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Abstract A set of simulations concerning the influence of internal energy on the
stability of relativistic jets is presented. Results show that perturbations
saturate when the amplitude of the velocity perturbation approaches the
speed of light limit. Also, contrary to what predicted by linear stability
theory, jets with higher specific internal energy appear to be more stable.

1. Introduction

The production of collimated relativistic outflows is common among
extragalactic radio sources. The question of why some of these sources
produce jets that propagate up to hundreds of kpcs along nine decades
in distance scale (as, e.g., Cyg A) whereas others (e.g., 3C31) decolli-
mate and flare after few kpc, arises naturally. To give an answer, the
analysis of the nonlinear stability of relativistic flows against the growth
of Kelvin-Helmholtz (KH) perturbations emerges as a powerful tool.

Focusing on the relativistic regime, the linear growth of KH pertur-
bations both in the vortex sheet approximation (see Birkinshaw 1991a
for a review), and sheared flows (Birkinshaw 1991b, Hanasz & Sol 1996)
has been extensively analyzed. However, the nonlinear regime remains
practically unexplored with only a couple of papers (i.e., Rosen et al.
1999, Hardee et al. 2001) covering partial aspects of the problem. In
the present work, we concentrate on the influence of the specific inter-
nal energy in the long term stability of relativistic flows. The reason
for this relies on two points: i) it is a genuine relativistic effect and no
numerical study has been yet performed for it (Rosen et al. 1999 have
reported preliminary results), and ii) a remarkable stability of extremely
hot jets has been found in simulations (see, e.g., Mart́ı et al. 1997), in
contradiction with predictions of linear stability analysis.
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Figure 1. Dispersion relation solutions for models A (left) and D (right) in Table
1. Panels show growth rates in terms of longitudinal wavenumber. Crosses indicate
the excited modes.

2. Numerical simulations

We focus on the simplest geometrical configuration of two dimensional
planar relativistic flows and apply the temporal stability analysis, i.e.,
we consider perturbations with real wavenumber and complex frequency,
what gives modes which grow in time. For any equilibrium model, the
dispersion relation (for symmetric modes in a slab relativistic jet; see,
e.g., Hanasz & Sol 1996) is solved numerically for different modes (fun-
damental, body), getting solutions for real (proper frequency) and imag-
inary (growth rate) part of frequency as a function of wavenumber. The
next step is to choose the mode to excite. In our case, we choose the
first body mode with the highest growth rate (see Fig. 1).

We start by generating steady two-dimensional slab jet models. A
thin shear layer between the ambient medium and the jet is used to
achieve equilibrium. Due to symmetry properties, only half of the jet
has to be computed. Reflecting boundary conditions are imposed on the
symmetry plane of the flow, whereas periodical conditions are settled on
both upstream and downstream boundaries. The steady model is then
perturbed according to the selected mode, with an amplitude 10−5 the
background values. The mode wavelength is used as the grid size in the
flow direction. The setup of the simulations is given in Table 1.

The growth of the instability depends critically on the numerical vis-
cosity of the algorithm. Hence our first aim was to look for suitable
numerical resolutions by comparing numerical and analytical results for
the linear regime. Resolution perpendicular to the flow appeared to be
essential requiring very high resolutions (400 zones/Rb) and thin shear
layers with 40 to 45 zones. A (small) resolution of 16 zones/Rb along the
jet was taken as a compromise between accuracy and computational ef-
ficiency. Lower transversal resolutions and/or thicker shear layers led to
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Table 1. Simulation parameters

Model P ǫb ǫa ν λ

A 2.55 10−3 0.08 7.65 10−3 0.11 20.8
B 0.01 0.42 0.04 0.14 9.80
C 0.2 6.14 0.61 0.44 3.15
D 2.0 60.0 6.0 0.87 2.39

Labels a and b refer to ambient medium and jet, respectively. In all simulations, the density in
the jet is ρb = 0.1, Lorentz factor Wb = 5.0, adiabatic exponent Γb,a = 4/3. In the table, P is
pressure, ǫa,b is specific internal energy, ν is the relativistic density ratio (ρb(1+ǫb)/ρa(1+ǫa)),
and λ is the wavelength of the excited mode (first body mode). Throughout the paper,
physical quantities are expressed in units of the ambient density, ρa, the speed of light, c,
and the beam radius, Rb.

Figure 2. Growth of pressure, axial and perpendicular velocity perturbation for
models A (left) and D (right).

non-satisfactory results, with a slow or damped growth. Thinner shear
layers gave non-steady initial conditions.

Two phases can be distinguished in all simulations: a phase of linear
growth and a mixing phase, separated by the saturation point (Figs. 2,
3). We checked that saturation is reached when the velocity perturba-
tion in the jet reference frame approaches the speed of light (Hanasz
1997). The mixing phase starts after saturation, in connection with the
development of a planar shock within the jet flow and a wide shear layer.
Disruption may occur besides the mixing phase in some of the models.
This phase is characterized by a complete mixing of the ambient and jet
materials and an effective spread of the jet’s axial momentum into the
ambient. In the case of the simulations presented in Table 1, disruption
is perceived in models A and B which, according to the linear stability
analysis, have smaller growth rates than models C and D.
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Figure 3. Logarithm of rest mass density in three different instants for models A
(left) and D (right). From top to bottom, images correspond to linear phase, mixing
phase and disruption (model A), or last image of simulation (model D).

3. Conclusions

Saturation of the growth of perturbations is a very important result
(predicted on the basis of post-linear stability analysis by Hanasz 1997).
After saturation, disruption is almost immediate, in the cases it occurs.
Our results suggest that extremely hot jets are more stable on the long
term, contrary to the predictions of the KH linear stability theory. Plots
suggest that disruption is related to the pressure amplitude in the sat-
uration point with respect to equilibrium value. It varies from a few in
models C and D, to more than two orders of magnitude in models A and
B (Fig. 2). The fact that disruption occurs just after saturation suggests
that the final fate of the jet must be encoded in the jet properties at the
end of the linear phase, however we still have not found such a relation.

References

Birkinshaw M., 1991a, in: Hughes P.A. (ed.), Beams and Jets in Astrophysics (Chap.
6). Cambridge Univ. Press, Cambridge

Birkinshaw M., 1991b, MNRAS 252, 505

Hanasz M., Sol H., 1996, A&A 315, 355

Hanasz M., 1997, in: Ostrowski M., Sikora M., Madejski G., Begelman M. (eds.),
Relativistic Jets in AGNs, Kraków, p. 85 (astro-ph 9711275)

Hardee P.E., Hughes P.A., Rosen A., Gomez E.A., 2001, ApJ 555, 744
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