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Abstract. We present a numerical algorithm for the incorporation of the active cosmic ray transport, into the
ZEUS-3D magnetohydrodynamical code. The cosmic ray transport is described by the diffusion-advection equa-
tion. The applied form of the diffusion tensor allows for anisotropic diffusion of cosmic rays along and across the
magnetic field direction, which is controlled by two parameters: the parallel and perpendicular diffusion coeffi-
cients. The implemented numerical algorithm is tested by comparison of the diffusive transport of cosmic rays
to analytical solutions of the diffusion equation. Our method is numerically stable for a wide range of diffu-
sion coefficients, including the realistic values inferred from the observational data for the Milky Way of about
6 × 1028 cm2 s−1. The presented algorithm is applied for exemplary simulations of the the Parker instability
triggered by cosmic rays injected by a single SN remnant.
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1. Introduction

One of the major components of the interstellar medium
(ISM), the cosmic ray (CR) gas, consists of relativis-
tic electrons, protons and heavier atomic nuclei (see eg.
Berezinski et al. 1990). It was shown beyond any doubt
that the cosmic ray particles are accelerated in the process
of diffusive acceleration by shocks associated with super-
nova remnants (SNR) in galactic disks (e.g. Koyama et al.
1995). Recent models suggest that the conversion rate of
the supernova energy into cosmic ray energy is in the range
of 10 - 50 % (see eg. Jones 1998 and references therein).
The total kinetic energy output from a single supernova
is of the order of 1051 erg, therefore the total CR energy
per unit volume, produced within a supernova remnant, is
significant as compared to thermal, kinetic and magnetic
energy densities of the ISM.

Although the velocity of individual CR particles is
close to the speed of light, the bulk motion of CR is dif-
fusive and the CR bulk speed is of the order of Alfvén
speed, i.e. typically a few tens of km/s. Recent studies
by Giacalone and Jokipii (1999) and Jokipii (1999) sug-
gest that the diffusion of cosmic ray gas in a turbulent
magnetic field proceeds preferentially along the direction
of the mean magnetic field. In our case the term cosmic
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rays means protons and nuclei but not electrons, since
their contribution to the pressure is negligible. The esti-
mations made by Strong and Moskalenko ( 1998) based on
the GALPROP model provide the parallel diffusion coef-
ficients of the order of K‖ = 6× 1028 cm2 s−1. This value
is 2-3 orders of magnitude larger than the diffusion coeffi-
cient for turbulent mixing of the ISM. The large energies
carried by the cosmic ray component as well as its highly
diffusive nature imply that the cosmic ray component can-
not be neglected in the studies of dynamics of the ISM.
That statement follows directly from investigations of sta-
bility of the ISM on spatial scales of the order of one up
to a few kiloparsecs. Parker (1966, 1967) found that the
multicomponent interstellar medium stratified by vertical
gravity is subject to an instability which is caused by the
buoyancy of the weightless ISM components, i.e magnetic
field and cosmic rays.

The Parker instability has been extensively studied by
numerous authors in the linear approximation under var-
ious circumstances like different disk gravity models (Giz
& Shu 1993; Kim & Hong 1998), rigid and differential ro-
tation (Shu 1974; Foglizzo & Tagger 1994, 1995; Hanasz &
Lesch 1997) the presence of random magnetic field com-
ponent (Parker & Jokipii 2000; Kim & Ryu 2001) and
nonadiabatic effects in the ISM (Kosinski & Hanasz 2003).

http://arXiv.org/abs/astro-ph/0309660v1
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Majority of the work was done within the limit of very
large diffusion of cosmic rays along magnetic field lines and
negligible diffusion across magnetic field lines. The effect
of finite diffusion was studied by Kuznetsov and Ptuskin
(1983) and recently by Ryu et al. (2003), who demon-
strate that within the linear approximation incorporation
of the diffusion-advection equation and realistic diffusion
coefficients leads to results consistent with the mentioned
simplified description of cosmic ray transport. According
to the analysis done by Ryu et al. (2003) the finiteness of
the diffusion coefficient decreases the growth rate of the
Parker instability.

