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I. INTRODUCTION

Quantum state of composite system contains both
classical and quantum correlation. Usually by quan-
tum correlations one means quantum entanglement
which provides an essential resource for quantum in-
formation processing such as quantum cryptography,
dense coding, quantum computing [1, 2].

However, a quantum state of a composed system
may contain other types of nonclassical correlation
even if it is separable (not entangled). For a recent
“catalogue" of nonclassical correlations, see [3]. The
most popular measure of such correlations – quantum
discord – was introduced by Ollivier and Zurek [4] and
independently by Henderson and Vedral [5].

Recently quantum discord has received increasing
attention. It was analyzed in the context of broadcast-
ing of quantum states [6, 7]. Interestingly, it turned
out that quantum discord might be responsible for
the quantum computational efficiency of some quan-
tum computation tasks [8–11]. Moreover, the dynam-
ics of discord, both Markovian and non-Markovian,
[12–21] was analyzed. Quantum discord was gener-
alized for continuous variables to study correlations
in Gaussian states [22, 23]. A geometric measure for
quantum discord was introduced in [24] and analyzed
in [25]. Finally, an operational interpretation of quan-
tum discord was provided in [26, 27] – quantum dis-
cord received clear information-theoretic operational
meaning in terms of entanglement consumption in an
extended quantum state merging protocol.

Remarkable progress in characterization of set of
zero-discord states was done. Interestingly, it was
shown [28] to have vanishing volume in the set of all
states. Actually, this result holds true for any Hilbert
space dimension. It shows that a generic state of com-
posed quantum system does contain non-classical cor-
relation. Necessary and sufficient conditions were pro-
vided [24, 29–31], to determine states with vanishing
discord. Moreover nonlinear witnesses of discord were
introduced [32–34]. For very recent papers analyzing
various aspects of quantum discord see also [35–41].

In the present paper we analyze a large class of

two-qudit states introduced in [42] called circulant
states (see also [43]). Construction of these states
is based on a certain decomposition of the total d2-
dimensional Hilbert space into d mutually orthogonal
d-dimensional subspaces. A density matrix ρ repre-
senting a circulant state is a convex combination of
density matrices supported on different subspace. In-
terestingly, circulant states provide natural general-
ization of so called X-states of two qubits. In the
present paper we address a question when a quantum
discord for a circulant state does vanish.

The paper is organized as follows: in Section II
we recall basis definitions related to quantum discord
and formulate necessary and sufficient condition for
the vanishing discord. Section III introduces the con-
struction of circulant states in Cd⊗Cd and analyzes
the case of discord zero. Section IV discusses several
well known examples of circulant states invariant un-
der then action of the symmetry group – a subgroup
of the unitary group U(d). In Section V we investi-
gate special class of circulant states – so called Bell
diagonal states [44, 45] – which play important role
in the theory of quantum entanglement. To simplify
our discussion we consider only the case when d is
prime. Prime dimensions already appeared for exam-
ple in the discussion of mutually unbiased basis [46].
It turns out that in this case the discussion consider-
ably simplifies. The general case may we analyzed in
the same way. However, the corresponding analysis
is technically much more involved. We illustrate our
discussion with several examples and conclude in the
last Section.

II. QUANTUM DISCORD

Consider a density operator ρ of a composite quan-
tum system in Hilbert space HAB = HA ⊗ HB . The
total amount of correlations in a bipartite state ρ is
quantified by quantum mutual information:

I(ρ) = S(ρA) + S(ρB)− S(ρ) , (1)
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where ρA and ρB are reduced density matrices in HA
and HB respectively and S(σ) = −tr(σ log σ) stands
for the von Neumann entropy of the density operator
σ. Note, that mutual information may be rewritten
as follows

I(ρ) = S(ρB)− S(ρB|A) , (2)

where ρB|A denotes a state of subsystem B given mea-
surement on subsystem A and S(ρB|A) is a quan-
tum conditional entropy. Let us introduce a lo-
cal measurement on A part defined by a collection
of one-dimensional projectors {Πk} in HA satisfying
Π1 + Π2 + . . . = IA. Different outcomes of this mea-
surement are labeled by ‘k’. The state of part B after
the measurement on part A, when the outcome corre-
sponding to Πk has been detected, is given by

ρB|k = trA[
1

pk
(Πk ⊗ IB)ρ(Πk ⊗ IB) ], (3)

where pk = tr[ρB|k(Πk ⊗ IB)]. The entropies S(ρB|k)
weighted by probabilities pk yield to the conditional
entropy of part B given the complete measurement
{Πk} on the part A

S(ρB |{Πk}) =
∑
k

pkS(ρB|k) . (4)

This means that the corresponding measurement-
introduced mutual information is

I(ρB |{Πk}) = S(ρB)− S(ρB |{Πk}) . (5)

By optimizing over all possible measurements {Πk}
on part A one has

CA(ρ) = sup
{Πk}

I(ρB |{Πk}) . (6)

This quantity has been given an interpretation as mea-
sure of classical correlations.

