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Abstract: It is often recognized that cognitive science employs a diverse explanatory toolkit. It has 

also been argued that cognitive scientists should embrace this explanatory diversity rather than 

pursue search for some grand unificatory framework or theory. This pluralist stance dovetails with 

the mechanistic view of cognitive-scientific explanation. However, one recently proposed theory 

– based on an idea that the brain is a predictive engine – opposes the spirit of pluralism by 

unapologetically wearing unificatory ambitions on its sleeves. In this paper, my aim is to 

investigate those pretentions to elucidate what sort of unification is on offer. I challenge the idea 

that explanatory unification of cognitive science follows from the Free Energy Principle. I claim 

that if the predictive story is to provide an explanatory unification, it is rather by proposing that 

many distinct cognitive mechanisms fall under the same functional schema that pertains to 

prediction error minimization. Seen this way, the brain is not simply a predictive mechanism – it 

is a collection of predictive mechanisms. I also pursue a more general aim of investigating the 

value of unificatory power for mechanistic explanations. I argue that even though unification is 

not an absolute evaluative criterion for mechanistic explanations, it may play an epistemic role in 

evaluating the credibility of an explanation relative to its direct competitors.  
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The strive for theoretical and explanatory unity is no longer universally regarded as a 

fundamental normative principle of science (Braitenbach, Choi 2017; Cartwright 1999; Dupré 

1993). This at least applies to the special sciences, given that physicists have not yet forgone the 

search for a grand unifying theory. Cognitive science (including cognitive neuroscience) is no 

different in that regard. One thing to note is that, regardless of normative issues, as a matter of 

fact, there is no single overarching theory or framework under which explanations of distinct 

cognitive phenomena could be subsumed. Differing theories and models, based on different 

assumptions and concepts co-exist, corresponding to distinct research goals and domains. Some 

phenomena are explained representationally, while other explanations do completely without 

invoking semantically evaluable states; some phenomena are explained using dynamical systems 

theory, while others are modelled using a more old-fashioned symbolic-computational approach; 

some models abstract away from neuroscientific detail, while others are largely physiological, etc. 

Crucially, not that many cognitive scientists or philosophers still worry over the fragmentation of 

cognitive science. In fact, it has been argued that explanatory pluralism is not simply an 

inconvenient feature of cognitive science at this stage of inquiry, but also that the disunity is in 

some sense desirable (Dale 2008; Dale, Dietrich, Chemero 2009). From this perspective, the 

search for a theory or framework to which this diversity could be reduced looks misguided and, 

perhaps, futile. Plurality, not unity is the natural order of things. 

 The spirit of explanatory pluralism dovetails with the idea that cognitive-scientific 

explanations are predominantly mechanistic (Bechtel 2008; Bechtel, Richardson 1993; Craver 

2007; Kaplan 2011; Piccinini, Craver 2011).1 To explain a phenomenon mechanistically is to 

                                                        
1 A clarification is in order here. Two sorts of explanatory pluralism should be distinguished: (1) pluralism regarding 

the explanations themselves, (2) pluralism regarding the types of explanatory strategies at use. In this paper, I appeal 

to (1). In the context of mechanism, this sort of pluralism means that different phenomena are explained by appeal 

to distinct mechanisms, which differ in terms of their functional and structural organization. Pluralism in the sense 

(2) pertains to the issue of whether cognitive science makes use of distinct types of explanation, e.g. to whether it 

makes use of non-mechanistic explanations (see e.g. Chirimuuta 2017; Weiskopf 2011). In the present paper, I leave 

this problem aside and focus my discussion on mechanistic explanations. I am indebted to an anonymous reviewer 

for urging me to draw this distinction. 
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describe an organized set of component parts and their activities that are jointly responsible for 

the phenomenon. Crucially for the present purposes, the quality of a mechanistic explanation can 

be disentangled from its unificatory potential. That is, its value is not necessarily dependent on 

how well it unifies distinct phenomena or on whether the explanation itself falls under some 

unifying principle or law. Rather, the centrally important norm that dictates the quality of a 

mechanistic explanation is how well it maps onto actual causal structure of a mechanism 

responsible for the explanandum phenomenon (Kaplan 2011). Sometimes this capacity to track 

the relevant causal structure may come at an expense of how well an explanation unifies 

phenomena. If the brain is composed of many highly heterogenous mechanisms, then this fact 

will be mirrored in the heterogenous, perhaps to the point of being ‘monstrous’, nature of the 

scientific models of those mechanisms (see Miłkowski 2016). These models may differ 

substantially, with each of them having an explanatory scope limited to a particular phenomenon. 

