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Institute of Physics, Nicolaus Copernicus University,

Grudzia̧dzka 5/7, 87–100 Toruń, Poland
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Abstract

We analyze a class of dynamics of open quantum systems which is governed by the
dynamical map mutually commuting at different times. Such evolution may be effectively
described via spectral analysis of the corresponding time dependent generators. We consider
both Markovian and non-Markovian cases.

1 Introduction

The dynamics of open quantum systems attracts nowadays increasing attention [1]. It is very
much connected to the growing interest in controlling quantum systems and applications in
modern quantum technologies such as quantum communication, cryptography and computation
[2]. The most popular approach is to use a Markovian approximation and to consider a master
equation

Ȧt,t0 = LtAt,t0 , At0,t0 = id , (1.1)

with time dependent generator Lt. The above equation gives rise to a quantum dynamical map
(completely positive and trace preserving) At which in turn produces the evolution of a quantum
state ρt = Atρ. The corresponding generator Lt has to satisfy well known condition [3, 4] (see
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also [5] for the detail presentation) and the solution is given by the following formula

At,t0 = T exp

(∫ t

t0

Lu du

)
, (1.2)

where T denotes a chronological product. We stress that the above formula has only a formal
character since the evaluation of its r.h.s. is in general not feasible. If the generator does not
depend on time Lt = L then it simplifies to

At,t0 = exp (L (t− t0)) . (1.3)

Let us note that characteristic feature of (1.3) is that Markovian semigroup At := At+t0,t0 is
commutative, that is

AtAs = AsAt , s, t ≥ 0 . (1.4)

It is no longer true for the general time dependent case (1.2). The general Markovian evolution
does satisfy the inhomogeneous composition law

At,uAu,s = At,s , (1.5)

for t ≥ u ≥ s ≥ t0, however, it is in general noncommutative.
Non-Markovian evolution is much more difficult to analyze (see [6]–[17] for the recent papers).

The local master equation is replaced by the following equation

Ȧt,t0 =

∫ t

t0

Kt−uAu,t0 du , ρ(t0) = ρ0 , (1.6)

in which quantum memory effects are taken into account through the introduction of the memory
kernel Kt: this simply means that the rate of change of the state ρ(t) at time t depends on its
history (starting at t = t0). Recently, we proposed a different approach [18] which replaces the
non-local equation (1.6) by the following local in time master equation

Ȧt,t0 = Lt−t0At,t0 , At0,t0 = id . (1.7)

The price one pays for the local approach is that the corresponding generator keeps the memory
about the starting point ‘t0’. This is the very essence of non-Markovianity. Interestingly, this
generator might be highly singular, nevertheless, the corresponding dynamics is perfectly regular.
Remarkably, singularities of generator may lead to interesting physical phenomena like revival
of coherence or sudden death and revival of entanglement [18]. Now, the formal solution to (1.7)
reads as follows

At,t0 = T exp

(∫ t−t0

0
Lu du

)
. (1.8)

It resembles very much Markovian dynamical map (1.2) and again its r.h.s. has only formal
character due to the presence of the chronological operator. Note, however, important difference
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between (1.2) and (1.2): the former does satisfy composition law. The latter is homogeneous in
time (depends upon the difference t− t0) but does not satisfy (4.26).

In the present paper we analyze a special case of commutative dynamics, i.e. we generalize
(1.4) for time dependent Markovian and non-Markovian dynamics. In this case formulae (1.2)
and (1.2) considerably simplify – the chronological product drops out and may compute the
formula for the dynamical map via spectral analysis.

2 Preliminaries

Consider d-dimensional complex Hilbert space C
d and let {e0, . . . , ed−1} be a fixed orthonormal

basis. For any x, y ∈ C
d denote by 〈x, y〉 the corresponding scalar product of x and y. Let

Md = L(Cd,Cd) denote a space of linear operators in C
d. Now, Md is equipped with the

Hilbert-Schmidt scalar product

(a, b) :=

d−1∑

k=0

〈aek, bek〉 = tr(a∗b) , (2.1)

where a∗ : Cd → C
d is defined by

〈a∗x, y〉 = 〈x, ay〉 , (2.2)

for arbitrary x, y ∈ C
d. Finally, let us introduce the space L(Md,Md) of linear maps A :Md →

