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We analyze two recently proposed measures of non-Markovianity: one based on the concept of
divisibility of the dynamical map and the other one based on distinguishability of quantum states.
We provide a toy model to show that these two measures need not agree. In addition, we discuss
possible generalizations and intricate relations between these measures.
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I. INTRODUCTION

The dynamics of open quantum systems attracts nowa-
days increasing attention [1–3]. It is relevant not only
for the better understanding of quantum theory but it
is fundamental in various modern applications of quan-
tum mechanics. Since the system-environment interac-
tion causes dissipation, decay and decoherence it is clear
that dynamic of open systems is fundamental in mod-
ern quantum technologies, such as quantum communi-
cation, cryptography and computation [4]. The usual
approach to the dynamics of an open quantum system
consists in applying an appropriate Born-Markov approx-
imation leading to the celebrated quantum Markov semi-
group [5, 6] which neglects all memory effects. However,
recent theoretical studies and technological progress call
for more refine approach based on non-Markovian evolu-
tion.
Non-Markovian systems appear in many branches of

physics, such as quantum optics [1, 7], solid state physics
[8], quantum chemistry [9], and quantum information
processing [10]. Since non-Markovian dynamics modifies
monotonic decay of quantum coherence it turns out that
when applied to composite systems it may protect quan-
tum entanglement for longer time than standard Marko-
vian evolution [11]. In particular it may protect the sys-
tem against the sudden death of entanglement [12]. It
is therefore not surprising that non-Markovian dynamics
was intensively studied during last years [13].
Surprisingly, it turns out the concept of

(non)Markovianity is not uniquely defined. One
approach is based on the idea of the composition law
which is essentially equivalent to the idea of divisibility
[14]. This approach was used recently by Rivas, Huelga
and Plenio (RHP) [16] to construct the corresponding
measure of non-Markovianity, that is, RHP measure
the deviation from divisibility. A different approach
is advocated by Breuer, Laine and Piilo (BLP) in
Ref. [15]. BLP define non-Markovian dynamics as a
time evolution for the open system characterized by a
temporary flow of information from the environment

back into the system and manifests itself as an increase
in the distinguishability of pairs of evolving quantum
states. It is clear that RHP characterize a mathematical
property of the dynamical map whereas the idea of BLP
is based on physical features of the system-reservoir
interaction, rather than the mathematical properties of
the dynamical map of the open system. In a recent paper
[17] Haikka, Cresser and Maniscalco performed detailed
analysis of these approaches studying the dynamics of
the driven qubit in a structured environment. It is
indicated [17] that the concepts of RHP and BLP need
not agree, as was also conjectured in [18] and checked
in [19]. BLP measure was recently analyzed for the
dynamics of a qubit coupled to a spin environment via
an energy-exchange mechanism [20].
In the present paper we perform further analysis of this

problem. In particular we provide a simple toy model
showing that Markovian evolution à la BLP may be in-
divisible and hence non-Markovian according to RHP.
Actually, one may feel the relation BLP vs. RHP quite
analog to the relation between separable and PPT states
in entanglement theory, where separable states define the
proper subset of PPT states. States which are PPT
but entangled are bound entangled. Using this anal-
ogy one may call Markovian evolution à la BLP but in-
divisible (non-Markovian according to RHP) – ‘bound
non-Markovian’. Finally we discuss possible general-
izations of BLP using tensor product structures, and
show that a slight modification of BLP reduces their
concept of Markovianity to divisibility (the bound non-
Markovianity can be washed out). The main motivations
of this paper are to expose the relation between two dif-
ferent concepts on a simple example, and to present the
way to unify them, which we hope clarify the issue.