Disunity would not count against those models in such a scenario; accuracy in describing 

mechanisms is more important. This way, the assumption that cognitive science explains by 

describing mechanisms justifies dropping the search for unity as an ideal of cognitive-scientific 

inquiry.2  

 However, there is at least one ambitious theoretical proposal on the market which 

vehemently contradicts the pluralist outlook. This theory states that the brain is a prediction 

engine of a specific sort. Part of the attraction of this proposal is supposed to stem precisely from 

its unificatory power, as it is sometimes introduced as a potential ‘grand unifying theory’ of the 

brain and cognition (Friston 2009, 2010). This story is rooted in a theory of what life is, namely on 

the Free Energy Principle (FEP). Roughly, according to the FEP, living systems are things that 

maintain their own existence by minimizing the free energy of their sensory states. From the FEP’s 

standpoint, an organism is treated as a model of the causal structure of its environment, a model 

which maximizes evidence of its own existence, thereby avoiding thermodynamic dispersal. To 

achieve this, an organism engages in actions that minimize the prediction error, i.e. the 

                                                        
2 Instead of unification, mechanists tend to talk about integrating different strands of research by showing how they 

are aimed at discovering the same mechanism, or how they uncover interactions between distinct mechanisms. (See 

Craver 2007; see also Miłkowski 2016 for the distinction between unification and integration).  
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discrepancy between its expectations about its sensory states and actual states of its sensory 

apparatus. By way of conceptual necessity (to live is to minimize free energy), FEP applies to all 

living systems, and this large scope is where a major part of the unificatory power of the theory 

supposedly lies. In addition, FEP inspires a particular set of claims about cognitive architecture, 

usually dubbed in literature as ‘predictive processing’ (PP; see Clark 2013, 2016; Hohwy 2013, 

2018; Wiese, Metzinger 2017). Again, roughly, in PP the brain is construed as storing a hierarchical 

generative model of the environment which sends a cascade of top-down sensory predictions to 

minimize the bottom-up prediction error signal, where the error signal is precision-weighted 

according its predicted reliability. This single computational scheme is supposed to explain 

perception, action and attention. Furthermore, there are attempts to use PP as a basis for 

explanations of more fine-grained cognitive phenomena, like aspects of social cognition, 

binocular rivalry, the formation of psychotic states, pain perception, conscious sense of presence, 

religious experience, the inability to tickle oneself, the perception of time, or even decision 

making while driving a car (see e.g. Brown, Adams et al. 2013; Geuter, Boll et al. 2017; Engström, 

Bärgman et al. 2017; Hohwy, Paton, Palmer 2015; Hohwy, Roepstorff, Friston 2008; Quadt 2017; 

Seth 2014; Sterzer, Adams et al. 2018; van Elk, Aleman 2017). From a pluralist standpoint, this 

unificatory ambition may seem preposterous, or at least suspicious. 

 It is not the aim of this paper to evaluate whether the predictive mind view succeeds at 

unifying cognitive science (the proponents of the predictive view are understandably optimistic 

about this, but some authors are less convinced, see e.g. Colombo, Wright 2017). Instead, the 

point is to elucidate what it would even mean to unify cognitive science with a theory of this sort. 

I will argue that the unifying power of the theory does not come from FEP, as it is doubtful 

whether and how the principle could provide a properly explanatory unification for cognitive 

science. Rather, if the predictive story was to unify cognitive science, it would be by providing (in 

the form of PP) a functional sketch of a mechanism that turns out to recur throughout the brain 

(Danks 2014). That is, although the brain is composed of many distinct mechanisms, these 

mechanisms may be unified by the fact that they fall under a common blueprint in their functional 

organization. I also have another, more general goal, as I aim to use the PP as an instructive case 

study of where the value of a mechanistic explanatory unification of cognitive science may reside. 
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After all, the question may still be raised about whether anything is to be gained, in terms of 

explanatory quality, from unification. Although I agree with mechanist’s denial that unification is 

an absolute evaluative norm for a mechanistic explanation, I claim that it may still serve as a 

relative norm in evaluating competing models of cognitive mechanisms. 

The discussion to come is structured as follows. In section 2, I take a closer look the FEP, 

distinguishing it from PP and evaluating its explanatory and unificatory potential for cognitive 

science. In section 3, I focus on PP to put forward a different take on how it provides explanatory 

unification for cognitive science. In section 4, I generalize my discussion to consider the value of 

unification in evaluating mechanistic explanations. I close the paper with a succinct summary. 

