenous mediators of fever play a significant role in 

defense against tumor cells [46-47].  The observation that cancer patients who experienced a 

feverish period after surgery survived significantly longer than patients without fever, and the 

fact that spontaneous tumor remission was observed mostly after a fever, confirms the 

significant meaning of this mechanism for a patient’s recovery [48].  A large fraction of 

spontaneous regressions and remissions of tumors described in the literature was preceded by 
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acute infections especially when accompanied by high fever [49-51].  Based on recent 

observations in the clinic together with the improved understanding of tumor immunology, it 

is believed that fever, being a part of innate response, can induce and facilitate an efficient 

anti-tumor response, and may improve anti-tumor efficacy of immunotherapy [52-53]. 

However, the mechanisms of this phenomenon has not yet been fully elucidated.  It is well-

known that following fever, especially in relation to an acute infection, an increase in pro-

inflammatory cytokines levels, stimulation of the differentiation of T cells and enhancement 

of cytotoxic potential of neutrophils, NK cells, and dendritic cells are observed [9, 11].  In 

addition to the immunologic effects of fever, there is also the thermal aspect.  Tumor cells are 

more fragile and vulnerable to heat with apoptosis taking place at lower temperatures 

compared to normal cells [49, 54]. 

Although, there is lack of research focused on the direct effect of fever on the various aspects 

of immune system in the cancer patients or/and tumor bearing animals, the results of studies 

using a fever-range whole-body hyperthermia (FR-WBH) demonstrate a beneficial activity of 

the temperature in the range of 39.5°C – 40.5°C, lasting for 4 – 6 hours (physiological status 

similar to the fever).  Fever-range temperature is associated with enhancement of the innate 

and adaptive arms of the immune response through augmentation of T-cell proliferation and 

cytotoxicity, bioactivity of inflammatory cytokines and neutrophil motility and chemotaxis 

[11, 55-56].  It also promotes the egress of blood-borne lymphocytes across high endothelial 

venules (HEV) in lymph nodes and Peyer’s patches [57].  Moreover, FR-WBH regulates 

adhesion molecule expression on select vascular endothelial sites.  It increases the expression 

of intercellular adhesion molecule 1 (ICAM-1) and strongly increases the intravascular 

display of CCL21, a key homeostatic chemokine, which mediates lymphocyte trafficking 

across high endothelial venules.  FR-WBH also enhances L-selectin/α4β7 integrin affinity 

and/or avidity for endothelial adhesion molecules, ultimately leading to improved homing to 
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lymphoid tissues [58-59].  The studies using tumor bearing animals revealed that the FR-

WBH resulted in a significant lymphoid infiltrate and tumor cells apoptosis due to the activity 

NK cells.  Moreover, Burd et al. (1998) showed also that a single treatment of Balb/c mice 

bearing human breast tumor xenografts with a low-temperature, long-duration, and whole-

body hyperthermia for 6–8h caused a temporary reduction of tumor volume and/or a growth 

delay.  This inhibition was correlated with the appearance of large numbers of apoptotic 

tumor cells.  The authors also suggested that this type of mild heat exposure, comparable to a 

common fever, is not itself directly cytotoxic, but it stimulates some component(s) of the 

immune response, which results in increased antitumor activity.  In support of this hypothesis, 

Burd et al. observed the increase in numbers of lymphocyte-like cells, macrophages, and 

granulocytes in the tumor vasculature and in the tumor stroma immediately following this 

mild hyperthermia exposure [60].  Similarly, Matsuda et al. (1997) demonstrated that the FR-

WBH procedure applied alone using a rat tumor model, without any other additional therapy, 

delayed a tumor growth together with a significantly (50%) reduced incidence of lymph node 

metastases [61]. 

In addition, fever-range thermal stress can also activate processes involved in the killing of 

tumor cells.  FR-WBH enhances antigen presentation by dendritic cells and promotes 

dendritic cell maturation, activates immune effector cells (making the tumor cells more 

sensitive to lysis by NK and lymphocyte CD8+ T cells) and switches the activities of the IL-6 

to a predominantly anti-tumorigenic function that promotes anti-tumor immunity by 

mobilizing T cell trafficking in the recalcitrant tumor microenvironment [53, 62-66]. 

Based on these results it seems to be an interesting to use the immunomodulatory properties 

of PSP as a factor stimulating the organisms of cancer patients to feverish response. 
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5. Conclusion

We concluded, that PSP isolated from Coriolus versicolor, which is a bioactive component 

exhibiting antitumor and immunomodulatory properties, expands the duration of LPS-induced 

fever, and the effect is IL-6-related.  Moreover, our results also suggest the compensatory 

effect of PSP-induced hypothermia on LPS-induced fever during this early stage of the febrile 

response.  Finally, it seems to be an interesting to use the immunomodulatory properties of 

PSP as a factor stimulating the organisms of cancer patients to feverish response. 
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Figure legends 

Figure 1.  Changes of body temperature (
o
C) over time (h) of rats treated intraperitoneally

(i.p.) with PSP (100 mg kg
-1

) or 0.9% sterile saline at 7:00 (black arrowhead) and then

injected i.p. with LPS (50 µg kg
-1

) or 0.9% sterile saline at 9:00 (white arrowhead) in

comparison to non-treated animals (NT).  Values are means ± S.E.M. at 30-min averages. 

Letter n indicates sample size in a respective group.  Asterisk indicates significant differences 

between PSP/LPS and saline/LPS groups; hash denotes significant differences between 

examined groups (PSP/LPS and saline/LPS) and control groups (NT and PSP/saline) at 

defined time intervals (**p<0.01; ###p<0.001, respectively). 