Md. For any A ∈ L(Md,Md) one defines a dual map A# ∈ L(Md,Md) by

(A#a, b) = (a,Ab) , (2.3)

for arbitrary a, b ∈Md. Note, that if the dual map A# is unital, i.e. A#
Id = Id, then A is trace

preserving. It is clear that L(Md,Md) defines d
2 × d2 complex Hilbert space equipped with the

following inner product

〈〈A,B〉〉 =
d2−1∑

α=0

(Afα, Bfα) =

d2−1∑

α=0

tr [(Afα)
∗(Bfα)] , (2.4)

for any A,B ∈ L(Md,Md). In the above formula fα denote an orthonormal basis in Md. Let us
observe that in L(Md,Md) one constructs two natural orthonornal basis

Fαβ : Md −→Md , (2.5)

and
Eαβ : Md −→Md , (2.6)

defined as follows
Fαβa = fαaf

∗
β , (2.7)

and
Eαβa = fα(fβ, a) , (2.8)
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for any a ∈Md. One easily proves

〈〈Fαβ , Fµν〉〉 = 〈〈Eαβ , Eµν〉〉 = δαµδβν . (2.9)

Moreover, the following relations are satisfied

d2−1∑

α=0

Fαα a = Id tra , (2.10)

and
d2−1∑

α=0

Eαα a = a . (2.11)

Remark 1 Note, that representing a linear map A in the basis Fαβ

A =
∑

α,β

aαβ Fαβ , (2.12)

with
aαβ = 〈〈A,Fαβ〉〉 , (2.13)

one has a simple criterion for complete positivity of A: a map A is complete positive if and
only if the corresponding d2 × d2 matrix ||aαβ || is semipositive definite. On the other hand the
E-representation

A =
∑

α,β

a′αβ Eαβ , (2.14)

with
a′αβ = 〈〈A,Eαβ〉〉 , (2.15)

does not give any simple criterion for complete positivity. Note, however, that E-representation
is well suited for the composition of maps. If

B =
∑

α,β

b′αβ Eαβ , (2.16)

with
b′αβ = 〈〈B,Eαβ〉〉 , (2.17)

then the map C = A ◦B gives rise to the following representation

C =
∑

α,β

c′αβ Eαβ , (2.18)

where the matrix c′ = a′ · b′.
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Consider now a linear map A from L(Md,Md) and let us assume that A is diagonalizable,
that is, it gives rise to the Jordan representation with 1-dimensional Jordan blocks. One has

A = V D V −1 , (2.19)

where D is diagonal. It means that there exists an orthonormal basis fα in Md such that

〈〈fα,Dfβ〉〉 = dαδαβ , (2.20)

with dα ∈ C. It shows that

D =

d2−1∑

α=0

dα Pα , (2.21)

where
Pαa = fα(fα, a) , a ∈Md . (2.22)

Note, that a set Pα defines a family of orthogonal projectors

PαPβ = δαβPα , (2.23)

together with
d2−1∑

α=0

Pα = id , (2.24)

where id denotes an identity map in L(Md,Md). Hence, one obtains the following representation
of A

Aa = V D V −1a =

d2−1∑

α=0

dα V PαV
−1a

=

d2−1∑

α=0

dα V fα(fα, V
−1a) =

d2−1∑

α=0

dα V fα(V
−1#fα, a) . (2.25)

Let us define new basis
gα := V fα , hα := V −1#fα . (2.26)

Note gα and hα define a pair of bi-orthogonal (or damping [19]) basis in Md

(gα, hβ) = (V fα, V
−1#fβ) = (fα, fβ) = δαβ . (2.27)

Finally, one obtains the following spectral representation of the linear map A

A =
d2−1∑

α=0

dα P̃α , (2.28)
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where
P̃αa := gα(hα, a) , a ∈Md . (2.29)

Note, that a set P̃α satsfies
P̃αP̃β = δαβP̃α , (2.30)

together with
d2−1∑

α=0

P̃α = id . (2.31)

However, contrary to Pα operators P̃α are not Hermitian, i.e. P̃#
α 6= P̃α

P̃#
α a := hα(gα, a) , a ∈Md . (2.32)

It shows that P̃α are not projectors unless gα = hα. The corresponding spectral representation
of the dual map A# reads as follows

A# =
d2−1∑

α=0

dα P̃
#
α , (2.33)

where x stands for the complex conjugation of the complex number x. Hence, one obtains the
following family of eigenvectors

Agα = dαgα , A#hα = dαhα . (2.34)

Consider for example a special case with V = U and U is a unitary operator in Md. One has
U# = U−1 and hence V −1# = U . One obtains

gα ≡ hα = Ufα , (2.35)

and hence P̃#
α = P̃α. Note that

A =
d2−1∑

α=0

dα P̃α , A# =
d2−1∑

α=0

dα P̃α , (2.36)

which implies that the super-operator A is normal

AA# = A#A . (2.37)