 

2. Free Energy Principle and the predictive mind’s unificatory ambitions 

 

In this paper, I take the ‘predictive mind’ view to be a combination of two ideas. On the 

one hand, the view is deeply rooted in the free energy principle (FEP), which is an abstract 

conception in theoretical biology that aims to rigorously capture what it takes to be a living agent 

(Friston 2012, 2013). On the other hand, the predictive view encompasses predictive processing 

(PP), which is a set of claims about cognitive architecture which are usually associated with FEP 

(see Clark 2013, 2016; Hohwy 2013, 2016; Wiese, Metzinger 2017). Given that my focus is on 

unifying cognitive science, I am mostly concerned with the properly cognitive part of the story, 

which is PP. However, PP cannot be neatly separated from FEP. In fact, the unificatory ambition 

of the former seems tightly connected to unificatory ambition of the latter. The ‘grand unifying 

theory’ dialectic that accompanies discussions of PP is often taken to be justified by how PP fits 

into a larger overarching context of FEP. I want to investigate this connection, as it is not entirely 

clear what sort of explanatory unification FEP is supposed to deliver and how it applies to unifying 

cognitive science. 

FEP originates from the claim that to live is to keep oneself in far-from-thermodynamic-

equilibrium steady state. According to FEP, this can be fruitfully captured in statistical terms (see 

Friston 2009, 2010, 2012, 2013). Each phenotype is said to ‘define’ or ‘entail’ a probability 

distribution over its possible internal states. After all, so long as it exists, an organism is far more 
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likely to be in one the states that lie within the rage of states which sustain its thermodynamic 

viability than in a state outside of this range. Furthermore, because the internal states are 

dependent on the states of the external environment, an organism ‘implicitly’ encodes a 

generative model that specifies how internal states are probabilistically conditional on external 

states. To live, then, a system must maximize, through action (‘active inference’), the evidence 

(posterior probability) of the model that it embodies; that is, it must act to avoid states that are 

surprising (i.e. are associated with large negative log probability), given this model. However, 

solving this problem directly is equivalent to performing optimal Bayesian inference and is 

computationally intractable. Another difficulty is that the organism has no ‘God’s point of view’ 

from which it could directly access the true posterior distribution. According to FEP, these issues 

can be averted. Instead of computing posterior probabilities directly, the uses a tractable 

variational Bayesian method to arrive at a recognition distribution which, with adjustments made 

over time, starts to approximate the true distribution. The point is that the organism 

incrementally optimizes the recognition distribution (i.e. brings it closer to the true distribution) 

by minimizing the information-theoretic free energy of its own sensory states. This is possible 

because the free-energy of the sensory states defines an upper bound on the value of surprise; 

so, minimizing the former value equals minimizing the latter. Furthermore, free energy is treated 

as equivalent to long-term prediction error of the sensory states, i.e. the discrepancy between 

expectations, implicitly ‘encoded’ in the organism’s phenotype, and the sensory feedback 

acquired through sampling the environment. Hence, to live a system must, over long periods of 

time, avoid unexpected sensory states. 

To see how this general outlook promises to provide unification for cognitive science, two 

further considerations must be added. One, proponents of FEP take this principle to ‘entail’ PP, 

i.e. a set of claims about the information-processing mechanisms in the brain (Friston 2009, 2010). 

Neural ensembles are supposed to implement variational Bayes and the ultimate function of the 

brain is supposed to be minimizing the prediction error. I will return to this notion shortly. Second, 

FEP itself seems to bring heavy unificatory power of its own. One of the hallmarks of unified 

explanations is that they have large, preferably unbounded scope (Kitcher 1989; Miłkowski 2016). 

By conceptual necessity, FEP generalizes over all living (self-organizing, adaptive) systems. After 
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all, once we agree on characterizing the organism as encoding a generative model of its 

environment, it follows that minimizing long-term prediction error of sensory states is a necessary 

condition for being a living system. Because FEP is both unificatory and has, according to its 

proponents, commitments about how cognition is realized in the brain, it is only natural to see it 

as holding serious unificatory promise for cognitive science.  

One major doubt about whether FEP could deliver successful explanatory unification for 

cognitive science lies in the question about the explanatory status of the principle itself. To 

provide an explanatory unification for cognitive science, the FEP needs to be in some sense 

explanatory. Furthermore, even if shown to be explanatory, FEP needs to provide us with an 

explanation of an appropriate sort, namely of the sort that cognitive scientists strive for. And on 

the view employed in the present paper, what cognitive scientists ultimately seek is to latch onto 

the causal nexus of the world to uncover the causal basis of cognition (but see note 1). This can 

be done by either characterizing the causal-etiological antecedents of cognitive phenomena or by 

uncovering their constitutive dependency on a lower-level mechanism, comprised of a set of 

organized, active components of the cognitive system (Craver 2007).  

