Spectral conditions for entanglement witnesses vs. bound entanglement

Dariusz Chruściński, Andrzej Kossakowski and Gniwomir Sarbicki
Institute of Physics, Nicolaus Copernicus University,
Grudziądzka 5/7, 87–100 Toruń, Poland

It is shown that entanglement witnesses constructed via the family of spectral conditions are decomposable, i.e. cannot be used to detect bound entanglement. It supports several observations that bound entanglement reveals highly non-spectral features.

PACS numbers: 03.65.Ud, 03.67.-a

I. INTRODUCTION

One of the most important problems of quantum information theory is the characterization of mixed states of composed quantum systems. In particular it is of primary importance to test whether a given quantum state exhibits quantum correlation, i.e. whether it is separable or entangled. For low dimensional systems there exists simple necessary and sufficient condition for separability. The celebrated Peres-Horodecki criterium states that a state of a bipartite system living in \(\mathbb{C}^2 \otimes \mathbb{C}^2\) or \(\mathbb{C}^2 \otimes \mathbb{C}^d\) is separable iff its partial transpose is positive. Unfortunately, for higher-dimensional systems there is no single universal separability condition. Apart from PPT criterion there are several separability criteria available in the literature (see [2] and [3] for the review). However, each of them defines only a necessary condition.

The power and simplicity of Peres-Horodecki criterion comes from the fact that it is based on the spectral property: to check for PPT one simply checks the spectrum of \(\rho^T = (1 \otimes T)\rho\). Another simple spectral separability test is known as the reduction criterion \([1]\)

\[I_A \otimes \rho_B \geq \rho , \quad \text{and} \quad \rho_A \otimes I_B \geq \rho , \tag{1} \]

where \(\rho_A = \text{Tr}_B\rho\) and \(\rho_B = \text{Tr}_A\rho\) is the reduced density operator. However, reduction criterion is weaker that Peres-Horodecki one, i.e. any PPT state does satisfy \([1]\) as well.

Actually, there exist other criteria which are based on spectral properties. For example it turns out that separable states satisfy so called entropic inequalities

\[S(\rho) - S(\rho_A) \geq 0, \quad \text{and} \quad S(\rho) - S(\rho_B) \geq 0 , \tag{2} \]

where \(S\) denotes the von Neumann entropy. This means that in the case of separable states the whole system is more disordered than its subsystems. Actually, these inequalities may be generalized for Rényi entropy (or equivalently Tsallis entropy). Another spectral tool was proposed by Nielsen and Kempe \([10]\) and it is based on the majorization criterion

\[\lambda(\rho_A) \succ \lambda(\rho), \quad \text{and} \quad \lambda(\rho_B) \succ \lambda(\rho) , \tag{3} \]

where \(\lambda(\rho)\) and \(\lambda(\rho_A,B)\) denote vectors consisting of eigenvalues of \(\rho\) and \(\rho_A,B\), respectively. Actually, majorization can be shown \([11]\) to be a more stringent notion of disorder than entropy in the sense that if \(x \prec y\), then it follows that \(H(x) \geq H(y)\), where \(H(x)\) stands for the Shannon entropy of the stochastic vector \(x\).

Interestingly, both criteria, i.e. entropic inequalities and majorization relations follow from the reduction criterion \([1]\) \([3,12]\). It means that they cannot be used to detect bound entanglement. In particular, since PPT criterion \(\rho^T \geq 0\) implies \([1]\), the above spectral tests are useless in searching for PPT entangled states.

The most general approach to characterize quantum entanglement uses a notion of an entanglement witness (EW) \([13,14]\). A Hermitian operator \(W\) defined on a tensor product \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B\) is called an EW iff 1) \(\text{Tr}(W\sigma_{\text{sep}}) \geq 0\) for all separable states \(\sigma_{\text{sep}}\), and 2) there exists an entangled state \(\rho\) such that \(\text{Tr}(W\rho) < 0\) (one says that \(\rho\) is detected by \(W\)). It turns out that a state is entangled if and only if it is detected by some EW \([15]\). There was a considerable effort in constructing and analyzing the structure of EWS \([16,17,18,19,22]\) (see also \([2]\) for the review). However, the general construction of these objects is not known.