3 How to generate commutative dynamics

Consider a family of Markovian semigroups A
(k)
t defined by

A
(k)
t = etLk , k = 1, . . . , n , (3.1)
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where Lk are the corresponding generators. Suppose that Lk are mutually commuting and define

At,t0 =
n∑

k=1

pk(t− t0)A
(k)
t−t0 , (3.2)

where pk(t) denotes time dependent probability distribution: pk(t) ≥ 0 and p1(t)+. . .+pn(t) = 1.
Let us observe that At,t0 defines a commutative non-Markovian evolution satisfying local in time
Master Equation [18]

Ȧt,t0 = Lt−t0At,t0 , At0,t0 = id . (3.3)

To find the non-Markovian generator Lt let us assume the following spectral representation of
Lk

Lkρ =
∑

α

λ(k)α gαtr(h
∗
αρ) . (3.4)

One obtains
Ltρ =

∑

α

µα(t)gαtr(h
∗
αρ) , (3.5)

with

µα(t) =

∑
k pk(t)λ

(k)
α eλ

(k)
α t

∑
j pj(t)e

λ
(j)
α t

. (3.6)

Hence, the solution At has the following form

At,t0ρ =
∑

α

exp

(∫ t−t0

0
µα(u) du

)
gαtr(h

∗
αρ) . (3.7)

Actually, one can easily generate a family of commuting generators L1, . . . , Ln. Suppose one
is given a Markovian generator L of a unital semigroup At = eLt. Denote by Âs the Laplace
transform of At

Âs =

∫ ∞

0
e−stAt dt =

1

s− L
. (3.8)

It is evident that for s > 0, Âs is completely positive. Moreover,

Φ(0)
s := sÂs , (3.9)

is unital. Indeed, one has

Φ(0)
s I = s

∫ ∞

0
e−stdt I = I . (3.10)

Now, let us define

Φ(k)
s :=

sk+1

k!
(−1)k

dk

dsk
Âs . (3.11)

One gets

Φ(k)
s =

sk+1

k!

∫ ∞

0
e−sttkAt dt =

sk+1

(s− L)k+1
. (3.12)
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It is clear that for s > 0 , Φ
(k)
s is completely positive and unital. Therefore, for any integer k

and s > 0 one obtains the following Markovian generator

L(k)
s = Φ(k)

s − id . (3.13)

Hence, fixing s, one arrives at Lk := L
(k)
s .

Let us observe that the construction of the commutative (s, k)–family L
(s)
k may be used to

construct a huge family of commuting time dependent generators. Note, that taking a discrete
family of function fk

fk : R+ × R+ −→ R+ ,

one may define

Lt[f ] :=
∑

k

∫ ∞

0
fk(t, s)L

(k)
s ds , (3.14)

where we used a compact notation f = (f1, f2, . . .). It is clear from the construction that
[Lt[f ],Ls[f ]] = 0, and hence one easily find for the evolution

At,t0 [f ] = exp

(∫ t−t0

0
Lu[f ] du

)
. (3.15)

defines a family of commuting time dependent Markovian generators.

4 A class of commutative dynamics of stochastic classical sys-

tems

I Markovian classical dynamics

Consider the dynamics of a stochastic d-level system described by a probability distribution
p = (p(0), . . . , p(d− 1)). Its time evolution is defined by

pt(m) =

d−1∑

n=0

Tt,t0(m,n)p0(n) , (4.1)

where Tt,t0(n,m) is a stochastic matrix satisfying the following time-dependent master equation

Ṫt,t0 = Lt Tt,t0 , Tt0,t0 = Id , (4.2)

that is

Ṫt,t0(m,n) =

d−1∑

k=0

Lt(m,k)Tt,t0(k, n) , Tt0,t0(m,n) = δ(n,m) . (4.3)

Let us assume that Lt defines a commuting family of d× d matrices, i.e.

d−1∑

k=0

Lt(m,k)Lu(k, n) =
d−1∑

k=0

Lu(m,k)Lt(k, n) , (4.4)

8



for any t, u ≥ t0. A particular example of commutative dynamics is provided by circulant
generators. Let us recall that a d× d matrix L(m,n) is circulant [20] if

L(m,n) = a(m− n) , mod d , (4.5)

that is L is defined in terms of a single vector a = (a(0), . . . , a(d− 1)).