Although this two quantities, I(ρ) and CA(ρ), are
equivalent for classical systems, in quantum domain
they, in general, do not coincide. The difference

DA(ρ) = I(ρ)− CA(ρ) (7)

defines a new quantity, quantum discord, which is a
measure of quantum correlations in a quantum state
ρ.

Evidently, the above definition is not symmetric
with respect to parties A and B. One can swap
the role of A and B, introducing a collection of one-
dimensional ΠB

α projectors inHB satisfying ΠB
1 +ΠB

2 +
. . . = IB . Then one gets an analogous definition for
discord of a composite system when part B is mea-
sured

DB(ρ) = I(ρ)− CB(ρ), (8)

where

CB(ρ) = sup
{ΠBα }

I(ρ|{ΠB
α }) . (9)

Quantum discord DA(ρ) and DB(ρ), is always non-
negative. Although for all states with the same re-
duced density matrices DA(ρ) = DB(ρ), this in gen-
eral is not the case. Moreover, on pure states, quan-
tum discord coincides with the von Neumann entropy
of entanglement S(ρA) = S(ρB). One shows that
DA(ρ) = 0 (so called classical-quantum states) if and
only if there exists an orthonormal basis |k〉 in HA
such that

ρ =
∑
k

pk |k〉〈k| ⊗ ρ(B)
k , (10)

where ρ
(B)
k are density matrices in HB . Similarly,

DB(ρ) = 0 (quantum-classical states), if and only if
there exists an orthonormal basis |α〉 in HB such that

ρ =
∑
α

qα ρ
(A)
α ⊗ |α〉〈α| , (11)

where ρ(A)
α are density matrices in HA. It is clear

that if DA(ρ) = DB(ρ) = 0, then ρ is diagonal in the
product basis |k〉 ⊗ |α〉 and hence

ρ =
∑
k,α

λkα |k〉〈k| ⊗ |α〉〈α| , (12)

is entirely represented by the classical joint probability
distribution λkα. Such states are called completely
classical.

States with a positive quantum discord do contain
non-classical correlations even if they are separable.
Hence nonvanishing quantum discord indicates a kind
of quantumness encoded in a separable mixed state.

Consider now states with vanishing quantum dis-
cord [24, 29, 30]. Take two arbitrary orthonormal ba-
sis |e(A)

i 〉 and |e
(B)
α 〉 in HA and HB , respectively. An

arbitrary state ρAB in HA⊗HB may be written as
follows

ρAB =
∑
i,j

e
(A)
ij ⊗ ρ

(B)
ij , (13)

or

ρAB =
∑
α,β

ρ
(A)
αβ ⊗ e

(B)
αβ , (14)

where

e
(A)
ij = |e(A)

i 〉〈e
(A)
j | , e

(B)
αβ = |e(B)

α 〉〈e
(B)
β | ,

defines orthonormal basis in B(HA) and B(HB), re-
spectively, and

ρ
(B)
ij ∈ B(HB) , ρ

(A)
αβ ∈ B(HA) .

2



Theorem 1 DA(ρAB) = 0 iff ρ(A)
αβ are simultaneously

diagonalizable. Similarly, DB(ρAB) = 0 iff ρ
(B)
ij are

simultaneously diagonalizable.

Now it is well known, that if ρ(B)
ij are simultaneously

diagonalizable then they mutually commute, i.e.

[ρ
(B)
ij , ρ

(B)
kl ] = 0 . (15)

Note, that

ρ
(B)
ij = ρ

(B)†
ji , (16)

and hence [ρ
(B)
ij , ρ

(B)
ji ] = 0 implies that all ρ(B)

ij are
normal (clearly, the diagonal blocks are ρ(B)

ii are Her-
mitian and hence normal as well).

Corollary 1 If at least one off-diagonal block ρ
(B)
ij

(ρ(A)
αβ ) is not normal then DB(ρAB) > 0 (DA(ρAB) >

0).