In the recent paper \([24]\) we proposed a new class of entanglement witnesses. Their construction is based on the family of spectral conditions. Therefore, they do belong to the family of spectral separability tests.
This class recovers many well known examples of entanglement witnesses. In the present paper we show that similar to other spectral tests our new class of witnesses cannot be used to detect PPT entangled states. It means that these witnesses are decomposable.

The paper is organized as follows: in the next Section we recall the construction of entanglement witnesses from [24]. Section II presents several examples from the literature which do fit our class. Section IV contains our main result – proof of decomposability. Final conclusions are collected in the last Section.

II. CONSTRUCTION OF THE SPECTRAL CLASS

Any entanglement witness \(W \) can be represented as a difference \(W = W_+ - W_- \), where both \(W_+ \) and \(W_- \) are semi-positive operators in \(\mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_B) \). However, there is no general method to recognize that \(W \) defined by \(W_+ - W_- \) is strictly positive \(\mathbb{P}(\mathcal{H}_A \otimes \mathcal{H}_B) \) and denote by \(P_\alpha \) the corresponding projector \(P_\alpha = |\psi_\alpha\rangle\langle\psi_\alpha| \). It leads therefore to the following spectral resolution of identity

\[
I_A \otimes I_B = \sum_{\alpha=1}^{D} P_\alpha .
\]

Now, take \(D \) semi-positive numbers \(\lambda_\alpha \geq 0 \) such that \(\lambda_\alpha \) is strictly positive for \(\alpha > L \), and define

\[
W_- = \sum_{\alpha=1}^{L} \lambda_\alpha P_\alpha , \quad W_+ = \sum_{\alpha=L+1}^{D} \lambda_\alpha P_\alpha ,
\]

where \(L \) is an arbitrary integer \(0 < L < D \). This construction guarantees that \(W_+ \) is strictly positive and all zero modes and strictly negative eigenvalues of \(W \) are encoded into \(W_- \). Consider normalized vector \(\psi \in \mathcal{H}_A \otimes \mathcal{H}_B \) and let

\[
s_1(\psi) \geq \ldots \geq s_d(\psi) ,
\]

denote its Schmidt coefficients \((d = \min\{d_A, d_B\}) \). For any \(1 \leq k \leq d \) one defines \(k \)-norm of \(\psi \) by the following formula [23]

\[
||\psi||_k^2 = \sum_{j=1}^{k} s_j^2(\psi) .
\]

It is clear that

\[
||\psi||_1 \leq ||\psi||_2 \leq \ldots \leq ||\psi||_d .
\]

Note that \(||\psi||_1 \) gives the maximal Schmidt coefficient of \(\psi \), whereas due to the normalization, \(||\psi||_2^2 = \langle \psi|\psi \rangle = 1 \). In particular, if \(\psi \) is maximally entangled then

\[
||\psi||_1^2 = \frac{k}{d} .
\]

Equivalently one may define \(k \)-norm of \(\psi \) by

\[
||\psi||_k^2 = \max_{\phi} |\langle \psi|\phi \rangle|^2 ,
\]

where the maximum runs over all normalized vectors \(\phi \) such that \(\text{SR}(\psi) \leq k \) (such \(\phi \) is usually called \(k \)-separable). Recall that a Schmidt rank of \(\psi - \text{SR}(\psi) \) is the number of non-vanishing Schmidt coefficients of \(\psi \). One calls entanglement witness \(W \) a \(k \)-EW if \(\langle \psi|W|\psi \rangle \geq 0 \) for all \(\psi \) such that \(\text{SR}(\psi) \leq k \). The main result of [24] consists in the following