However, FEP does not seem like a causal-etiological or causal-mechanistic explanation at 

all (see also Colombo, Wright, 2018; Klein 2018). It is an abstract, formally expressed principle 

that characterizes an imperative rule regarding what an organism necessarily needs to do to 

persevere. This principle is also descriptive insofar as the behavior of any system that resists 

structural disintegration can be characterized in terms of maximizing evidence for a generative 

model that the system in question ‘embodies’. Necessarily, all living systems obey the FEP. This 

means that the behavior of any such system can be represented as a trajectory in a state-space 

which is jointly determined by the prior beliefs ‘embodied’ in the system and its current sensory 

states. But understood this way, FEP stands as an ingenious technical redescription of what 

adaptive or self-organizing behavior is, rather than an explanation of it. Of course, the way we 

describe phenomena guides our explanatory practices, and so unifying phenomena by subsuming 

them under one description might invite explanatory unification. Still, descriptive unification is 

not yet explanatory unification (Danks 2014).  
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To counter this criticism, one might note that FEP allows one not only to describe, but also 

to predict how the system’s state-space trajectory will evolve over time, and how it would evolve 

under a range of counterfactual scenarios. This way, FEP could be seen as a basis for covering-law 

explanations, with the principle itself serving as a biological law or law-like regularity, which 

allows (given antecedent conditions, i.e. the model and sensory state) predictions about actual 

and possible behavior. Although this is a promising way of interpreting the explanatory role of 

FEP, doubts about its usefulness for cognitive science remain. The idea that cognitive phenomena 

can be properly explained in a nomological manner has been contested (Bechtel 2008; Craver 

2007; Cummins 2000; Glennan 2017). It has been argued that law-like regularities act as mere 

descriptions of phenomena; that covering-law ‘explanations’ confound prediction with 

explanation, as it is possible to predict phenomena without knowing their causes or underlying 

mechanisms; that the covering-law view of explanation does not adequately characterize 

explanatory practices of cognitive scientists. Arguably, those well-known issues could be raised 

with regards to FEP. The principle can be said to describe adaptive behavior and allow for its 

prediction, but only in a highly idealized way that abstracts from the behavior’s underlying causes. 

So, under the covering-law reading, FEP is at least potentially explanatory, just not in the exact 

sense of providing causal/mechanistic explanations which cognitive scientists are interested in. 3 

But perhaps the discussion so far gets things fundamentally wrong. Perhaps it is a mistake 

to seek explanatory unification in the FEP itself. Rather, FEP plays a unificatory role only through 

its relation to PP. While FEP serves as an abstract principle or law, PP provides a sketch of a 

cognitive mechanism that realizes the free-energy minimization. It is PP that acts as proper 

explanation of cognitive phenomena in this story. And it is PP where some sort of explanatory 

unification is to be found. The intuition behind this is that FEP renders PP as something more than 

yet another empirical hypothesis regarding the nature of cognitive mechanisms. The PP is 

supposed to not simply turn out, as a matter of fact, to provide a successful explanatory 

                                                        
3 Another possibility might be that FEP is explanatory in still some other, non-mechanistic (non-causal) sense of 

‘explanation’. For example, it might be argued that FEP explains in virtue of showing how certain features of 

mechanisms that realize cognition are necessitated by mathematical facts (see Chirimuuta 2017; Lange 2013). 

Discussing this possibility is, however, beyond the scope of the present paper. 
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unification of cognitive phenomena. Rather, its unificatory power is purportedly derived – as a 

matter of principle, not (just) fact – from its connection to FEP.  

Although I think that there is a relatively weak reading of the FEP-PP relation that goes 

some way to justifying this general intuition (I will turn to this in the next section), a far stronger 

view is sometimes associated with the FEP literature (see e.g. Colombro, Wright 2018). On this 

view, FEP a priori necessitates the truth of PP. That is, FEP entails facts about cognitive 

architecture, down to the neural level. As noted by Colombo and Wright (2018, p. 18), FEP 

theorists sometimes proceed more geometrico, by deducing, from axioms and formulae, 

seemingly contingent facts like the hierarchical organization of cortical layers or the existence of 

neural adaptation and repetition suppression. Once one adopts this strategy of theorizing, the 

unificatory status of PP is clear. FEP is, by conceptual necessity, true of any living (adaptive, self-

organizing) agent. FEP entails PP as an account of its realizing mechanism. Since FEP applies 

universally, so does PP.  