On the other hand numerical studies of the Parker in-
stability investigate the effects of uniform vertical gravity
(Kim et al. 1998), realistic vertical gravity (Kim et al.
2000), selfgravity (Chou et al. 2000), the effects of spiral
arms (Franco et al. 2002), finite resistivity (Hanasz et al.
2002, Tanuma 2003; Kowal et al 2003), partial ionization
(Birk 2002) and coupling to other disk instabilities (Kim,
Ostriker & Stone 2002).

Surprisingly, the powerful cosmic ray component,
which according to the linear analysis is crucial for the
growth rate of the Parker instability, is neglected in nu-
merical studies except the recent paper by Hanasz & Lesch
(2000) who incorporate the diffusion-advection equation
for the cosmic ray transport along magnetic field and
study the Parker instability triggered by cosmic ray in-
jection in SN remnants, applying the thin fluxtube ap-
proximation. That paper demonstrates the importance of
the cosmic ray component for the global dynamics of the
ISM, including the hydromagnetic dynamo effect.

In this paper we describe how to introduce
the cosmic ray component, within the diffusion-
advection equation, into the ZEUS-3D MHD code
(Stone & Norman 1992a, 1992b) developped at the
Laboratory of Computational Astrophysics (NCSA,
University of Illinois at Urbana Champaign, see
http://lca.ncsa.uiuc.edu/lca codes docs.html). The ZEUS
code uses a time-explicit, operator-split, finite-difference
method to solve the MHD equations on a staggered mesh.
The MHD algorithm employs the constrained transport
formalism and the method of characteristics for accu-
rate propagation of Alfvén waves (Evans & Hawley 1988,
Hawley & Stone 1995).

In the present paper we focus on the numerical method
for the active cosmic-ray transport. In Section 2. we intro-
duce the set of basic equations. The numerical algorithm
is described in section 3, followed by tests of the numerical
method and a comparison of some results of computations
to analytical solutions in section 4. Section 5 contains as
an example an application of the extended code for stud-
ies of the Parker instability triggered by the cosmic ray
injection in a single SN remnant. Finally in Section 6. we
summarize our results.

2. Equations of MHD including cosmic-ray

transport

The diffusive cosmic ray (CR) transport on macroscopic
astrophysical scales is described by the diffusion-advection
equation. Following Schlickeiser and Lerche (1985) we ap-
ply the following form of the transport equation

∂ecr

∂t
+ ∇ (ecrv) = ∇

(

K̂∇ecr

)

− pcr (∇ · v) + Q, (1)

where ecr and pcr = (γcr − 1)ecr are the cosmic ray energy
density and cosmic ray pressure, γcr (=4/3 in this paper)
denotes the ratio of the specific heats of the relativistic
cosmic ray gas, K̂ presents the diffusion tensor, v is ve-
locity of the thermal gas and Q is the source term for the
CR energy density resulting from the cosmic ray injection
by supernova remnants (SNR) or alternative sources. We
note that eq. (1) assumes that cosmic rays are treated as a
magnetized relativistic gas. This assumption holds as long
as the particles are tied to the magnetic field, i.e. as long
as they gyroradius is significantly smaller than the char-
acteristic spatial scales of the magnetic field. Only cosmic
rays with ultrahigh energies are ruled out by our approach
since their gyroradius is larger than the thickness of the
galactic disk. Eq. (1) implicitly assumes that the diffu-
sion tensor describes the interaction of charged particles
with magnetic fluctuations which appear on spatial scales
considerably smaller than the characteristic scales in the
interstellar medium. In the limit of low energies (< 100
MeV) the the current approximation is not valid because
cosmic-ray energy losses become important, although, the
cosmic ray pressure still resides in that range.