II. DIVISIBILITY VS. BACKFLOW OF

INFORMATION

The measure for non-Markovianity proposed by Rivas,
Huelga and Plenio (RHP) [16] is based on a notion of
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divisibility: a trace praserving completely positive map
Λ(t, 0) is divisible if it can be written as a

Λ(t+ τ, 0) = Λ(t+ τ, t)Λ(t, 0) , (1)

and Λ(t + τ, t) is completely positive for any t, τ > 0.
RHP define a map to be Markovian exactly when it is
divisible. Note that

Λ(t+ τ, t) = Λ(t+ τ, 0)Λ−1(t, 0) , (2)

satisfies composition law

Λ(s, t) = Λ(s, u)Λ(u, t) , (3)

for any s ≥ u ≥ t, which is usually attributed for Marko-
vian evolution. It is shown [16] that the quantity

g(t) = lim
ǫ→0+

||1ld ⊗Λ(t+ ǫ, t)P+
d ||1 − 1

ǫ
, (4)

enjoys g(t) > 0 if and only if the original map Λ(t, 0) is
indivisible (||·||1 is a trace-norm). As usual 1ld denotes an
identity map in Md(C), and P+

d denotes the maximally

entangled state in Cd⊗Cd (we consider the evolution of
a d-level system). Now, using the fact that any divisible
(and differentiable) completely positive map satisfies a
local in time master equation

d

dt
Λ(t, 0) = L(t)Λ(t, 0) , Λ(0, 0) = 1ld , (5)

where the local generator L(t) is a legitimate Markovian
generator for any t ≥ 0. The formula (4) may be equiv-
alently rewritten in terms of L(t):

g(t) = lim
ǫ→0+

||[1ld ⊗ (1ld − ǫL(t))]P+
d ||1 − 1

ǫ
. (6)

A second criterion of non-Markovianity was proposed
by Breuer, Laine and Piilo (BLP) in Ref. [15]. The
BLP criterion identifies non-Markovian dynamics with
certain physical features of the system-reservoir interac-
tion. They define non-Markovian dynamics as a time
evolution for the open system characterized by a tempo-
rary flow of information from the environment back into
the system. This backflow of information may manifest
itself as an increase in the distinguishability of pairs of
evolving quantum states. Hence, according to BLP the
dynamical map Λ(t, 0) is non-Markovian if there exists a
pair of initial states ρ1 and ρ2 such that for some time
t > 0 the distinguishability of ρ1 and ρ2 increases, that
is,

σ(ρ1, ρ2; t) =
d

dt
D[ρ1(t), ρ2(t)] , (7)

where D(ρ1, ρ2) =
1
2 ||ρ1 − ρ2||1 is the distinguishability

of ρ1 and ρ2, and ρk(t) = Λ(t, 0)ρk.

Using these two criteria one easily defines the corre-
sponding non-Markovianity measures of the dynamical
map Λ:

NRHP(Λ) =
I

I + 1
, (8)

where I =
∫∞

0
g(t)dt. Similarly, one has

NBLP(Λ) = sup
ρ1,ρ2

∫

σ>0

σ(ρ1, ρ2; t)dt . (9)

It is clear [15] that NRHP(Λ) = 0 implies NBLP(Λ) = 0.
Hence, all divisible maps are Markovian according to
BLP. The converse is in general not true. This prob-
lem was carefully analyzed in the paper [19] for phe-
nomenological integro-differential master equations and
in the recent paper [17], where the authors have stud-
ied the non-Markovian character of a driven qubit in a
structured reservoir in different dynamical regime using
NRHP(Λ) and NBLP(Λ).

III. TOY MODEL – CLASSICAL STOCHASTIC

DYNAMICS

In should be clear that the above discussion applies for
a classical stochastic systems as well. Consider stochas-
tic dynamics of d-state classical system described by
the probability vector p = (p1, . . . , pd). Its evolution
p(0) −→ p(t) = Λ(t) · p(0) is defined by the family
of stochastic matrices Λ(t), that is, Λij(t) ≥ 0 for all
i, j = 1, . . . , d and

d∑

i=1

Λij(t) = 1 , (10)

for each j = 1, . . . , d and t ≥ 0. These conditions guar-
antee that p(t) is a legitimate probability vector for all
t ≥ 0. The corresponding local-in-time master equation