Proposition 1 Circulant matrices define a commutative subalgebra of Md. Hence, if L and L′

are circulant then L′′ = LL′ = L′L is circulant. Moreover, if

L(i, j) = a(i− j) , L′(i, j) = a′(i− j) , L′′(i, j) = a′′(i− j) , mod d ,

then
a′′ = a ∗ a′ , (4.6)

where a ∗ a′ denotes a discrete convolution in Zd, i.e.

a′′(n) =

d−1∑

k=0

a(n − k) a′(k) . (4.7)

Therefore, multiplication of circulant matrices induces convolution of defining d-vectors. Inter-
estingly, spectral properties of circulant matrices are governed by the following

Proposition 2 The eigenvalues lm and eigenvectors ψm of a circulant matrix

Lψm = lm ψm , (4.8)

read as follows:

lm =
d−1∑

k=0

akλ
mk , (4.9)

and

(ψm)n =
1√
d
λmn , (4.10)

where
λ = e2πi/d . (4.11)

Let us observe that the Kolmogorov conditions for the stochastic circulant generator Lt give rise
to the following condition upon the time dependent vector at(m):

1. at(m) ≥ 0 , for m 6= 0

2. at(0) < 0 ,

3.
∑

m at(m) = 0 ,
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for t ≥ t0. Now, it is clear that the solution to (4.3)

Tt,t0 = exp

(∫ t

t0

Ludu

)
, (4.12)

defines a circulant stochastic matrix. Hence

Tt,t0(m,n) =: Pt,t0(m− n) , (4.13)

defines a time-dependent stochastic vector Pt,t0(m). Note that

pt(m) =
d−1∑

n=0

Tt,t0(m,n)p0(n) =
d−1∑

n=0

Pt,t0(m− n)p0(n) , (4.14)

and hence
pt = Pt,t0 ∗ p0 . (4.15)

One obtains from (4.3)

dPt,t0(m)

dt
=

d−1∑

k=0

at(m− k)Pt,t0(k) , Pt0,t0(m) = δm0 , (4.16)

which can be rewritten in terms of discrete convolution

Ṗt,t0 = at ∗ Pt,t0 , Pt0,t0 = e , (4.17)

where ‘e’ corresponds to the distribution concentrated at 0, i.e. e(m) = δm0.

Proposition 3 A convex set Pd of probabilistic d-vectors defines a semigroup with respect to
the discrete convolution. The unit element e = (1, 0, . . . , 0) satisfies

P ∗ e = e ∗ P = P ,

for all P ∈ Pd.

To solve (4.17) one transform it via discrete Fourier transform to get

dP̃t,t0(m)

dt
= ãt(m) P̃t,t0(m) , P̃t0,t0(m) = 1 , (4.18)

where

x̃(n) =
d−1∑

k=0

λnk x(k) , (4.19)
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and the inverse transform reads

x(k) =
1

d

d−1∑

n=0

λ−nk x̃(n) . (4.20)

The solution of (4.18) reads as follows

P̃t,t0(m) = exp

(∫ t

t0

ãu(m)du

)
, (4.21)

and hence one obtains for the stochastic vector Pt,t0(m)

Pt,t0(m) =
1

d

d−1∑

k=0

λ−mk exp

(∫ t

t0

ãu(m)du

)
. (4.22)

It is clear that Pt,t0 satisfies the following composition law

Pt,s ∗ Ps,u = Pt,u , (4.23)

or equivalently
P̃t,s · P̃s,u = P̃t,u , (4.24)

for all t ≥ s ≥ u. In particular when a(n) does not depend on time then (4.21) simplifies to

P̃t,t0(m) = exp (ã(m)[t− t0]) , (4.25)

and hence 1-parameter semigroup Pt−t0 := Pt,t0 satisfies homogeneous composition law

Pt ∗ Ps = Pt+s , (4.26)

or equivalently
P̃t · P̃s = P̃t+s , (4.27)

for all t ≥ s ≥ t0.

II Non–Markovian classical dynamics

Consider now the non-Markovian case governed by the following local in time master equation

Ṗt,t0 = at−t0 ∗ Pt,t0 , Pt0,t0 = e . (4.28)

One easily obtain for the solution

Pt,t0(m) =
1

d

d−1∑

k=0

λ−mk exp

(∫ t−t0

0
ãu(m)du

)
. (4.29)
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Note the crucial difference between (4.22) and (4.29). The former defines inhomogeneous semi-
group whereas the latter is homogeneous in time (depends upon the difference ‘t− t0’) but does
not define a semigroup, i.e. does not satisfy the composition law (4.23).