Normal matrices are simultaneously diagonalizable
if and only if they mutually commute and hence

Corollary 2 DA(ρAB) = 0 iff ρ
(A)
αβ mutually com-

mute. Similarly, DB(ρAB) = 0 iff ρ(B)
ij mutually com-

mute.

III. CIRCULANT STATES IN Cd ⊗Cd

Let {|e0〉, · · · , |ed−1〉} denotes an orthonormal basis
in Cd. One introduces shift operator S : Cd → Cd
defined as follows

S|en〉 = |en+1〉, (mod d). (17)

Now, let us define

Σ0 = span{|e0〉 ⊗ |e0〉, · · · , |ed−1〉 ⊗ |ed−1〉} (18)

and

Σn = (I⊗ Sn)Σ0, (19)

for n = 1, · · · , d−1. It is clear that d-dimensional sub-
spaces Σn and Σm are mutually orthogonal for m 6= n
and hence one has the following direct sum decompo-
sition

Σ0 ⊕ · · · ⊕ Σd−1 = Cd ⊗ Cd. (20)

Now, consider a class of states living in Cd⊗Cd that
may be written as a direct sum

ρ = ρ0 ⊕ . . .⊕ ρd−1 , (21)

where each ρn are supported on Σn, that is,

ρn =

d−1∑
i,j=1

a
(n)
ij eij ⊗ S

neijS
†n , (22)

where [a
(n)
ij ] is a d × d semi-positive matrix, for n =

0, · · · , d−1. Normalization of ρ implies following con-
dition for matrices a(n)

Tr(a(0) + · · ·+ a(d−1)) = 1. (23)

These states were called circulant [42, 43] due to the
cyclic structure of the shift operator S. The above
construction defines natural generalization of the well
known X-states. Indeed, for d = 2 one obtains

ρ =


a00 . . a01

. b00 b01 .

. b10 b11 .

a10 . . a11

 (24)

where to make the picture more transparent we re-
placed all zeros by dots and introduced two matrices
a := a(0), b := a(1). For d = 3 the structure of a
circulant state reads as follows

ρ =



a00 . . . a01 . . . a02

. b00 . . . b01 b02 . .

. . c00 c01 . . . c02 .

. . c10 c11 . . . c12 .

a10 . . . a11 . . . a12

. b10 . . . b11 b12 . .

. b20 . . . b21 b22 . .

. . c20 c21 . . . c22 .

a20 . . . a21 . . . a22


(25)

where a := a(0), b := a(1), c := a(2). Actually, it turns
out that many well known examples of quantum states
of composite systems belong to the class of circulant
states: the most prominent are Werner state, isotropic
state, states invariant under the local action of the
unitary group U(d) and many others [42]. In Section
V we analyze an interesting subclass of circulant states
– Bell diagonal states.

Let Π
(AB)
n be an orthogonal projector onto Σn, that

is

Π(AB)
n =

d−1∑
i=0

eii⊗ ei+n,i+n . (26)

We add a superscript “AB” to emphasize that Π
(AB)
n is

a non-local (or rather non-separable) projector. Note,
that ρAB is circulant if and only if

ρ =

d−1∑
n=0

Π(AB)
n ρΠ(AB)

n . (27)
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Now, let us look for a circulant states with vanishing
quantum discord. One easily finds for the correspond-
ing blocks:

ρ
(B)
ij =

d−1∑
n=0

a
(n)
ij ei+n,j+n , (28)

and

ρ
(A)
ij =

d−1∑
n=0

a
(n)
i−n,j−nei−n,j−n . (29)

Due to the Corollary 1 the necessary condition for
DB(ρ) = 0 (DA(ρ) = 0) is that ρ(B)

ij (ρ(A)
ij ) are normal.

To simplify our analysis we shall consider only prime
dimension d.

Proposition 1 If d is prime, then off-diagonal blocks
ρ

(B)
ij are normal iff

|a(n)
ij | = |a

(0)
ij | , (30)

for i, j, n = 0, 1, 2. The off-diagonal blocks ρ(A)
ij are

normal iff

|a(n)
ij | = |a

(0)
i+n,j+n| , (31)

for i, j, n = 0, 1, 2.