ṗi(t) =

d∑

j=1

Lij(t) pj(t) , (11)

is defined in terms of the local generator L(t) which is
defined in by the classical dynamical map Λ(t) as follows

L(t) = Λ̇(t) · Λ−1(t) . (12)

In particular if L does not depend on time Λ(t) defines a
one-parameter semigroup of stochastic matrices Λ(t) :=
Λ(t, 0) = etL. Let us recall that Λ is stochastic if if and
only if it satisfies well known Kolmogorov conditions:

Lij ≥ 0 , i 6= j , and

d∑

i=1

Lij = 0 , (13)
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for each j = 1, . . . , d. Now, a stochastic evolution Λ(t, 0)
is divisible if it can be written as a composition of two
stochastic maps Λ(t+ τ, t) and the original Λ(t, 0)

Λ(t+ τ, 0) = Λ(t+ τ, t) · Λ(t, 0) , (14)

for any τ > 0. Clearly, Λ(t, 0) is divisible if and only if the
corresponding local generator L(t) satisfies Kolmogorov
conditions for any t ≥ 0. Now, we would like to compare
two non-Markovianity measures due to RHP and BLP.
It is clear that classical evolution may be rewritten

in the quantum framework as follows: any probabil-
ity vector p gives rise to the diagonal density matrix
ρ =

∑
k pk|k〉〈k|, and hence the stochastic map – clas-

sical channel – Λ gives rise to the following Kraus repre-
sentation

Λ ρ =

d∑

i,j=1

Λji |i〉〈j| ρ |j〉〈i| . (15)

Now, to apply (4) one needs the classical analog of
(1l⊗Λ)P+. Let us define (1lcl⊗Λ)P+

cl , where the clas-
sical identity map is defined by

1lcl ρ =

d∑

i=1

|i〉〈i| ρ |i〉〈i| , (16)

and the classical analog of the maximally entangled states
reads as follows

P+
cl =

1

d

d∑

i=1

|i〉〈i| ⊗ |i〉〈i| . (17)

One finds therefore

(1lcl⊗Λ)P+
cl =

1

d

d∑

i,j=1

Λji |i〉〈i| ⊗ |j〉〈j| . (18)

Now, the ‘classical’ quantity

g(t) = lim
ǫ→0+

||1lcl⊗Λ(t+ ǫ, t)P+
cl ||1 − 1

ǫ
, (19)

is strictly positive if and only if the original stochastic
map Λ(t, 0) is indivisible and hence g(t) identifies non-
Markovianity of the classical stochastic process. Equiva-
lently, it may be rewritten using local generator L(t)

g(t) = lim
ǫ→0

||[1lcl ⊗ (1lcl − ǫL(t))]P+
cl ||1 − 1

ǫ
. (20)

Consider now the following toy model of stochastic dy-
namics of 2-state system

Λ(t, 0) =

(
1− x0(t) x1(t)
x0(t) 1− x1(t)

)
, (21)

where x0(t), x1(t) ∈ [0, 1] for all t ≥ 0. One finds for the
local generator

L(t) =

(
−a0(t) a1(t)
a0(t) −a1(t)

)
, (22)

where

a0 =
ẋ0(1− x1) + ẋ1x0

1− x0 − x1
, (23)

a1 =
ẋ0x1 + ẋ1(1− x0)

1− x0 − x1
. (24)

Now, Λ(t, 0) is divisible if and only if a0(t), a1(t) ≥ 0 for
all t ≥ 0. On the other hand one easily finds