Let us analyze conditions for aτ which do guarantee that Pt,t0 defined in (4.29) is a probability
vector, that is,

Pt,t0(m) ≥ 0 ,
d−1∑

m=0

Pt,t0(m) = 1 ,

for all t ≥ t0. It is clear from (4.28) that a(τ) has to satisfy
∫ τ

0
au(m)du ≥ 0 , (4.30)

for m > 0, and
d−1∑

m=0

∫ τ

0
au(m)du = 0 , (4.31)

which implies that ∫ τ

0
au(0)du < 0 , (4.32)

for all τ ≥ 0. These conditions generalize Kolmogorov conditions in the inhomogeneous Marko-
vian case. We stress, that au(m) needs not be positive (for m > 0). One has a weaker condition
(4.30). Note, that if at(m) ≥ 0 for m > 0, then

∫ τ
0 au(m)du defines a monotonic function of

time and hence the non-Markovian relaxation exp(
∫ τ
0 au(m)du) is monotonic in time as well.

Finally, let us consider the corresponding nonlocal equation

Ṗt,t0 =

∫ t

t0

Kt−u ∗ Pu,t0 du , Pt0,t0 = e , (4.33)

with the memory kernel Kt−u. Note, that we already know solution represented by (4.29) but
still do not know the memory kernel K. Performing discrete Fourier transform one gets from
(4.34)

˙̃
P t,t0(m) =

∫ t

t0

K̃t−u(m)P̃u,t0(m) du , P̃t0,t0(m) = 1 . (4.34)

Define the time-dependent vector

ft(m) = ãt(m) exp

(∫ t

0
ãu(m)du

)
, (4.35)

then following [14] one obtains

̂̃
Ks(m) =

sf̂s(m)

1 + f̂s(m)
, (4.36)

where x̂s denote the Laplace transform of xt. Clearly, the problem of performing the inverse

Laplace transform
̂̃
Ks(m) −→ K̃t(m) is in general not feasible. Hence, the memory kernel

remains unknown. Nevertheless, the solution is perfectly known.
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Remark 2 Note that a stochastic map p0 → pt = Tt,t0p0 may be rewritten in a ‘quantum
fashion’ as follows. Any probability distribution p = (p(0), . . . , p(d− 1)) gives rise to a diagonal
density matrix

ρ =
d−1∑

n=0

p(n)enn , (4.37)

and the map ρ0 → ρt reads as follows

ρt =

d−1∑

m,n=0

Tt,t0(m,n) emm ρ0 enn . (4.38)

III Dynamics of composite systems

Consider now dynamics of N -partite system living in Z
N
d = Zd× . . .×Zd . Let n = (n1, . . . , nN ),

with nk ∈ Zd and let
Pt,t0 : Z

N
d −→ [0, 1] , (4.39)

be a probability vector living on Z
N
d satisfying the following Markovian master equation

Ṗt,t0 = at ∗ Pt,t0 , Pt0,t0 = e , (4.40)

where ‘e’ is defined by
e(n) = δn0 := δn10 . . . δnN0 . (4.41)

Now, performing the discrete Fourier transform one gets

dP̃t,t0(m)

dt
= ãt(m) P̃t,t0(m) , P̃t0,t0(m) = 1 , (4.42)

where
x̃(m) =

∑

k

λmk x(k) , (4.43)

and the inverse transform reads

x(k) =
1

dN

∑

m

λ−mk x̃(n) . (4.44)

The solution of (4.42) reads as follows

P̃t,t0(m) = exp

(∫ t

t0

ãu(m)du

)
, (4.45)

and hence one obtains for the stochastic vector Pt,t0(m)

Pt,t0(m) =
1

dN

∑

k

λ−mk exp

(∫ t

t0

ãu(m)du

)
. (4.46)
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It is clear that Pt,t0 satisfies the inhomogeneous composition law (4.23). If am is time independent
then Pt,t0 defines 1-parameter semigroup Pτ := Pτ+t0,t0 satisfying homogeneous composition law
(4.26).

Note, that in the case of non-Markovian dynamics one has

Ṗt,t0 = at−t0 ∗ Pt,t0 , Pt0,t0 = e , (4.47)

giving rise to the following solution

Pt,t0(m) =
1

dN

∑

k

λ−mk exp

(∫ t−t0

0
ãm(u)du

)
. (4.48)

The non-Markovian dynamics is time homogeneous but does not satisfy (4.23).

5 A class of commutative quantum dynamics

Consider now an abelian group Zd ×Zd. Equivalently, one may consider a cyclic toroidal lattice
Td × Td, where

Td = {λm , m = 0, 1, . . . , d− 1 } , (5.1)

which is an abelian multiplicative group. Let us define the following representation of Td × Td

in Md:
Zd × Zd ∋ (m,n) −→ umn ∈Md , (5.2)

where umn are unitary matrices defined as follows

umnek = λmken+k , (5.3)

where {e0, . . . , ed−1} denotes an orthonormal basis in C
d, and λ stands for dth root of identity

(see formula (4.11)).