In the present approach we apply the concept of
anisotropic cosmic ray diffusion following Giaccalone and
Jokipii (1999), Jokipii (1999), Hanasz and Lesch (2000)
and Ryu et al (2003). In order to describe formally the
anisotropic cosmic ray diffusion we implement the diffu-
sion tensor (see e.g. Ryu et al. 2003) of the form

Kij = K⊥δij + (K‖ − K⊥)ninj , (2)

where ni = Bi/B are components of the unit vectors tan-
gent to magnetic field lines. The above cosmic-ray trans-
port equation supplements the standard set of ideal MHD
equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

∂e

∂t
+ ∇ · (ev) = −p (∇ · v) , (4)

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇

(

p + pcr +
B2

8π

)

+
B · ∇B

4πρ
, (5)

∂B

∂t
= ∇ × (v × B) . (6)

where the gradient of cosmic ray pressure ∇pcr has been
included in the equation of gas motion (see Berezinski et
al. 1990). The other symbols have their usual meaning.

http://lca.ncsa.uiuc.edu/lca_codes_docs.html
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3. Numerical algorithm for the cosmic ray

transport

The actual form of the diffusion-advection equation (1)
is similar to the energy equation (4) except the diffusion
term, therefore we incorporate an integration algorithm
for the advection part of the cosmic-ray transport, follow-
ing the method of integration of the energy equation (see
Stone and Norman 1992a,b).

The integration method for the energy equation con-
sists of a source step and a transport step. In the source
step the −p∇v term is evaluated together with possible
explicit sources of the internal energy. In the transport
step fluxes of internal energy, through cell boundaries, are
computed using directional splitting. The total amount of
internal energy within each cell is subsequently updated
according to the sum of fluxes through all cell boundaries.

The implementation of the cosmic ray transport re-
quires an additional contribution of diffusive fluxes

F
d
cr = K̂∇ecr (7)

corresponding to the term ∇

(

K̂∇ecr

)

in the cosmic ray

diffusion-advection equation. The tensorial form of the dif-
fusion coefficient K̂ is used to describe the anisotropic cos-
mic ray diffusion.

In order to incorporate the diffusion of cosmic rays
in the numerical algorithm, along the magnetic field lines
one should compute first components of the unit vector
n = B/B parallel to the magnetic field direction, sep-
arately for each cell face. Since in the ZEUS code vector
field components are centered on different cell faces an av-
eraging is necessary for these vector components which are
parallel to the given cell face. For instance, the magnetic
field components on 1-faces (assigned with the superscript
’1f’) are given by

B
1f
(i,j,k) = [B1(i,j,k), (8)

0.25(B2(i,j,k) + B2(i−1,j,k) + B2(i−1,j+1,k) + B2(i,j+1,k)),

0.25(B3(i,j,k) + B3(i−1,j,k) + B3(i−1,j,k+1) + B3(i,j,k+1))].

The field components on the other faces are computed
analogously.

The next step is a computation of cosmic-ray diffusive
fluxes across cell interfaces. This requires a prior compu-
tation of components of the gradient of cosmic-ray en-
ergy density. All three gradient components contributing
to fluxes through a given cell-face should be centered at
the center of that cell-face. Moreover, a monotinization
of derivatives is essential for the numerical stability of the
overall algorithm as soon as cosmic rays are coupled to the
gas dynamics through the ∇pcr term in the equation of
gas motion. We apply the following formulae for numeri-
cal derivatives needed for the the flux components through
the 1-faces:

(∇ecr)
1f
(i,j,k) = [(dxecr)(i,j,k), (dyecr)(i,j,k), (dzecr)(i,j,k)], (9)

where

(dxecr)(i,j,k) = (ecr(i,j,k) − ecr(i−1,j,k))/(x(i) − x(i−1)), (10)

(dyecr)(i,j,k) = 0.25(dy,lecr + dy,recr) (11)

×(1 + sign(1, dy,lecr dy,recr)),

(dzecr)(i,j,k) = 0.25(dz,lecr + dz,recr) (12)