Theorem 1 Let \(\sum_{\alpha=1}^{L} ||\psi_\alpha||_k^2 < 1 \). If the following spectral conditions are satisfied

\[
\lambda_\alpha \geq \mu_k , \quad \alpha = L + 1, \ldots, D ,
\]

where

\[
\mu_k = \frac{\sum_{\alpha=1}^{L} \lambda_\alpha ||\psi_\alpha||_k^2}{1 - \sum_{\alpha=1}^{L} ||\psi_\alpha||_k^2} ,
\]

then \(W \) is an \(k \)-EW. If moreover \(\sum_{\alpha=1}^{L} ||\psi_\alpha||_{k+1}^2 < 1 \) and

\[
\mu_{k+1} > \lambda_\alpha , \quad \alpha = L + 1, \ldots, D ,
\]

then \(W \) being \(k \)-EW is not \((k+1) \)-EW.

III. EXAMPLES

Surprisingly this simple construction recovers many well know examples of EWs.

Example 1. Flip operator in \(d_A = d_B = 2 \):

\[
W = \begin{pmatrix}
1 & \cdots & \cdots & 1 \\
\vdots & 1 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
1 & \cdots & \cdots & 1
\end{pmatrix} ,
\]

where dots represent zeros. Its spectral decomposition has the following form: \(W_- = \lambda_1 P_1 \)

\[
\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 1 ,
\]

and

\[
\psi_1 = \frac{1}{\sqrt{2}}(|12\rangle - |21\rangle) ,
\]

\[
\psi_2 = \frac{1}{\sqrt{2}}(|12\rangle + |21\rangle) ,
\]

\[
\psi_3 = |11\rangle , \quad \psi_4 = |22\rangle .
\]
One finds $\mu_1 = 1$ and hence condition (11) is trivially satisfied $\lambda_\alpha \geq \mu_1$ for $\alpha = 2, 3, 4$. We stress that our construction does not recover flip operator in $d > 2$. It has $d(d-1)/2$ negative eigenvalues. Our construction leads to at most $d-1$ negative eigenvalues.

Example 2: Entanglement witness corresponding to the reduction map:

$$\lambda_1 = d - 1, \quad \lambda_2 = \ldots = \lambda_D = 1,$$

and

$$W_- = P_d^+ \quad \text{and} \quad W_+ = I_d \otimes I_d - P_d^+ \quad \text{for} \quad d > 2,$$

where P_d^+ denotes maximally entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$. Again, one finds $\mu_1 = 1$ and hence condition (11) is trivially satisfied $\lambda_\alpha \geq \mu_1$ for $\alpha = 2, \ldots, D = d^2$. Now, since ψ_1 corresponds to the maximally entangled state one has $1 - ||\psi_1||^2 = (d - 2)/d < 1$. Hence, condition (13)

$$\mu_2 = \frac{d^2 - 2d - 2}{d - 1} > \lambda_\alpha, \quad \alpha = 2, \ldots, D,$$

implies that W is not a 2-EW.

Example 3: A family of k-EW in $\mathbb{C}^d \otimes \mathbb{C}^d$ defined by [26]

$$\lambda_1 = pd - 1, \quad \lambda_2 = \ldots = \lambda_D = 1,$$

with $p \geq 1$, and

$$W_- = P_d^+ \quad \text{and} \quad W_+ = I_d \otimes I_d - P_d^+ \quad \text{for} \quad d > 2.$$

Clearly, for $p = 1$ it reproduces the reduction EW. Now, conditions (11) and (13) imply that if

$$\frac{1}{k+1} < p \leq \frac{1}{k},$$

then W is k- but not $(k+1)$-EW.

Example 4: A family of EWs in $\mathbb{C}^3 \otimes \mathbb{C}^3$ defined by [26]

$$W[a,b,c] = \begin{pmatrix}
 a & \cdots & -1 & \cdots & -1 \\
 b & \cdots & \cdots & \cdots & \cdots \\
 \cdots & c & \cdots & \cdots & \cdots \\
 -1 & \cdots & \cdots & a & \cdots & -1 \\
 \cdots & \cdots & b & \cdots & \cdots & \cdots \\
 \cdots & \cdots & \cdots & c & \cdots & \cdots \\
 -1 & \cdots & -1 & \cdots & a
 \end{pmatrix},$$

with $a,b,c \geq 0$. Necessary and sufficient conditions for $W[a,b,c]$ to be an EW are

1. $0 \leq a < 2$,
2. $a + b + c \geq 2$,
3. if $a \leq 1$, then $bc \geq (1-a)^2$.