Proposition 4 Matrices umn satisfy

umnurs = λms um+r,n+s , (5.4)

u∗mn = λmn u−m,−n , (5.5)

and the following orthogonality relations

tr(u∗mnukl) = d δmkδnl . (5.6)

Hence, formula (5.2) defines a projective representation of the abelian group Td × Td. It is
therefore clear that

Zd × Zd ∋ (m,n) −→ Umn ∈ L(Md,Md) , (5.7)

with
Umna := umna u

∗
mn , a ∈Md , (5.8)

14



defines the representation of Td × Td in the space of superoperators L(Md,Md).
Now, for any

a : Zd⊗Zd −→ C , (5.9)

let us define a linear map A ∈ L(Md,Md)

A =

d−1∑

m,n=0

a(m,n)Un,−m , (5.10)

that is, we define a representation of Md in L(Md,Md).

Proposition 5 If a(m,n) ∈ R, then A is self-adjoint, that is

Ax∗ = (Ax)∗ , x ∈Md . (5.11)

If a(m,n) ≥ 0, then A is completely positive. If moreover
∑

m,n a(m,n) = 1, then A is trace
preserving and unital.

One proves the following

Proposition 6 Let a, b, c ∈Md be represented by A,B,C ∈ L(Md,Md), respectively, that is

A =

d−1∑

m,n=0

a(m,n)Un,−m , B =

d−1∑

m,n=0

b(m,n)Un,−m , C =

d−1∑

m,n=0

c(m,n)Un,−m .

Then A ◦B = C if and only if c = a ∗ b.

Hence, the set of maps constructed via (5.10) defines a commutative subalgebra in L(Md,Md).

Proposition 7 The spectral properties of the linear map (5.10) are characterized by

Aukl = ãkl ukl , (5.12)

A# u∗kl = ãkl u
∗
kl , (5.13)

and hence its spectral decomposition reads as follows

A =
d−1∑

m,n=0

ã(m,n)Pmn , (5.14)

where Pmn is a projector defined by

Pmn x =
1

d
umn tr(u

∗
mnx) , (5.15)

for any x ∈Md.
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In particular, if a(m,n) is real, i.e. A is self-adjoint, then one has

Aukl = ãkl ukl , (5.16)

A# u∗kl = ãkl u
∗
kl . (5.17)

Note, that the action of A upon the basis eij is given by

Aeij =

d−1∑

m,n=0

a(m,n)λn(i−j) ei−m,j−m . (5.18)

Hence, diagonal elements satisfy define an invariant subspace in Md

Aeii =

d−1∑

m,n=0

a(m,n) ei−m,i−m . (5.19)

Let Pt,t0 : Zd × Zd → [0, 1] satisfy the following inhomogeneous master equation

Ṗt,t0 = at ∗ Pt,t0 , Pt0,t0 = e . (5.20)

Now, following (5.10), let us define

At,t0 =
d−1∑

m,n=0

Pt,t0(m,n)Un,−m , (5.21)

and

Lt =

d−1∑

m,n=0

at(m,n)Un,−m . (5.22)

Then, Proposition 6 implies the following local master equation for the dynamical map At,t0 :

Ȧt,t0 = LtAt,t0 , At0,t0 = id . (5.23)

Note, that the time dependent Markovian generator may be rewrite as follows

Lt ρ =
1

2

∑

m,n

′

at(m,n)
(
[un,−m, ρu

∗
n,−m] + [un,−mρ, u

∗
n,−m]

)
, (5.24)

where
∑′

m,nXmn :=
∑

m,nXmn − X00. Hence, recalling that at(m,n) ≥ 0 for (m,n) 6= (0, 0),
the above formula provides the Lindblad form of Lt. The corresponding spectral representation
of the generator reads as follows

Lt =

d−1∑

m,n=0

ãt(m,n)Pmn . (5.25)
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Note, that due to ãt(0, 0) = 0, one has LtId = 0. The corresponding solution of (6.11) is therefore
given by

At,t0 =

d−1∑

m,n=0

exp

(∫ t

t0

ãu(m,n) du

)
Pmn . (5.26)