×(1 + sign(1, dz,lecr dz,recr)),

and the left and right derivatives used in the above for-
mulae are given by

dy,lecr = 0.5((ecr(i−1,j,k) + ecr(i,j,k)) (13)

−(ecr(i−1,j−1,k) + ecr(i,j−1,k)))/(y(j) − y(j−1)),

dy,recr = 0.5((ecr(i−1,j+1,k) + ecr(i,j+1,k)) (14)

−(ecr(i−1,j,k) + ecr(i,j,k)))/(y(j+1) − y(j)),

dz,lecr = 0.5((ecr(i−1,j,k) + ecr(i,j,k)) (15)

−(ecr(i−1,j,k−1) + ecr(i,j,k−1)))/(z(k) − z(k−1)),

dz,recr = 0.5((ecr(i−1,j,k+1) + ecr(i,j,k+1)) (16)

−(ecr(i−1,j,k) + ecr(i,j,k)))/(z(k+1) − z(k)).

The monotonized derivatives used in formulae (11) and
(12) reduce to centered derivatives if signs of left and right
derivatives are the same. The cosmic ray energy fluxes
through the cell-faces in the y and z- directions are con-
structed in the analogous way. The cosmic ray diffusive
fluxes through each cell-face can be now computed ac-
cording to the formula (7).

The standard stability analysis (see eg. Fletcher 1991)
imposes the following necessary stability condition for the
explicit numerical solutions of the diffusion equation:

∆t ≤ Ccr
(min(∆x, ∆y, ∆z)2

K
, (17)

where Ccr = 0.5 is the Courant number corresponding to
the diffusion problem. Numerical tests show that a slightly
lower value, namely 0.3 suits better for the current prob-
lem.

The above limitation for the timestep, which is
quadratic in the cell size, together with the application of
monotonized derivatives implemented according formulae
(11) and (12), ensures a stable numerical scheme for the
active cosmic ray transport in the ZEUS code.

The standard types of boundary conditions for the
cosmic ray component can be implemented in the sim-
ilar way as for the internal energy, except the outflow
boundary condition. In case of the internal energy the
outflow boundary condition relies on the replication of the
contents of the starting and ending cells to the adjacent
ghost zones. This kind of the outflow boundary condi-
tion is, however, not appropriate for the diffusing cosmic
ray component, since replication of cell contents means
no gradients across the boundary. If gradients of cosmic
ray energy vanish then only advection and no diffusion is
possible across the boundary. In order to make it possi-
ble for cosmic rays to diffuse across the boundary of the
physical domain we first compute gradients of cosmic ray
energy density across the boundary and then perform a
linear extrapolation of the cosmic ray energy density from
the interior cells to the ghost zones.
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4. Test problems

In this section we present several tests of our new nu-
merical algorithm for the cosmic-ray diffusion-advection
problem.

In the following considerations we apply units which
are convenient for the investigations of the dynamics of
ISM on large spatial scales. The unit of length and time
are 1 pc and 1 Myr, respectively. The unit of velocity is
1 pc Myr−1 ≃ 1 km s−1. The density is given in cm−3

corresponding to the number density of hydrogen atoms.
The unit of the magnetic field is 1µG. The diffusion co-
efficient is expressed in units of 1 pc2 Myr−1. The realis-
tic parallel diffusion coefficients for the cosmic ray trans-
port as estimated by Strong and Moskalenko (1998), is
based on the GALPROP model: K‖ = 6×1028 cm2 s−1 =

2× 105 pc2 Myr−1. In our numerical tests we apply diffu-
sion coefficients ranging from 102 ÷ 105 pc2 Myr−1.

We present test problems which are performed in the
computational box of physical size 1000 pc × 1000 pc ×

500 pc with a spatial resolution of 100 × 100 × 50 grid
zones in the x, y and z directions, respectively. Periodic
boundary conditions are applied on all the domain bound-
aries.