σ(t) = −2[a0(t) + a1(t)]|∆0| , (25)

where ∆k = (p1 − p2)k. Hence, contrary to g(t), the
quantity σ(t) controls only the sum of a0 and a1. In
principle one may have σ(t) ≤ 0 even if a0(t) < 0 or
a1(t) < 0. Indeed, let us define

x0(t) =

∫ t

0

f0(τ)dτ , x1(t) =

∫ t

0

f1(τ)dτ , (26)

such that 0 ≤
∫ t

0 fk(τ)dτ ≤ 1 , for all t ≥ 0. Hence, our
toy model is fully controlled by functions f0 and f1. Let

f0(t) = κ sin t , t ≥ 0 , (27)

and f1(t) = 0 for t ∈ [0, π] together with

f1(t) = −κ sin t , t ≥ π , (28)

where 0 < κ < 1/2. One finds

a0(t) + a1(t) =
κ sin t

1− κ+ κ cos t
, t ∈ [0, π] , (29)

and a0(t) + a1(t) = 0 for t ≥ π. Note, that for t ≥ π one
has

a0(t) = −a1(t) = κ sin t , (30)

which proves that Λ(t, 0) is not divisible. However, this
map is ‘classically’ Markovian according to BLP [15] due
to a0(t) + a1(t) ≥ 0 for all t ≥ 0.

IV. QUBIT DYNAMICS

Consider now the following dynamics of a qubit

ρ00(t) = ρ00 x0(t) + ρ11 [1− x1(t)] ,

ρ11(t) = ρ00 [1− x0(t)] + ρ11 x1(t) , (31)

ρ01(t) = ρ01 γ(t) ,

where x0(t), x1(t) ∈ [0, 1], and

|γ(t)|2 ≤ x0(t)x1(t) . (32)

The above conditions for xk(t) and γ(t) guarantee that
the dynamics is completely positive. One easily finds for
the corresponding local generator

Lρ = −i
Ω

2
[σz , ρ] +

1∑

k=0

akLkρ+
Γ

2
Lzρ , (33)
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where

L0ρ = σ+ρσ− −
1

2
{σ−σ+, ρ} ,

L1ρ = σ−ρσ+ −
1

2
{σ+σ−, ρ} , (34)

Lzρ = σzρσz − ρ .

The time-dependent coefficients a0 and a1 are defined in
(23) and (24), whereas Γ(t) and Ω(t) read as follows

Γ(t) = −
a0(t) + a1(t)

2
− Re

γ̇(t)

γ(t)
, (35)

Ω(t) = Im
γ̇(t)

γ(t)
. (36)

The corresponding dynamical map Λ(t, 0) is divisible if
and only if ak(t),Γ(t) ≥ 0 for all t ≥ 0. On the other
hand one finds the following formula

σ(t) = −
2A(t)∆2

00 + [A(t) + 4Γ(t)]|∆01|
2

√
∆2

00 + |∆01|2
, (37)

where A(t) = a0(t) + a1(t), and a 2× 2 matrix ∆ reads

∆ = ρ1(0)− ρ2(0) . (38)

It is therefore clear that using the same arguments as in
the classical toy model we may have σ(t) ≤ 0 but the
dynamical map is not divisible.

V. GENERALIZED CONDITIONS

We have studied so far the non-Markovian character
of simple classical and quantum (toy) models and com-
pare two non-Markovianity measures due to RHP and
BLP. We performed explicit construction showing that
in general these two measures do not agree supporting
[17–19].
Let us observe that both approaches may be analyzed

from a slightly more general perspective. Consider a fam-
ily Λ(t, 0) of trace preserving positive maps (not necessar-
ily completely positive). Actually, the approach of BLP
needs only positivity of Λ(t, 0). It is clear that Λ(t, 0) is
contractive (one has ||Λ(t, 0)ρ||1 = ||ρ||1). Now, Λ(t, 0)
is divisible if

Λ(t+ τ, 0) = Λ(t+ τ, t) · Λ(t, 0) , (39)

and Λ(t+ τ, t) is a contraction for all τ ≥ 0. It implies

||Λ(t+ τ, t)|| = 1 , (40)

where the norm of the map is defined via

||Λ|| = sup
||ρ||1=1

||Λρ||1 . (41)

Note, that Λ(t, 0) is divisible if and only if

d

dt
Λ(t, 0) = L(t)Λ(t, 0) , (42)

where L(t) is a local generator satisfying the following
dissipativity condition [21] (see also [5]): for any set
of mutually orthogonal rank-1 projectors Pi such that∑

i Pi = I, one has

Tr[PiL(t)Pj ] ≥ 0 , i 6= j ,
∑

i

Tr[PiL(t)Pj ] = 0 . (43)