If Pt,t0 satisfies non-Markovian classical master equation

Ṗt,t0 = at−t0 ∗ Pt,t0 , Pt0,t0 = e , (5.27)

then the quantum dynamical map At,t0 satisfies non-Markovian equation

Ȧt,t0 = Lt−t0At,t0 , At0,t0 = id , (5.28)

with the solution given by the following formula

At,t0 =

d−1∑

m,n=0

exp

(∫ t−t0

0
ãu(m,n) du

)
Pmn . (5.29)

This spectral representation of Aτ := At0+τ,t0 enables one to construct the corresponding mem-
ory kernel Kτ . Using the following representation [15]

Aτ = id +

∫ τ

0
Fsds , (5.30)

where
Fs = LsAs , (5.31)

one finds the spectral representation for the super-operator function Fs:

Ft =
∑

m,n

ft(m,n)Pmn , (5.32)

with

ft(m,n) = ãt(m,n) exp

(∫ t

0
ãu(m,n)du

)
. (5.33)

Therefore, one may write the corresponding non-local equation

Ȧt =

∫ t

0
Kt−uAudu , (5.34)

with the memory kernel is defined in terms of its Laplace transform as follows

K̂s =
∑

m,n

sf̂s(m,n)

1 + f̂s(m,n)
Pmn , (5.35)

where f̂s(m,n) denotes the Laplace transform of ft(m,n). Note, that in general one is not able
to invert the Laplace transform K̂s and hence the above formula in general does not have any
practical meaning.
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6 Dynamics of composite quantum systems

Consider now a quantum dynamics of N -partite d-level quantum systems defined by

At,t0 =
∑

m,n∈ZN
d

Pt,t0(m,n)Un,−m , (6.1)

where
Uk,l x = uk,l xu

∗
k,l , (6.2)

for x ∈M ⊗N
d , and

uk,l = uk1,l1 ⊗ . . . ⊗ukN ,lN . (6.3)

Proposition 8 Matrices um,n satisfy

um,nur,s = λms um+r,n+s , (6.4)

u∗m,n = λmn u−m,−n , (6.5)

and the following orthogonality relations

tr(u∗m,nuk,l) = dN δm,kδn,l . (6.6)

The spectral representation of At,t0 has the following form

At,t0 =
∑

m,n∈ZN
d

P̃t,t0(m,n)Pm,n , (6.7)

where Pm,n is a projector defined by

Pm,n x =
1

dN
um,n tr(u

∗
m,nx) , (6.8)

for any x ∈M ⊗N
d . Assuming that

Pt,t0 : Z
N
d × Z

N
d −→ [0, 1] , (6.9)

satisfies classical Markovian inhomogeneous master equation

Ṗt,t0 = at ∗ Pt,t0 , Pt0,t0 = e , (6.10)

one obtains
Ȧt,t0 = LtAt,t0 , At0,t0 = id , (6.11)

where the time dependent Markovian generator is defined by

Lt =
∑

m,n∈ZN
d

ãt(m,n)Pm,n . (6.12)

Hence, the corresponding solution reads as follows

At,t0 =
∑

m,n∈ZN
d

exp

(∫ t

t0

ãu(m,n) du

)
Pm,n . (6.13)
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7 Commutative dynamics of 2-level system

Consider the time dependent generator for a 2-level system defined by

Ltρ = − i

2
ε(t)[σ3, ρ] + γ(t)

(
µL1 + (1− µ)L2

)
ρ+

1

2

1∑

α,β=0

cαβ(t)
(
[πα, ρπβ] + [παρ, πβ ]

)
, (7.1)

where the time independent Markovian generators L1 and L2 are defined as follows

L1ρ = σ+ρσ− − 1

2
{σ−σ+, ρ} ,

L2ρ = σ−ρσ+ − 1

2
{σ+σ−, ρ} .

One easily shows that
[Lt,Ls] = 0 , (7.2)

and hence Lt does generate a commutative quantum dynamics. In (7.1) the ‘mixing’ parameter
µ ∈ [0, 1], and projectors πα are defined by

π0 = σ−σ+ , π1 = σ+σ− . (7.3)

Note, that if γ(t) > 0 and the time dependent matrix ||cαβ(t)|| is semi-positive definite, than Lt

defines time dependent Markovian generator. If

∫ t

0
γ(u)du > 0 , (7.4)

and the matrix

||
∫ t

0
cαβ(u)du || ≥ 0 , (7.5)

for all t ≥ 0, then Lt generates non-Markovian dynamics.
One easily solves the corresponding spectral problem for Lt

Lt ω = 0 ,

Lt σ
+ = Γ(t)σ+ ,

Lt σ
− = Γ(t) σ− ,

Lt σ3 = −γ(t)σ3 ,

where the invariant state ω reads as follows

ω = µπ1 + (1− µ)π0 , (7.6)