If d is not prime then (30) and (31) are sufficient but
not necessary to guarantee that ρ(B)

ij and ρ(A)
ij are nor-

mal. Note, that if d is not prime, then off-diagonal
blocks may display sub-block structure corresponding
to the decomposition d = dp11 . . . dprr , with d1, . . . , dr
prime numbers. We shall not analyze this situation in
the present paper.

Note, that if all a(n) are diagonal, then ρ
(A)
ij =

ρ
(B)
ij = 0 and the corresponding circulant state is

purely classical. Suppose now that at least one matrix
a(n) is not diagonal.

Proposition 2 If the off-diagonal blocks ρ
(B)
ij are

normal, then [ρ
(B)
kk , ρ

(B)
ij ] = 0, iff

a
(n)
kk = a

(0)
kk . (32)

Similarly, If the off-diagonal blocks ρ(A)
ij are normal,

then [ρ
(A)
kk , ρ

(A)
ij ] = 0, iff

a
(n)
kk = a

(0)
k+n,k+n . (33)

It should be stressed that conditions (30) and (32)
are necessary for DB(ρ) = 0. Similarly, conditions
(31) and (33) are necessary for DA(ρ) = 0.

Now, let us formulate sufficient conditions. Let V
be a unitary operator

V =

d−1∑
n=0

enne
iφn , (34)

with φ0 = 0 (the global phase would play no role in
what follows). The main result of this paper consists
in the following

Theorem 2 Assume that at least one matrix a(n) is
not diagonal and d is prime.

1. DA(ρ) = 0, if and only if

a(k) = (V S†)ka(0)(SV †)k, (35)

for k = 1, · · · , d− 1.

2. DB(ρ) = 0, if and only if

a(k) = S†(k−1)(V S)(k−1)V a(0)V †(V S)†(k−1)Sk−1,
(36)

for k = 1, · · · , d− 1.

Hence, discord zero circulant state is fully character-
ized by a single matrix a(0) ≥ 0 and a unitary operator
V . In particular taking V = I one obtains

a(k) = S†ka(0)Sk, (37)

for DA(ρ) = 0, and

a(k) = a(0), (38)

for DB(ρ) = 0.

Example 1 In two-qubit case a circulant state is
given by (24). Interestingly, if (24) is not diagonal,
then X-state with vanishing discord is fully charac-
terized by Propositions 1 and 2:

1. X-state has vanishing DA, iff

a00 = b11, a11 = b00 , (39)

and |a01| = |b01|.

2. X-state has vanishing DB , iff

a00 = b00, a11 = b11 , (40)

and |a01| = |b01|.
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3. X-state is purely classical, i.e. DA(ρ) =
DB(ρ) = 0, iff

a00 = b00 = a11 = b11 =
1

4
, (41)

and |a01| = |b01|.

These results were already derived in [31, 47–49].

Example 2 Consider now a circulant state in 3⊗ 3
defined in (25). Assume that a matrix aij is not diag-
onal.

1. DA(ρ) = 0, iff the matrices bij and cij are de-
fined by

b =

 a11 a12e
iϕ1 a10e

i(ϕ1+ϕ2)

a21e
−iϕ1 a22 a20e

iϕ2

a01e
−i(ϕ1+ϕ2) a02e

−iϕ2 a00

 ,

and

c =

 a22 a20e
i(ϕ1+ϕ2) a21e

iϕ2

a02e
−i(ϕ1+ϕ2) a00 a01e

−iϕ1

a12e
−iϕ2 a10e

iϕ1 a11

 .

2. DB(ρ) = 0, iff the matrices bij and cij are de-
fined by

b =

 a00 a01e
−iϕ1 a02e

−i(ϕ1+ϕ1)

a10e
iϕ0 a11 a12e

−iϕ2

a20e
i(ϕ1+ϕ2) a21e

iϕ1 a22

 ,

and

c =

 a00 a01e
−i(ϕ1+ϕ2) a02e

−iϕ2

a10e
i(ϕ1+ϕ2) a11 a12e

iϕ1

a20e
iϕ2 a21e

−iϕ1 a22

 .

3. If DA(ρ) = DB(ρ), then

a
(n)
ii =

1

9
, (42)

and

|a(n)
ij | = const. (43)

for i 6= j.