4.1. Passive cosmic ray transport in one dimension

As a first step we perform a test of passive cosmic ray
transport along the magnetic field, which is directed along
the x-axis, assuming K⊥ = 0 and a static medium, i.e
v = 0. The passive transport means that the cosmic ray
gas has no dynamical influence onto the motion of ther-
mal gas. This can be achieved by neglecting the ∇pcr in
the equation of gas motion. In case of a static distribu-
tion of gas and a uniform magnetic field parallel to the
x-axis the cosmic ray transport equation reduces to a one-
dimensional diffusion problem, described by the equation

∂ecr

∂t
= K

∂2ecr

∂x2
. (18)

Assuming that the initial condition is given by the cosmic-
ray distribution

ecr0 = A exp

(

−
x2

r2
0

)

, (19)

where r0 denotes the initial half-width of the Gaussian
profile, we expect that the numerical solution should be
close to the following analytical solution at any time

ecr(x, t) = A

√

r2
0

r2
0 + 4Kt

exp

(

−
x2

r2
0 + 4Kt

)

(20)

The comparison of the numerical solutions with the ana-
lytical solution (eq. 20) is shown in Fig. 1. A perfect con-
sistency of the both analytical and numerical solutions is
obvious.

Fig. 1. Comparison of numerical solutions of the 1D, pure
diffusion problem to analytical solutions for t = 0 (upper
panel) and t = 100 (lower panel). Continuous lines denote
analytical solutions for different times and crosses repre-
sent numerical solutions.

4.2. Passive cosmic ray transport along an inclined

magnetic field

The next test for the diffusive cosmic-ray propagation is
to check if the simulated diffusion follows the analytical
solution in case of an inclined magnetic field. We set up the
values of K‖ = 100 and K⊥ = 0 and perform simulations
for Bx = By 6= 0 and Bz = 0.

Fig. 2 presents two snapshots of cosmic ray distribution
at t = 0 and t = 100. It is apparent that qualitatively the
anisotropic transport of cosmic ray energy proceeds along
the magnetic field according to our expectations.

However, a more precise evaluation of the numerical al-
gorithm can be performed by fitting a 2D-Gaussian func-
tion for the distribution of cosmic ray energy density in
the xy-plane. The diffusion along the z-direction is absent
in the current setup. The fitting procedure is performed
with the aid of IDL routine gauss2dfit, which returns pa-
rameters of a 2D-Gaussian distribution, i.e the semi-axis
of the ellipsoid, as well as the amplitude of the peak and
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Fig. 2. Diffusion of cosmic rays along an inclined magnetic
field: (a) the initial spheroidal distribution of ecr at t = 0
and (b) the ellipsoidal distribution at t = 100.

the level of the constant background distribution of cosmic
ray energy. The results of the fitting are shown in Fig. 3,
where two 1-d slices along the major and minor axis of the
ellipsoid (crosses and asterisks respectively) are shown to-
gether with the corresponding curves calculated on the
base of the derived parameters of the ellipsoid.

In the present case the fitted values of the parallel and
perpendicular widths of the 2D Gaussian profile and the
fitted amplitude are r‖f = 206.429, r⊥f = 54.705, Af =
11.096. Since K⊥ = 0, the corresponding parameters of
the exact solution can be derived from formula (20) repre-
senting the time evolution of 1D Gaussian profile. The ex-
act analytical solution gives r‖a =

√

r2
0 + 4Kt = 206.155

and Aa = A/
√

r2
0 + 4Kt = 11.884. If no perpendicular

diffusion is present, the perpendicular widths should not
change, i.e. r⊥a = 50.000.