19



and the complex eigenvalue Γ(t) is defined by

Γ(t) = −1

2

[
γ(t) + c00(t) + c11(t)− 2c10(t) + 2iε(t)

]
. (7.7)

Similarly, one solves for the dual generator

L#
t I2 = 0 ,

L#
t σ

+ = Γ(t)σ+ ,

L#
t σ

− = Γ(t)σ− ,

L#
t σ = −γ(t)σ ,

where

σ = (1− µ)π1 − µπ0 =
1

2

(
σ3 − I2tr(ωσ3)

)
. (7.8)

Hence, introducing a bi-orthogonal basis

g0 = ω , h0 = I2 ,

g1 = σ+, h1 = σ+,

g2 = σ−, h2 = σ−,

g3 = σ3 , h3 = σ ,

such that
(gα, hβ) = tr(g∗αhβ) = δαβ , (7.9)

one has

Ltρ =
3∑

α=0

λα(t) gα tr(h∗α ρ) , (7.10)

with
λ0(t) = 0 , λ1(t) = λ2(t) = Γ(t) , λ3(t) = −γ(t) . (7.11)

Hence, the solution to the Markovian master equation

Ȧt,t0 = LtAt,t0 , At0,t0 = id , (7.12)

reads

At,t0 ρ =

3∑

α=0

exp

(∫ t

t0

λα(u) du

)
gα tr(h

∗
α ρ) . (7.13)

Consider now
V : M2 −→ M2 , (7.14)

defined by

V a = e00

(
µ tr(e11a) + tr(e00a)

)
+ e11

(
(1− µ) tr(e11a)− tr(e00a)

)

+ e10tr(e01a) + e01tr(e10a) . (7.15)
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One easily finds for the inverse

V −1a = e00

(
− µ tr(e11a) + (1− µ) tr(e00a)

)
+ e11

(
tr(e11a) + tr(e00a)

)

+ e10tr(e01a) + e01tr(e10a) , (7.16)

and hence

V −1#a = e00

(
tr(e11a) + (1− µ) tr(e00a)

)
+ e11

(
tr(e11a)− µ tr(e00a)

)

+ e10tr(e01a) + e01tr(e10a) . (7.17)

One finds

V e00 = σ3 , V e11 = ω , V σ± = σ± , (7.18)

and

V −1#e00 = σ , V −1#e11 = I2 , V −1#σ± = σ± . (7.19)

Hence, defining
f0 = e11 , f1 = σ+ , f2 = σ− , f3 = e00 , (7.20)

one has
gα = V fα , hα = V −1#fα , (7.21)

which shows that V diagonalizes Lt and At,t0 , that is,

Lt =

3∑

α=0

λα(t)V PαV
−1 , (7.22)

and

At,t0 =
3∑

α=0

exp

(∫ t

t0

λα(u) du

)
V PαV

−1 , (7.23)

where
Pαρ = fαtr(f

∗
αρ) . (7.24)

8 Conclusions

In this paper we analyzed a class of commutative dynamics of quantum open systems. It is
shown that such evolution may be effectively described via spectral analysis of the correspond-
ing time dependent generators. The characteristic feature of the corresponding time-dependent
dynamical map is that all its eigenvectors do not depend on time (only its eigenvalues do).
Actually, majority of examples studied in the literature (see e.g. [1]) belong to this class. If
eigenvectors vary in time then the solution is formally defined by the time ordered exponen-
tial but the problem of finding an explicit solution is rather untractable. We stress that both
Markovian and non-Markovian dynamics were studied. Our analysis shows that the local ap-
proach to non-Markovian dynamics proposed in [18] is much more suitable in practice than the
corresponding non-local approach based on the memory kernel.

21



Acknowledgments

This work was partially supported by the Polish Ministry of Science and Higher Education Grant
No 3004/B/H03/2007/33.

References

[1] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, (Oxford Univ.
Press, Oxford, 2007).

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cam-
bridge Univ. Press, Cambridge, 2000).

[3] V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976).

[4] G. Lindblad, Comm. Math. Phys. 48, 119 (1976).

[5] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, (Springer, Berlin,
1987).

[6] J. Wilkie, Phys. Rev. E 62, 8808 (2000); J. Wielkie and Yin Mei Wong, J. Phys. A: Math.
Theor. 42, 015006 (2009).

[7] A. A. Budini, Phys. Rev. A 69, 042107 (2004); ibid. 74, 053815 (2006).

[8] H.-P. Breuer, Phys. Rev. A 69 022115 (2004); ibid. 70, 012106 (2004).
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