More generally one has the following

Theorem 3 A two-qudit circulant state ρ living in
Cd ⊗ Cd, where d is a prime number, is completely
classical, i.e. DA(ρ) = 0 and DB(ρ) = 0, if and only
if

a
(0)
ii =

1

d2
, (44)

for i = 0, · · · , d− 1, and the off-diagonal elements

|a(0)
ij | = const. (45)

The remaining matrices a(n) are defined as follows

a(k) = (V S†)ka(0)(SV †)k. (46)

IV. CIRCULANT SYMMETRIC STATES

Interestingly several classes of symmetric states, like
e.g. Werner or isotropic states, belong to the class of
circulant states. Let G be a subgroup of the unitary
group U(d). A bipartite operator A living in Cd⊗Cd
is G⊗G–invariant [51, 52] if

U ⊗Uρ = ρU ⊗U , (47)

for all U ∈ G. Note, that if A is G⊗G–invariant then
its partial transposition AΓ is U ⊗U–invariant, where
U denotes complex conjugation with respect to a fixed
basis in Cd.

If G = U(d) then G⊗G–invariant state – Werner
state – is given by

ρW =
1− λ
d2

I⊗ I +
λ

d
F, (48)

where F is the flip operator defined by F =∑d−1
i,j=0 eij ⊗ eji. It is a circulant state and the cor-

responding matrices a(n) read as follows

a(0) =

{
0 , i 6= j,
λ
d + 1−λ

d2 , i = j

a(k) =

{
λ
d , j = i+ k,
1−λ
d2 , i = j

Hence DA(ρW ) = DB(ρW ) = 0 only if λ = 0.
Similarly an isotropic states which is invariant un-

der G⊗G is defined by

ρI =
1− λ
d2

I⊗ I + λP+
d , (49)

where

P+
d =

1

d

d−1∑
i,j=0

eij ⊗ eij . (50)
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One finds

a(0) =

{
λ
d , i 6= j,
λ
d + 1−λ

d2 , i = j

a(k) =

{
0 , i 6= j,
1−λ
d2 , i = j,

for k = 1, · · · , d−1. Again DA(ρI) = DB(ρI) = 0 only
if λ = 0. This results agree with [25] where geometric
discord for two-qudit Werner and Isotropic states was
calculated.

Consider now G consisting of real unitary operators
from U(d) (again in fixed basis in Cd). It turns out
that G = O(d) [51, 52]. One shows that O(d)⊗O(d)–
invariant state has the following form

ρ = aP̃0 + bP̃1 + cP̃2, (51)

with a+ b+ c = 1 and a, b, c ≥ 0. Normalized projec-
tors P̃0 are defined as follows P̃k = Pk/TrPk, where

P0 = Q+ − P+ , P1 = Q− , P2 = P+
d , (52)

and Q+, Q− are projectors onto the symmetric and
antisymmetric subspaces in Cd⊗Cd, that is,

Q± =
1

2
(I⊗ I± F) . (53)

Again, one easily shows that for d > 2 a symmetric
state ρ has vanishing discord if and only if ρ is max-
imally mixed. Interestingly for d = 2 a class of sym-
metric discord zero states is nontrivial. The density
matrix has the following form

ρ =
1

4


a+ 2c . . 2c− a
. a+ 2b a− 2b .

. a− 2b a+ 2b .

2a− c . . a+ 2c

 , (54)

and hence it belongs to the class of X-states. It is well
known that ρ is separable iff b, c ≤ 1/2. Note that ρ
has vanishing discord iff b = c (see Fig. 1). Note,
that the simplex in the bc–plane is defined by three
vertices P̃k: separable P̃0 and entangled P̃1 and P̃2.
Interestingly, P̃0 is not only separable but even purely
classical.

Finally, let G be a maximally commuting subgroup
of U(d) (again with respect to a fixed basis in Cd).
It was shown [53] that G⊗G-invariant state has the
following form

ρ =

d−1∑
i,j=0

aijeij ⊗ eij +
∑
i6=j

dijeii⊗ ejj , (55)

FIG. 1: A simplex of states with orthogonal symmetry
for d=2. Separable states form a gray square while zero-
discord states are represented by the red line.

where aij is a d × d positive matrix and dij are non-
negative numbers. Evidently, ρ defines a circulant
state with a(0) = a and a(k) are diagonal for k > 0.
Interestingly, this class of symmetric states is charac-
terized by a simple PPT condition, namely, ρ is PPT
iff

|aij |2 ≤ dijdji , i 6= j . (56)

However, the general condition for separability is not
known [53]. Note that ρ has vanishing discord iff aij =
0 for i 6= j, that is, ρ is diagonal.