Figure 2.  Plasma levels of IL-6 (pg ml
-1

) estimated at 3h and 14h post-injection of PSP or

saline in the rats injected i.p. with PSP (100 mg kg
-1

) or saline 2h prior to the LPS

administration (50 µg kg
-1

) in comparison to non-treated animals (NT) and rats pre-treated

with PSP followed by sterile saline.  Values are expressed as means ±S.E.M.  Assays were 

performed on four individuals in each group.  Asterisk indicates significant difference 

(***p<0.001). 

Figure 3.  Plasma levels of TNF-α (pg ml
-1

) estimated at 3h post-injection of PSP or saline in

the rats injected i.p. with PSP (100 mg kg
-1

) or saline 2h prior to the LPS administration (50

µg kg
-1

) in comparison to non-treated animals (NT) and rats pre-treated with PSP followed by

sterile saline.  Values are expressed as means ±S.E.M.  Assays were performed on four 

individuals in each group. Asterisk indicates significant difference (**p<0.01 and 

***p<0.001, respectively). 

Figure 4. Changes of body temperature (
o
C) over time (h) of rats treated intraperitoneally

(i.p.) with PSP (100 mg kg
-1

) or 0.9% sterile saline at 7:00. (black arrowhead), then injected

i.p. with LPS (50 µg kg
-1

) or 0.9% sterile saline at 9:00 (white arrowhead) and finally

administrated i.p. with rabbit polyclonal IgG anti rat IL-6 or rabbit IgG at 17:00 (30 µg/rat; 
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gray arrowhead).  Values are means ± S.E.M. at 30-min averages. Letter n indicates sample 

size in a respective group.  Asterisk indicates significant differences between PSP/LPS + IgG 

and PSP/LPS + anti-IL-6 groups; hash denotes significant differences between examined 

groups of rats and non-treated animals (NT) at defined time intervals (**p<0.01; ##p<0.01; 

###p<0.001, respectively). 

Figure 5.  Changes of body temperature (
o
C) over time (h) of rats injected intraperitoneally

(i.p.) with sterile 0.9% saline at 7:00 (control vehicle for PSP injection; black arrowhead) and 

at 9:00 (control vehicle for LPS administration; white arrowhead), and finally treated i.p. with 

rabbit polyclonal IgG anti rat IL-6 or rabbit IgG at 17:00 (30 µg/rat; gray arrowhead) in 

comparison to non-treated animals (NT).  Values are means ± S.E.M. at 30-min averages. 

Letter n indicates sample size in a respective groups. 
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Changes of body temperature (°C) over time (h) of rats treated intraperitoneally (i.p.) with PSP (100 

mg/kg) or 0.9% sterile saline at 7:00 (black arrowhead) and then injected i.p. with LPS (50 µg/kg) or 0.9% 

sterile saline at 9:00 (white arrowhead) in comparison to non-treated animals (NT).  Values are means ± 

S.E.M. at 30-min averages.  Letter n indicates sample size in a respective group.  Asterisk indicates 

significant differences between PSP/LPS and saline/LPS groups; hash denotes significant differences between 

examined groups (PSP/LPS and saline/LPS) and control groups (NT and PSP/saline) at defined time intervals 

(**p<0.01; ###p<0.001, respectively).  
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Plasma levels of IL 6 (pg/ml) estimated at 3h and 14h post injection of PSP or saline in the rats injected i.p. 
with PSP (100 mg/kg) or saline 2h prior to the LPS administration (50 µg/kg) in comparison to non treated 

animals (NT) and rats pre treated with PSP followed by sterile saline.  Values are expressed as means 
±S.E.M.  Assays were performed on four individuals in each group. Asterisk indicates significant difference 

(***p<0.001).
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Plasma levels of TNF-α (pg/ml) estimated at 3h post-injection of PSP or saline in the rats injected i.p. with 

PSP (100 mg/kg) or saline 2h prior to the LPS administration (50 µg/kg) in comparison to non-treated 

animals (NT) and rats pre-treated with PSP followed by sterile saline.  Values are expressed as means 

±S.E.M.  Assays were performed on four individuals in each group.  Asterisk indicates significant 

difference (**p<0.01 and ***p<0.001, respectively).  
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Changes of body temperature (°C) over time (h) of rats treated intraperitoneally (i.p.) with PSP (100 

mg/kg) or 0.9% sterile saline at 7:00. (black arrowhead), then injected i.p. with LPS (50 µg/kg) or 0.9% 

sterile saline at 9:00 (white arrowhead) and finally administrated i.p. with rabbit polyclonal IgG anti rat IL-6 

or rabbit IgG at 17:00 (30 µg/rat; gray arrowhead).  Values are means ± S.E.M. at 30-min averages. Letter 

n indicates sample size in a respective group.  Asterisk indicates significant differences between PSP/LPS + 

IgG and PSP/LPS + anti-IL-6 groups; hash denotes significant differences between examined groups of rats 

and non-treated animals (NT) at defined time intervals (**p<0.01; ##p<0.01; ###p<0.001, respectively).  
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Changes of body temperature (°C) over time (h) of rats injected intraperitoneally (i.p.) with sterile 0.9% 
saline at 7:00 (control vehicle for PSP injection; black arrowhead) and at 9:00 (control vehicle for LPS 

administration; white arrowhead), and finally treated i.p. with rabbit polyclonal IgG anti rat IL-6 or rabbit 
IgG at 17:00 (30 µg/rat; gray arrowhead) in comparison to non-treated animals (NT).  Values are means 

± S.E.M. at 30-min averages.  Letter n indicates sample size in a respective groups.  
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