We note that the parallel width of the 2D Gaussian
profile of the simulated cosmic ray distribution coincides

Fig. 3. Diffusion of cosmic rays along an inclined mag-
netic field at t = 100. Two cuts of the ellipsoid shown in
Fig. 2 are made (b) along the major axis (crosses) and
along the minor axis (asterisks). The full and dotted lines
represent the corresponding cuts of the fitted 2D Gaussian
profile.

well with the analytical solution. However, there are two
noticeable effects of the limited accuracy of our numerical
algorithm. The first effect is the broadening of the per-
pendicular widths r⊥ by about 10% of the original value.
The broadening leads to a lowering of the peak amplitude
Af with respect to the exact solution since the total cos-
mic ray energy is conserved in absence of gas flows. The
second effect of the limited numerical accuracy affects the
formation of regions with negative values of cosmic ray
energy density at the base of steep sides of the ellipsoid.

The depth of the ecr deficit (currently equal to
−0.09123 at t = 100) is strongly dependent on the grid
resolution and the steepness of the initial cosmic ray en-
ergy distribution across the magnetic field lines. The pres-
ence of negative CR energy density regions may lead to
significant numerical artifacts as soon as cosmic rays are
coupled to the equation of gas motion. Therefore the spa-
tial resolution of the grid in conjunction with the mag-
nitude of the cosmic ray gradients is an issue of primary
importance. The deficit vanishes in proportion to the grid
resolution, however there is a limited freedom of reducing
the size of the grid cell due to a drastic reduction of the
timestep given by formula (17).

An alternative way is to incorporate an explicit per-
pendicular diffusion given by K⊥ equal to a few up to a few
10 percent of K‖. This procedure can be physically justi-
fied by studies of cosmic ray transport in turbulent mag-
netic fields (Giaccalone and Jokipii 1999). Another way to
eliminate the spots of negative cosmic ray energy density
is to add a smooth background of cosmic rays prior to the
injection of very localized portions of cosmic ray energy.
This is also a physically justified procedure, since e.g. the
smooth background of cosmic rays is present in the ISM.
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4.3. Active cosmic ray transport

After testing the passive diffusion of cosmic rays we can
now describe the active propagation of cosmic rays within
the overall setup similar to that of the previous subsec-
tion. In the present configuration we apply the uniform
background of cosmic rays resulting from the assumption
that cosmic ray pressure is equal to the magnetic and gas
pressure

ptot = pgas + pmag + pcr (21)

where

pmag = αppgas (22)

pcr = βppgas (23)

and αp and βp are in general constants of the order of 1
in the ISM. In the present case we adopt αp = βp = 1.
The constant scaling factors between cosmic ray and gas
background pressures as well as between magnetic and
gas pressures is adopted for testing purposes only. This
approach is useful especially in linear studies of Parker
instability and follows the original work by Parker (1966,
1967). In general, one can start with any arbitrarily chosen
initial magnetic field and cosmic ray distributions. The
corresponding background cosmic ray energy density in
our units is ecr = (γcr − 1)−1αpc

2
siρ0 = 147, where csi =

7 km s−1 denotes the isothermal sound speed and ρ0 = 1
is the background gas density.

In order to investigate the coupling of cosmic rays
to gas and magnetic field we switch on the ∇pcr term
in the equation of gas motion and inject about 50 % of
1051 erg of the kinetic output of the SN explosion. In our
scaled units this corresponds to the initial peak amplitude
of the Gaussian CR distribution equal to 100 times the
background thermal energy density, i.e 100c2

siρ0 = 4900.
Currently we apply a rather small diffusion coefficient of
cosmic rays K‖ = 100 (corresponding to 3 · 1025 cm2 s−1)
and K⊥ = 4 in order to illustrate the effects of cosmic ray
propagation qualitatively.

In Fig. 4 we present the cosmic ray - magnetic field dis-
tribution (panel a) and the density - velocity distribution
(panel b) at t = 40. The difference between the passive
and active cosmic ray transport is remarkable. First of all
the gradient of the cosmic ray pressure leads to the accel-
eration of gas. Due to the effect of magnetic tension gas
accelerates preferentially along the magnetic field up to a
few km s−1. The outflow of gas from the cosmic ray in-
jection region together with the expansion forced by the
cosmic ray pressure implies the formation of a cavity in
the gas distribution. On the other hand, gas accumulates
outside the cavity as it is visible in 4 (b), in the upper-left
and lower-right corners of the graphic.