V. GENERALIZED BELL DIAGONAL
STATES

In this section we analyze an important subclass
of circulant states. Let us introduce d2 maximally
entangled projectors defined by

Pmn = (I⊗ Umn)P+
d (I⊗ U†mn), (57)

where Umn are unitary matrices defined as follows:

Umn|ek〉 = λmkSn|ek〉, (58)

with S being the shift operator defined in (17), P+
d

- projector on maximally entangled state, and λ =
e2πi/d.

Remark 1 Actually, one may define a more general
class of states based on a class of ‘shift and multiply
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basis’ of unitary matrices in Cd defined as follows [50]

Uij |ek〉 = Hj
ik|eL(j,k)〉 , (59)

where a set of complex numbersHj
ik, and L : Id×Id →

Id with Id := {0, 1, . . . , d − 1}, satisfy the following
conditions:

i) each Hj is a Hadamard matrix,
ii) L is a Latin square, i.e., the maps k → L(k; `)

and ` → L(k; `) are injective for every `. It is clear
that (58) defines a special example of (59).

Consider simplex of Bell diagonal states defined by

ρ =

d−1∑
m,n=0

pmnPmn, (60)

where pmn ≥ 0 and
∑d−1
m,n=0 pmn = 1. It is evident

from the construction that Bell diagonals states be-
long to the class of circulant states. One can easily
check that corresponding matrices a(n) have the fol-
lowing form

a
(n)
ij =

1

d

d−1∑
m=0

pmnλ
m(i−j), (61)

hence defining Bell diagonal state is equivalent with
determining d2 coefficients pmn. Let us notice that
marginal density matrices of ρ are equal, ρA = ρB =
I/d which means that DA(ρ) = 0 if and only if
DB(ρ) = 0. Hence, whenever Bell diagonal states is
classical with respect to one party it is already com-
pletely classical.

Consider now πk ≥ 0 (k = 0, . . . , d− 1) such that

d−1∑
k=0

πk =
1

d
. (62)

Using results of the previous section one proves

Theorem 4 A Bell diagonal state (60), living in Cd⊗
Cd, where d is a prime number, is a zero-discord state
if and only if

pik = πi+kα (mod d), (63)

for some α ∈ {0, 1, . . . , d− 1}.

Hence, any Bell diagonal state is uniquely deter-
mined by a vector πk and the number ‘α’.

Example 3 Density operator for two-qubit case is de-
fined by the following matrices a(n)

a(n) =

(
xn yn
yn xn

)
, (64)

for n = 0, 1, where

xn =
1

2
(p0n + p1n), yn =

1

2
(p0n − p1n), (65)

This state is classical if and only if xn = 1/4 and
y1 = ±y0. In terms of the probability matrix

pij =

(
p00 p01

p10 p11

)
,

one has (
π0 π0

π1 π1

)
,

(
π0 π1

π1 π0

)
, (66)

corresponding to α = 0 and α = 1, respectively.

Example 4 A two-qutrit Bell diagonal state is de-
fined by matrices

a(n) =

 xn zn zn
zn xn zn
zn zn xn

 , (67)

for n = 0, 1, 2, where

xn =
1

3
(p0n + p1n + p2n) (68)

and

zn =
1

3
(p0n + λp1n + λp2n). (69)

This state is classical if and only if diagonal elements
xn = 1/9 and the off-diagonal elements fulfill one of
the following conditions

zn = λnαz0 , n = 1, 2 , (70)

where α ∈ {0, 1, 2}. In terms of the probability matrix
pij one has π0 π0 π0

π1 π1 π1

π2 π2 π2

 ,

 π0 π1 π2

π1 π2 π0

π2 π0 π1

 ,

 π0 π2 π1

π1 π0 π2

π2 π1 π0

 ,

for α = 0, α = 1 and α = 2, respectively.

VI. CONCLUSIONS

We analyzed a large class of two-qudit circulant
states which provide natural generalization of the cel-
ebrated X–states. For prime dimension d we formu-
lated necessary and sufficient conditions for vanish-
ing discord. It turns out that such states are fully

7



characterized by a density operator living on one par-
ticular subspace from the direct sum decomposition
Σ0 ⊕ . . . ⊕ Σd−1. Interestingly the class of circulant
states contains several well known classes of symmet-
ric states, i.e. states invariant under the local action of

U(d) or its subgroups. Finally, we characterized Bell
diagonal states (another important class of circulant
states) with vanishing quantum discord. This analy-
sis generalizes the well known characterization of Bell
diagonal states of two qubits.
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