The second condition guaranties that Λ(t, 0) is trace pre-
serving. Hence, formula (40) is equivalent to

lim
ǫ→0+

||1l− ǫL(t)|| − 1

ǫ
= 0 . (44)

We call Λ(t, 0) completely divisible iff Λ(t+ τ, t) is com-
pletely contractive. Recall that Φ : B(H) −→ B(H) is
completely contractive [22] iff 1lk ⊗Φ is contractive for
all k = 2, 3, . . .. If dimH = d < ∞, then, as in the
case of complete positivity, it is enough to check that
1ld⊗Φ is contractive. Note, that due to the fact that
Λ(t + τ, t) is trace preserving complete contractivity is
equivalent to complete positivity. Hence, complete di-
visibility is the standard divisibility considered by RHP
[16]. Finally, recall that Φ is completely bounded [22] iff
1lk ⊗Φ is bounded all k = 2, 3, . . .. One defines

||Φ||(k) = ||1lk ⊗Φ|| , (45)

and

||Φ||cb = sup
k

||Φ||(k) . (46)

Φ is completely contractive iff ||Φ||cb ≤ 1. If dimH = d <
∞, then necessarily Φ is completely bounded. Moreover

||Φ||cb = ||Φ||(d) . (47)

Hence, Λ(t, 0) is completely divisible iff

||Λ(t+ τ, t)||cb = 1 , (48)

which is much more restrictive than (40). Interestingly,
for completely positive Φ one has

||Φ||cb = ||(1ld ⊗Φ)P+
d ||1 , (49)

which reproduces result of RHP. Actually, one may gen-
eralize the whole analysis to (completely) contractive dy-
namics on the Banach space generalizing old results for
contractive semigroups [23].
Now, let us observe that the approach of BLP which is

valid for positive maps Λ(t, 0) may be easily generalized
if we assume that Λ(t, 0) is completely positive. One may
introduce

σ̃(ρ̃1, ρ̃2; t) =
d

dt
D[ρ̃1(t), ρ̃2(t)] , (50)

where

ρ̃k(t) = [1ld ⊗Λ(t, 0)]ρ̃k , k = 1, 2 . (51)
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It is clear that if σ̃(ρ̃1, ρ̃2; t) ≤ 0 for all initial states
ρ̃k, then σ(ρ1, ρ2; t) ≤ 0 for all initial states ρk. Note,
however, that the converse needs not be true. Again,
one may show that there exists indivisible maps Λ(t, 0)
for which σ̃(ρ̃1, ρ̃2; t) ≤ 0 for all initial states ρ̃k. Note,
that condition σ̃(ρ̃1, ρ̃2; t) ≤ 0 may be reformulated as

σ̃(∆; t) =
d

dt
||∆(t)||1 ≤ 0 , (52)

where ∆(t) = [1ld ⊗Λ(t, 0)]∆, and ∆† = ∆ together with
Tr∆ = 0, which follows from ∆ = (ρ̃1 − ρ̃2)/2 and ρ̃k are
true states. It should be stressed that condition Tr∆ = 0
is very restrictive. Let us recall that if Φ is trace preserv-
ing then Φ is positive iff

||Φ a||1 ≤ ||a||1 , (53)

for all a† = a. Note however that if one restricts to a
enjoying Tra = 0, then ||Φ a||1 ≤ ||a||1 does not imply
positivity of Φ. If we relax Tr∆ = 0, then the condi-
tion σ̃(∆; t) ≤ 0 for all Hermitian ∆ imply that Λ(t, 0) is
(completely) divisible and hence definition of Markovian-
ity due to BLP reduces to divisibility. More explicitly this
fact can be formulated as:

Theorem. For a bijective evolution Λ(t, 0), σ̃(∆; t) ≤ 0
for all ∆† = ∆, if and only if it is divisible.