The gas motion along the magnetic field lines leads to
an advection of cosmic rays with the gas flows, which is
noticeable in Fig. 4 (a) as an enhanced cosmic ray energy
density coinciding with the enhanced gas density in Fig. 4
(b). The coupling of cosmic rays to the gas component
implies that the cosmic rays spread faster with respect to

Fig. 4. Diffusion of cosmic rays along an inclined magnetic
field at t = 40: (a) the cosmic ray energy density ecr and
magnetic field and (b) distribution of gas density and gas
velocity.

the passive (pure diffusion) transport. A broadening of the
cosmic ray profile across the magnetic field is due to the
pressure of the cosmic ray gas and partially due to the
imposed perpendicular diffusion.

5. Active cosmic ray transport in a vertically

stratified atmosphere

For the simulations of the cosmic ray transport in a strati-
fied atmosphere we adopt a physical domain and grid sizes
500×1000×1000 pc and 50×100×100 grid zones, in x, y
and z directions respectively. We apply periodic boundary
conditions to all the vertical domain boundaries, a reflec-
tion boundary condition to the lower domain boundary
and outflow condition to the upper boundary.

The goal of the present work is to incorporate the cos-
mic ray transport into studies of the dynamics of a grav-
itationally stratified interstellar medium. In this section
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Fig. 5. Geometry of the initial state stratified by vertical
gravity: (a) the slice in yz-plane showing the stratification
of the background distribution of cosmic rays and mag-
netic field along with the localized cosmic ray injection
region, (b) the initial, horizontal magnetic field is parallel
to the horizontal and parallel to the y-axis.

we perform an experiment similar to the ones presented
in the previous sections. However, in the present case a
uniform vertical gravity is taken into account for the con-
struction of an initial equilibrium state. The equilibrium
fulfills the magnetohydrostatic force balance equation

−
dptot

dz
+ gz = 0, (24)

where ptot = p(1 + αp + βp) denotes the total pressure
and gz = −0.65 pc Myr−2 is the vertical, uniform gravi-
tational acceleration. The center of cosmic ray injection is
placed at x = 0, y = 0 and z = 100. Two slices illustrating
the geometry of the initial state are shown in Fig. 5.

Fig. 6 shows the state of the system at t = 100 in
case of K‖ = 104 (corresponding to 3 · 1027 cm2 s−1) and
K⊥ = 0. Cosmic rays injected into a localized region dif-
fuse anisotropically along the magnetic field lines and pop-
ulate a fluxtube marked by magnetic lines threading the
initial injection volume. Due to an excess of cosmic ray
pressure the flux tube becomes underdense and its cen-
tral part starts to rise against vertical gravity. The overall
evolution of the fluxtube follows closely the one described
in the thin fluxtube approximation by Hanasz & Lesch

Fig. 6. Propagation of cosmic rays in a vertically strat-
ified atmosphere for the diffusion coefficient K‖ = 104,
after the local injection of cosmic ray energy: (a) cosmic
ray energy density and magnetic field in the yz-plane at
x = 0 and (b) in the xy-plane at z = 400, (c) the density
perturbation ∆ρ/ρ0 and the gas velocity in the xz-plane.

(2000). The gradient of the cosmic ray pressure acceler-
ates gas, along the direction of magnetic field, reducing
additionally the gas density at the neighborhood of the
injection region. That effect enhances the strength of the
buoyancy force.
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Fig. 7. Same as Fig. 6 for the diffusion coefficient K‖ =
105 at t = 100.