Several worries about the legitimacy of this move emerge. What immediately invites 

caution is the suspect epistemic status of the reasoning behind this kind of defense of PP’s 

unificatory role. After all, we are led to believe that relatively fine-grained details of cognitive 

architecture can be derived a priori from FEP. And FEP, as its proponents themselves agree (see 

e.g. Friston, Thornton, Clark 2012), is ultimately a mathematically refined expression of a 

tautological-sounding statement that to live is to actively avoid thermodynamic death. It seems 

like too much is deduced from too little, giving the argument a worryingly ‘Hegelian’ flavor 

(Chemero 2011). 

Another point is that FEP is too general in scope to provide a proper sort of unification for 

cognitive science. If FEP entails constraints on the causal organization of free-energy-minimizing 

systems, these constraints should be taken to apply to all systems that fall under the principle. 

However, the latter category encompasses single-cell organisms, multicellular organisms that lack 

a nervous system and cognitively sophisticated animals like octopuses, whose nervous system 

differs significantly in its organization from, say, a human nervous system. From FEP’s vantage 

point, a Paramecium or a sponge minimizes the free energy of its sensory states in the same sense 

as a chimp. The class of systems that fall under FEP then includes seemingly non-cognitive 
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systems, systems that count as barely or minimally cognitive and full-blown cognitive systems 

that differ substantially among each other (like cephalopods and primates). It is doubtful that 

there is a core cognitive mechanism such that all these systems fall under the FEP in virtue of 

being equipped with this mechanism. It seems more likely that what unifies those systems and 

makes them all fall under the FEP is that they have a dispositional, system-level property of acting 

adaptively. This makes them ‘appear as if’ they were sampling the environment to find 

themselves in unsurprising sensory states.  This fact allows us to construe them all as free-energy-

minimizers. 

A related point is that even if we allow that all living systems realize the FEP by 

implementing PP, this comes at a cost of PP being too liberal an account of cognitive mechanisms. 

Take for example the fact any free-energy-minimizer is described as a generative model 

‘embodying’ or ‘encoding’ prior beliefs about the causal structure of its environment. As other 

authors have already noted (Bruinenberg, Kiverstein, Rietveld 2018; Clark 2017), the sense of 

‘belief’ at use here is extremely loose. FEP is liberal about how those priors are realized in the 

system, as any morphological feature of an organism in virtue of which the organism ‘fits’ an 

aspect of its environment can be said as ‘encoding’ a prior ‘belief’ about this aspect. Even single-

cell organisms count as prior-belief-holders on this rendering. This might mean that the contents 

thus ascribed to an agent are not observer-independent, semantic properties of the agent’s 

internal states, causally shaping its behavior. Because FEP is so liberal about how prior beliefs are 

realized, ascriptions of prior beliefs may have merely fictional, ‘as if’ status (see Downey 2018). 

Alternatively, the intentional commitments of FEP might be construed realistically, assuming a 

realist view that is relaxed with respect to commitments about internal mechanisms (see e.g. 

Dennett 1991, Schwitzgebel 2002). In any case, the point is that intentional ascriptions in FEP are 

simply meant to capture the adaptive value of agent’s features, rather than provide a story about 

mechanisms underlying the agent’s behavior. 

Relatedly, consider how FEP parcels any living system (see e.g. Friston 2009, 2012, 2013) 

into internal states, sensory states, active states (which determine the system’s actions), and 

distinguishes those from the external states. Internal, sensory and active states are characterized 

functionally at a very coarse level of grain. For example, sensory states are defined as part of a 
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Markov blanket that separates the system from its surroundings (Friston 2013). All this means is 

that, given knowledge about the current sensory state, the internal states of the system are 

conditionally independent from the external states. But to have sensory states in this technical 

sense, all that is required is for the system to have a boundary – which is to say that it is a system 

distinguishable from its environment. On this construal, not only retinal or tactile input to the 

human brain, but also states of a plasma membrane shielding single cell’s organelle from external 

environment count as ‘sensory’. This shows, again, how FEP only puts extremely general 

constraints on the causal organization of organisms, perhaps to the point of lacking any non-trivial 

commitments about it.  