Proof. The ‘if’ part is straightforward because the trace
norm is monotonically decreasing given the completely
contracting property of the Λ(t+ τ, t),

‖Λ(t+ τ)‖1 = ‖[1ld⊗Λ(t+ τ, t)]∆(t)‖1 ≤ ‖∆(t)‖1 ,

for every t and τ > 0. Conversely, if the evolution Λ(t, 0)
is bijective the partitions Λ(t+τ, t) = Λ(t+τ, 0)Λ−1(t, 0)
are well-defined. Then σ̃(∆; t) > 0 for some t implies that
for some small τ

‖∆(t+ τ)‖1 = ‖[1ld ⊗Λ(t+ τ, t)]∆(t)‖1 > ‖∆(t)‖1.

So there exists some partition Λ(t+ τ, t) which is not
completely contractive, and therefore the dynamics is not
divisible.

�

VI. OPERATIONAL MEANING OF σ̃(∆; t)

One may think that by relaxing the condition Tr∆ = 0
the interpretation of an increase of σ̃(∆; t) in terms of
backflow of information from environment to system is
lost, however that is not the case. To explain this more
carefully we have to recall here some results from quan-
tum hypothesis testing, particularly the one-shot two-
state discrimination problem [24].
Consider a quantum system whose state is represented

by the density matrix ρ1 with probability p, and ρ2 with

probability (1 − p). We want to determine the density
matrix that describes the true state of the quantum sys-
tem by performing a measurement. If we consider some
general POVM {Mj}, where j ∈ Ω is the set of possible
outcomes, we may split this set in two cases. If the out-
come of the measurement is inside of some subset A ⊂ Ω,
then we say that the state is ρ1. Conversely if the result
of the measurement belongs to the complementary set Ac

such that A∪Ac = Ω, we say that the state is ρ2. Let us
group the results of this measurement in another POVM
given by the operator T =

∑
j∈A Mj.

Thus, when the true state is ρ1 (which happens with
probability p) we erroneously conclude that the state is
ρ2 with probability

(1− p)
∑

j∈Ac

Tr[ρ1Mj ] = (1 − p)Tr


ρ1




∑

j∈Ac

Mj






= (1 − p)Tr [ρ1(I− T )] .

On the other hand, when the true state is ρ2, we erro-
neously conclude that the state is ρ1 with probability

p
∑

j∈A

Tr[ρ2Mj] = pTr



ρ2




∑

j∈A

Mj







 = pTr [ρ2T ] .

Note that when p = 0 or p = 1 we immediately ob-
tain zero probability to identify wrongly the true state.
The problem in one-shot two-state discrimination is to
examine the tradeoff between the two error probabilities
pTr [ρ2T ] and (1 − p)Tr [ρ1(I− T )]. Thus, consider the
best choice of T that minimizes the total error probabil-
ity

min
0≤T≤I

{pTr [ρ2T ] + (1− p)Tr [ρ1(I− T )]}

= min
0≤T≤I

{(1− p) + Tr [pρ2T − (1− p)ρ1T ]}

= (1− p)− max
0≤T≤I

[Tr (∆T )],

where ∆ = (1 − p)ρ1 − pρ2 is a self-adjoint opera-
tor (sometimes called Helstrom matrix [25]) with trace
Tr∆ = 1− 2p, which vanishes only for the unbiased case
p = 1/2. By using analogous arguments that for p = 1/2
(see [4, 24]) the result of the optimization process turns
out to be

min
0≤T≤I

{pTr [ρ2T ] + (1 − p)Tr [ρ1(I− T )]} =
1− ‖∆‖1

2
.