A family $W[a,b,c]$ generalizes celebrated Choi indecomposable witness corresponding to $a = b = 1$ and $c = 0$. Now, spectral properties of $W[a,b,c] = W_+ - W_-$ read as follows: $W_- = \lambda_1 P_3^+$ and

$$\lambda_1 = 2 - a, \quad \lambda_2 = \lambda_3 = a + 1,$$

$$\lambda_4 = \lambda_5 = \lambda_6 = b, \quad \lambda_7 = \lambda_8 = \lambda_9 = c.$$

One finds $\mu_1 = (2-a)/2$ and hence condition (11) implies

$$a \geq 0, \quad b, c = \frac{2-a}{2} \quad \text{for} \quad a \geq 0,$$

and one easily shows that the conditions 3 is also satisfied. Summarizing: $W[a,b,c]$ belongs to our spectral class if and only if

1. $0 \leq a < 2$,
2. $b, c \geq (2-a)/2$.

Note that the Choi witness $W[1,1,0]$ does not belong to this class. It was shown [26] that $W[a,b,c]$ is decomposable if and only if $a \geq 0$ and

$$bc \geq \frac{(2-a)^2}{4}.$$

Hence $W[a,b,c]$ from our spectral class is always decomposable. In particular $W[0,1,1]$ reproduces the EW corresponding to the reduction map in $d = 3$. Note, that there are entanglement witnesses $W[a,b,c]$ which are decomposable, i.e. satisfy (22), but do not belong to or spectral class. Similarly one can check when $W[a,b,c]$ defines 2-EW. One finds $\mu_2 = 2(2-a)$ and hence condition (11) implies

1. $1 \leq a < 2$,
2. $b, c \geq 2(2-a)$.

Clearly, any 2-EW from our class is necessarily decomposable. It was shown [26] that all 2-EW from the class $W[a,b,c]$ are decomposable.

Interestingly all examples 1–4 show one characteristic feature – entanglement witnesses satisfying spectral conditions (11) are decomposable. In the next Section we show that it is not an accident.
IV. DECOMPOSABILITY OF THE SPECTRAL CLASS

Indeed, we show that if entanglement witness W does satisfy (11) with $k = 1$, then it is necessarily decomposable. It means that if ρ is PPT, then it cannot be detected by W: \[\rho^T \geq 0 \implies \text{Tr}(\rho W) \geq 0 . \] (23)

To prove it note that \[W = A + B , \] (24)
where \[A = \sum_{\alpha=L+1}^{D} (\lambda_{\alpha} - \mu_1)P_{\alpha} , \] (25)
and \[B = \mu_1 I_A \otimes I_B \sum_{\alpha=1}^{L} (\lambda_{\alpha} + \mu_1)P_{\alpha} . \] (26)

Now, since $\lambda_{\alpha} \geq \mu_1$, for $\alpha = L + 1, \ldots, D$, it is clear that $A \geq 0$. The partial transposition of B reads as follows \[B^T = \mu_1 I_A \otimes I_B - \sum_{\alpha=1}^{L} (\lambda_{\alpha} + \mu_1)P_{\alpha} . \] (27)

Let us recall that the spectrum of the partial transposition of rank-1 projector $|\psi\rangle\langle\psi|$ is well know: the non-vanishing eigenvalues of $|\psi\rangle\langle\psi|^T$ are given by $s_\alpha^2(\psi)$ and $\pm s_\alpha^2(\psi)s_\beta(\psi)$, where $s_1(\psi) \geq \ldots \geq s_d(\psi)$ are Schmidt coefficients of ψ. Therefore, the smallest eigenvalue of B^T (call it b_{min}) satisfies \[b_{\min} \geq \mu_1 \sum_{\alpha=1}^{L} (\lambda_{\alpha} + \mu_1)||\psi_{\alpha}||_1^2 , \] (28)
and using the definition of μ_1 (cf. Eq. (12)) one gets \[b_{\min} \geq 0 , \] (29)
which implies $B^T \geq 0$. Hence, due to the formula (24) the entanglement witness W is decomposable.