Although probably not conclusive, those points cast doubt over the possibility of FEP 

unifying cognitive science. The elegant picture of a simple principle with an explanatory scope 

that encompasses all living things and from which facts about causal mechanisms of cognition can 

be deduced may appear appealing. Under closer scrutiny, it is far from clear whether the principle 

in question is explanatory and whether any sort of sufficiently detailed causal story is entailed by 

it. Some of the unificatory allure of the predictive mind is lost. 

 

3. Unifying cognitive science with predictive mechanisms 

 

In this section I propose a different way of looking at the predictive mind’s unificatory 

credentials. Roughly, the idea is that while unification cannot be derived from first principles, it 

may be achieved if the account of cognitive architecture that the predictive view puts forward 

proves to have wide explanatory scope. This puts PP, rather than FEP, center stage. I will start out 

by outlining PP and a different, more relaxed perspective on how it relates to FEP. Then I will 

combine the mechanistic view of explanation with Danks’ (2014) notion of schema-centered 

unification to present a different interpretation of the predictive mind’s unificatory role.  

While FEP belongs to theoretical biology, PP constitutes the properly cognitive part of the 

‘predictive mind’ view. As I take it, PP is an account of architecture which goes beyond the 

assumptions present in FEP (for detailed expositions, see Clark 2013, 2016; Hohwy 2013; Wiese, 

Metzinger 2017). It takes the neural structures to encode an internal statistical model of the 
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causal layout of the environment, a model that has been argued to function as an action-oriented 

structural representation (Gładziejewski 2016; Kiefer, Hohwy 2017; Williams 2017). This model is 

updated to provide estimates of the most likely causes of incoming sensory signals, in a way that 

approximates Bayesian inference. This is achieved by sending top-down predictions aimed at 

minimizing the prediction error, which is the discrepancy between the predicted and incoming 

sensory signals. The model is hierarchical, with each level exclusively sending prediction signals 

to, and receiving error signals from, the level directly below it in the processing hierarchy. What 

is propagated up the hierarchy are just the error signals. These signals are precision-weighted 

according to their predicted precision, so the relative contribution to processing of top-down and 

bottom-up factors is flexibly regulated on the fly. This scheme can subserve perceptual processes 

and attention, with attention explained in terms of precision weighing. But it can also account for 

motor control assuming the error signal is minimized by changing the environment through action 

rather than by changing the internal estimates. Assuming that the brain’s statistical model of the 

environment can be employed off-line and stores representations that substantially abstract from 

the sensory periphery, PP could also scale up to explain cognition classically understood 

(Gładziejewski 2016; Clark 2013; Hohwy 2013; but see Williams, 2018). 

Because of the reservations mentioned in the previous section, I take it that the 

relationship between the account of cognition just outlined and the FEP is not one of entailment. 

Still, those two are closely related. Given that the prediction error can be treated as equivalent to 

the free-energy of the sensory states, PP provides a plausible account of how some types of 

organisms may realize the FEP. However, rather than assuming that there is a relation of a priori 

necessitation between the two, it seems more reasonable to treat FEP as a powerful heuristic 

guide for the development of PP (see Zednik, Jäkel 2016). Perhaps FEP gives rise to PP only in 

combination with other evolutionary or design considerations. What some organisms, like single 

cells or sponges, achieve through direct interactions with the environment, others can only do by 

intracranially predicting their own future sensory states. This way, FEP, when combined with 

other considerations, makes PP architecture natural to be expected as a solution to the problem 

of how to minimize the free energy. There is a reason why this sort of scheme would evolve. But 
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even if PP gains some pragmatic leverage thanks to the FEP, it functions as another account of 

cognitive architecture on the market. It is not necessitated by first principles. 

As with other proposals regarding cognitive architecture, on this view PP can only succeed 

insofar as it turns out fruitful in providing detailed explanatory models of cognitive phenomena, 

ones that are rich in empirical predictions and can survive experimental scrutiny. And assuming 

mechanism about cognitive-scientific explanation, these need to be models of mechanisms. 

Here I follow authors who already opted for treating PP as a mechanism sketch (Harkness 

2015; Hohwy 2018). By providing a mechanistic sketch, PP represents the relevant mechanism in 

terms of the functional roles played by its components, leaving out details regarding the neural 

structures that realize these functions (Piccinini, Craver 2011). As such, it does not stand as an 

explanation on its own, but constitutes an explanation-to-be, waiting to be filled out with 

structural and organizational details. It can only be touted as true or accurate mechanistic 

explanation if the relevant functional sketch is shown to correspond to the organized components 

of the brain which are responsible for the phenomena being explained. For example, the precision 

weighting may be realized by dopaminergic gating, and perhaps distinct efferent and afferent 

neural pathways can be ascribed the role of transmitting top-down predictions and bottom-up 

error signals, respectively. This is not only a rational reconstruction of what PP should strive for 

to play an explanatory role. I take it that this view is also implicitly present in the explanatory 

practice of the proponents of PP, who make attempts to find the neural realizers for the 

prediction error minimization (see e.g. Bastos, Usrey et al. 2012; Friston, FitZgerald et al. 2017; 

Kanai, Komura et al. 2015). Hence, based both on assumptions about the nature of explanation 

and the scientific practice, a crucial condition on PP’s explanatory success is that it cuts cognition 

at its mechanistic causal joints.   