(54)
Thus the trace norm of ∆ = (1 − p)ρ1 − pρ2 gives

our capability to distinguish correctly between ρ1 and ρ2
in the one-shot two-state discrimination problem. Since
that is only a function of the information we gather by
the prior probability p and by the measurement T , ‖∆‖1
is a measure of the information we have.
Consider again a trace preserving map Φ : B(H) −→

B(H). If it increases the trace norm of ∆, ‖Φ(∆)‖1 >
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‖∆‖1, we can assume that Φ carries information about
the correct state of the system. Otherwise it cannot de-
crease the probability to identify wrongly the true state!.
For that reason, if we process data before making a mea-
surement, which means to apply some Φ over the states,
we cannot increase the trace norm of ∆; since we cannot
gain more information about some data just by process-
ing it!. This is the so-called data processing inequality
[24], and implies that Φ is contractive, i.e. positive. In
addition, we can never dismiss that the states ρ1 and ρ2
are part of a larger system “SA”. In such a way that
they are the result of tracing out the ancillary systems
ρ1,2 = TrA[ρ1A,2A]. By making the same analysis as be-
fore, in order not to gain information we then require the
map 1ld⊗Φ to be contractive, i.e. Φ completely contrac-
tive and thus completely positive.
Going back to the problem of Markovianity, one may

now realize that σ̃(∆; t) is a measure of the information
gained by the system for some initial Helstrom matrix
∆. This interpretation puts together the two concepts
of Markovianity based upon divisibility and backflows
of information. Particularly if one ignores the potential
existence of an ancilla, under the case of unbiased dis-
crimination problem, ‖∆‖1 = 1

2‖ρ1 − ρ2‖1, which is the
definition of the trace distance between ρ1 and ρ2, re-
covering the approach of BLP. Nevertheless in principle
there is no reason to presuppose the fulfillment of these
particular assumptions.
One can define a measure of non-Markovianity as (9),

with σ̃(∆; t) in the place of σ(ρ1, ρ2; t). That will be
zero iff (8) is, however (8) is easier to compute because
it avoids the complicated optimization procedure in (9)
now upon every Helstrom matrix ∆.
We have already proposed examples of non-divisible

dynamics with NBLP (Λ) = 0, but for completeness we
have computed σ̃(∆; t) for the phenomenological integro-
differential master equation [26]:

dρ(t)

dt
=

∫ t

0

k(t′)Lρ(t− t′)dt′, (55)

where k(t) = γe−γt and

Lρ = γ0(n̄+ 1)L0ρ+ γ0n̄L1ρ, (56)

with γ, γ0, n̄ ≥ 0 and L0 and L1 were given in (34). De-
spite this kind of equations is used as a simple model
of non-Markovian dynamics, it was showed in [19] that
NBLP (Λ) = 0. However σ̃(∆; t) is not always decreasing
for any Helstrom matrix. For example by taking p = 0.07
and

ρ1 =




0.5 0 0 0.48
0 0.001 0 0
0 0 0.019 0

0.48 0 0 0.48


 , (57)

ρ2 =




0.25 0 0 0
0 0.25 0 0
0 0 0.5 0
0 0 0 0


 , (58)
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σ̃
(∆

;t
)

120 140 160 180 200
0.86

0.8605

Parameters:
- γ = 1
- γ0 = 0.0095
- n̄ = 10

FIG. 1: Behavior of σ̃(∆; t) for the integro-differential model
(55). The initial Helstrom matrix is ∆ = 0.93ρ1 − 0.07ρ2,
where ρ1 and ρ2 are given in (57) and (58). There is a time
period between 100 and 150 where σ̃(∆; t) increases.

there is a period where σ̃(∆; t) grows as we have repre-
sented in Fig 1. This denotes the existence of a backflow
of information which was expected from the non-divisible
character of this dynamics.

VII. CONCLUSIONS

We have analyzed two concepts of Markovianity, one
based on the divisibility property of the dynamical map
and the other based upon the distinguishability of quan-
tum states. We have given very simple examples where
these two criteria do not coincide. Furthermore we have
proposed a way to make them equivalent, in the sense
that Markovianity would be identified by divisibility, but
keeping the interpretation in terms of flows of informa-
tion. For that we resort to the results in the one-shot
two-state discrimination problem; and point out that an
increase of the trace norm of any Hermitian matrix dur-
ing the dynamics can also be associated with a backflow
of information from the environment to the system.
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