At t = 100 the cosmic ray populated flux tube forms a
rising Parker loop. In Fig. 6 (c) the relative density ∆ρ/ρ0

is shown in the xz-plane together with the velocity field.
The apparent tube-like cavity in the density distribution
results from the local excess of cosmic rays. The upward
gas velocity is a consequence of the buoyancy force. The
rising tube compresses the overlying gas and pushes it
toward higher altitudes. The system perturbed by cos-
mic rays injected in a localized spherical region forms a

Fig. 8. Same as Fig. 7 at t = 150.

buoyant fluxtube and evolves in a fashion resembling the
development of an undulatory Parker instability mode.

When the diffusion coefficient takes a realistic value
K‖ = 105, which corresponds to 3 · 1028 cm2 s−1 the evo-
lution of the system is remarkably different (see Figs. 7)
and 8. The distribution of cosmic rays along the flux
tube becomes relatively uniform before the buoyancy force
starts to displace the tube in the vertical direction. The
perturbation provided by the cosmic ray input excites ini-
tially (up to t = 100) the interchange mode of the Parker
instability with a weak contribution of the undulatory
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mode. Later on, at t = 150, the growing contribution of
the undulatory mode becomes apparent.

Due to the more efficient diffusion, cosmic rays fill in
initially a larger volume, compared to the case of lower
diffusion coefficient. Therefore the excess of cosmic ray
pressure, and hence the buoyancy force, becomes weaker
but distributed over a larger volume. At the fixed time
t = 100 after the cosmic ray injection the maximum verti-
cal speed is smaller compared to the case of smaller diffu-
sion coefficient K‖ = 104, although later on the instabil-
ity accelerates following the emergence of the undulatory
mode. The apparent tendency seems to be opposite to that
resulting from the linear stability analysis by Ryu et al.
(2003). However, we point out that the lower values of the
diffusion coefficient are clearly leading to stronger nonlin-
ear effects, (for instance the vertical speed of the buoy-
ant gas is almost equal to the sound speed). The large
cosmic ray energy remains localized in a more compact
region, therefore the applicability of the linear approxi-
mation for the discussed case of lower parallel diffusion
coefficient (K‖ = 104) is questionable. Despite the men-
tioned differences the late stages of the system for small
and realistic diffusion coefficients remains rather similar.

6. Summary and conclusions

In this paper we presented a numerical algorithm for
the inclusion of cosmic ray dynamics, described by the
diffusion-advection equation, into the MHD code ZEUS-
3D. In order to check the presented method we compared
results of the diffusive passive transport of cosmic rays
with analytical solutions of the diffusion equation. Our
method appeared to be numerically stable in case of ac-
tive transport for a wide range of diffusion coefficients,
including the realistic values inferred from the observa-
tional data by Strong & Moskalenko (1998) for the Milky
Way.

We applied the presented numerical algorithm to two
exemplary simulations of the excitation of the Parker in-
stability triggered by cosmic rays injected by a single SN
remnant. The only difference between the input parame-
ters of the two simulations is the magnitude of the par-
allel diffusion coefficient. The simulation corresponding
to the realistic value of the parallel diffusion coefficient
K‖ = 3 × 1028 cm2 s−1, presented in Figs. 7 and 8 ap-
peared to develop the Parker instability mode slower than
the one performed for K‖ = 3 × 1027 cm2 s−1, presented
in Fig. 6. Such a tendency differs from the one resulting
from linear analysis of the Parker instability by Ryu et
al. (2003). We show these two examples of evolution of
the system in order to demonstrate that in some circum-
stances the finiteness of the diffusion coefficient may lead
to effects which can not be described within the simple lin-
ear approximation. Therefore a verification of all former
analytical and numerical results concerning the nonlinear
development of the Parker instability in presence of cosmic
rays is necessary.

The presented work is just a starting point, which fo-
cuses on developing the basic computational techniques.
In the next step we plan to combine the cosmic ray trans-
port in a more realistic application by including the dy-
namo action of the cosmic ray component, reconfiguration
of the magnetic field by magnetic reconnection, different
random spatial cosmic ray source distributions and differ-
ent supernova rates. The future work should also include
effects of cosmic ray losses and extensions of the present
algorithm to the energy dependent cosmic ray transport.
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