I propose that this view of PP as a mechanism sketch should be nuanced in the following 

way. Sometimes PP is introduced using sweeping notions, like the claim that prediction error 

minimization is ‘all the brain ever does’ (see e.g. Hohwy 2013, p. 7). Although potentially true at 

some level of abstraction, such claims seem limited in their explanatory power. It would be 

uninformative to say that the brain as such is one big prediction-error-minimizing mechanism that 

gives rise to a variety of cognitive phenomena. Furthermore, this sort of ‘holistic’ dialectic is at 
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odds with assumptions that mechanism makes about explanation. Mechanistic explanation is 

piecemeal, in that distinct cognitive phenomena are usually explained by appealing to functionally 

and causally distinct mechanisms. In fact, mechanisms are partially individuated based on 

phenomena they explain; they are always mechanisms of phenomena (Bechtel 2008; Craver 

2007).  

It is hard to see how this should not apply to PP as well. Note that there are multiple 

distinct models based on PP put forward as explanations of distinct phenomena. It seems unlikely 

that they all appeal to a single mechanism. PP should not be committed to the claim that, say, 

low-level visual edge detection, folk physics and the disruption of social cognition in autism share 

a common neural mechanism. In principle, it is plausible that the brain harbors a number of 

causally and functionally distinct mechanisms that fall under the PP scheme. There may be 

multiple prediction-error-minimizing hierarchies responsible for distinct phenomena. In addition, 

distinct levels within a single such hierarchy could count as distinct mechanisms. In other words, 

there may be many distinct, at least partially independent mechanisms responsible for distinct 

phenomena, with each of them consisting of a hierarchical model (or a single level within such 

model) minimizing the prediction error. We may call them ‘predictive mechanisms’ or ‘PP-

mechanisms’. This way, PP captures a pattern of functional organization that recurs throughout 

those mechanisms. The brain is not simply a predictive mechanism – it is a collection of predictive 

mechanisms.4 

If this interpretation of PP’s explanatory commitments is right, the unificatory ambitions 

of PP emerge as a species of what Danks calls a ‘schema-centered’ unification. Schema-centered 

unifications arise  

 

‘when we have a collection of distinct cognitive theories and models that 

are nonetheless all instantiations of the same type of structure (in some 

                                                        
4 This multiple-predictive-mechanisms interpretation of PP is defended here based on methodological considerations 

regarding how mechanistic explanation works in general. This is not enough to completely rule out the possibility 

that single-mechanism view of PP is true. Ultimately, this is an empirical matter. I thank an anonymous reviewer for 

pointing this out. 
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sense). In other words, schema-centered accounts argue for cognitive 

“unification” in virtue of some common template that is shared by all the 

individual cognitive models, rather than through shared cognitive 

elements (…) across those models.’ (Danks 2014, p. 176)  

 

Similarly, what we call ‘PP’ divides into many distinct PP-models, aimed at representing 

mechanisms of distinct phenomena. These models are unified not by describing a single cognitive 

structure (mechanism), but because they share common core assumptions about relevant 

mechanisms. 

There are a couple of ways in which a collection of mechanisms that fall under a common 

predictive template could provide a schema-centered explanatory unification. These distinct 

explanatory strategies can be easily discerned in existing literature, but it may be useful to list 

them here explicitly.  

First, there may be distinct neural mechanisms which fall under the same predictive 

scheme. In particular, distinct phenomena could be explained by appeal to distinct prediction-

error-minimizing hierarchies. For example, different sensory modalities could be underpinned by 

distinct, largely independent such hierarchies, each aiming to minimize the prediction error in a 

way that is confined to a given sensory channel. It is also well established that there is a functional 

specialization within modalities, e.g. with distinct cortical mechanisms responsible for extracting 

different visual features, like color or motion (Zeki, Watson et al. 1991). Again, from PP’s 

unificatory standpoint, each such mechanism could be regarded as preforming the same sort of 

approximate Bayesian inference, with types of visual features as ‘hypotheses’ that best explain 

distinct statistical regularities in visual input. 