Interestingly, saturating the bound (11), i.e. taking \[\lambda_{\alpha} = \mu_1 , \quad \alpha = L + 1, \ldots, D , \] (30)
one has $A = 0$ and hence $W = Q^T$ with $Q = B^T \geq 0$ which shows that the corresponding positive map $\Lambda : \mathcal{B}(\mathcal{H}_A) \to \mathcal{B}(\mathcal{H}_B)$ defined by \[\Lambda(X) = \text{Tr}_A(W \cdot X^T \otimes I_B) , \] (31)
is completely co-positive, i.e. $\Lambda \circ T$ is completely positive. Note that \[\Lambda(X) = \mu_1 I_B \text{Tr} X - \sum_{\alpha=1}^{L} (\mu_1 + \lambda_{\alpha})F_{\alpha}XF_{\alpha}^T , \] (32)
where F_{α} is a linear operator $F_{\alpha} : \mathcal{H}_A \to \mathcal{H}_B$ defined by \[\psi_{\alpha} = \sum_{i=1}^{d_{\alpha}} e_i \otimes F_{\alpha}e_i , \] (33)
and $\{e_1, \ldots, e_{d_{\alpha}}\}$ denotes an orthonormal basis in \mathcal{H}_A. In particular, if $L = 1$, i.e. there is only one negative eigenvalue, then formula (32) (up to trivial rescaling) gives \[\Lambda(X) = \kappa I_B \text{Tr} X - F_1XF_1^T , \] (34)
with \[\kappa = \frac{\mu_1}{\mu_1 + \lambda_1} = ||\psi_1||_1^2 . \] (35)

It reproduces a positive map (or equivalently an EW $W = \kappa I_A \otimes I_B - P_1$) which is known to be completely co-positive [1, 2, 21]. If $d_A = d_B = d$ and ψ_1 is maximally entangled, that is, $F_1 = U/\sqrt{d}$ for some unitary $U \in U(d)$, then one finds for $\kappa = 1/d$ and the map (34) is unitary equivalent to the reduction map $\Lambda(X) = UR(X)U^T$, where $R(X) = I_d\text{Tr}X - X$.

Finally, let us observe that EWs presented in Examples 1-3 are not only decomposable but completely co-positive, i.e. $W^T \geq 0$. Moreover, the flip operator (14) and the EW corresponding to the reduction map do satisfy (30). EW from Example 4 fitting our spectral class is in general only decomposable but $W[a, b, c]^T \neq 0$. Its partial transposition becomes positive if in addition to $b, c \geq (2-a)/2$ it satisfies $bc \geq 1$.

Note, that condition (30) implies in this case \[b = c = a + 1 = \frac{2 - a}{2} , \] which leads to $a = 0$ and $b = c = 1$. This case, however, corresponds to the standard reduction map in C^3.

V. CONCLUSIONS

We have shown that the spectral class of entanglement witnesses constructed recently in [24] contains only decomposable EWs, that is, it cannot be used to detect PPT entangled state. This observation supports other results like entropic inequalities (2) and majorization relations (3) which are also defined via
spectral conditions and turned out to be unable to detect bound entanglement. We conjecture that “spectral tools” are inappropriate in searching for bound entanglement which shows highly non-spectral features.

Acknowledgements

We thank Marco Piani for valuable comments and pointing out references [4] and [21]. This work was partially supported by the Polish Ministry of Science and Higher Education Grant No 3004/B/H03/2007/33 and by the Polish Research Network Laboratory of Physical Foundations of Information Processing.

[25] Actually, this family of k-norms is equivalent to the well known Ky-Fan k-norms in the space of bounded linear operators from \mathcal{H}_A to \mathcal{H}_B (see [24] for details).