Second, there is a possibility that distinct levels within a single hierarchy could explain 

distinct cognitive phenomena. Drayson (2017) argues that the causal dependency between 

different layers in a predictive processing hierarchy is intransitive. If level M+1 causally influences 

level M, and level M causally influences Level M–1, then it is not the case that Level M+1 is causally 

influencing Level M–1. This makes non-adjacent levels causally independent enough to be 

considered distinct modules, at least on quite relaxed criteria of modularity (Drayson 2017). This 
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opens the possibility that distinct levels within a single hierarchy could serve a mechanisms of 

distinct phenomena. One obvious division of explanatory labor of this kind would be between 

perception and cognition. According to PP, different layers of the hierarchical model track causal 

patterns that appear at different spatiotemporal scales, with levels high in the hierarchy tracking 

regularities which abstract away from rapid changes of the current sensory input (Hohwy 2013). 

As such, it might be argued that these higher levels are well-poised to explain ‘thinking’ or ‘higher’ 

cognitive phenomena (however, see Williams, 2018). 

A third possible strategy consists in pointing to distinct aspects of PP-mechanism as 

explanatory. That is, given a particular mechanism, certain aspects of its functioning could 

account for specific phenomena. For example, the estimated-precision-based regulation of gain 

on the prediction error signal has been put forward by the proponents of PP as an explanation of 

attention (Clark 2013; Hohwy 2013). By analogy, disruptions of certain aspects of the functioning 

of PP-mechanisms may explain cognitive disfunctions. For illustration, aberrant weighting of the 

error signal relative to prior beliefs has been argued to explain hallucinations and delusions that 

accompany mental illness (Fletcher, Firth 2009; Sterzer, Adams et al. 2018).  

Fourth, the ways in which distinct PP-mechanisms become integrated may play 

explanatory roles. Although the present approach suggests the existence of many distinct PP-

mechanisms, these do not have to be completely causally disconnected from each other. In fact, 

PP presents us with straightforward ways of understanding of how these mechanisms could be 

integrated, at least from a computational point of view. The most obvious possibility is how 

correlations between distinct signals (associated with distinct inferential hierarchies) can be 

integrated into a representation of a common cause at a higher inferential level. This is how PP 

accounts for multimodal integration or feature binding (Hohwy 2013; Wiese 2017). Another 

possibility is to treat interactions within a single inferential hierarchy as explanatory. For example, 

it might be argued that PP accounts for mental imagery as a sort of off-line simulation, whereby 

imagining results from endogenous sensory sampling (Clark 2013). This process would originate 
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at relatively high levels of the hierarchy, generating a cascade of top-down ‘mock’ sensory signals, 

activating lower levels.5  

 

4. The value of unification for mechanistic cognitive science 

 

Underlying the discussion so far was the assumption that explanatory unification matters, 

and so PP gains some additional value due to its unificatory credentials. My aim now is to put this 

assumption under scrutiny. Does the promise of unification that it brings give additional 

credibility to PP? Does the unificatory potential confer additional explanatory value on PP? 

Although I do not have definite answers on offer, I will tentatively sketch out what I take to be a 

promising way of understanding the value of schema-centered unification. Before I proceed with 

this positive view, we need to be clear about the roles that explanatory unification probably 

cannot play.  

Consider the relation between unification and explanation in the context of cognitive 

science. It is doubtful that unification can be treated as constitutive of an explanation (which goes 

contrary to an intuition that guides unificationist accounts of explanation, see Friedman 1974; 

Kitcher 1989). After all, there may be non-explanatory unifications. It has been argued that at 

least some purported unifying dynamical explanations are in fact instances where a single 

mathematical formalism merely describes multiple phenomena (see Zednik 2011). That is, they 

describe what the system is doing, rather than explain how it is doing it. On one reading, outlined 

in section 2, FEP provides a merely descriptive unification, in that it allows us to describe diverse 

systems in terms of generative models maximizing their own evidence.  

It could be argued that while unification is not constitutive of an explanation, it is a 

normative criterion of its quality or its proximity to truth. Although explaining is distinct from 

                                                        
5 It is important to avoid potential confusions regarding the distinct notions of ‘level’ at use when we talk about 

integrating PP-mechanisms. When we speak of interactions between ‘higher’ and ‘lower’ levels within a given 

inferential hierarchy, we mean processing levels, which correspond to causally related stages in a computational 

process. The levels are not (or do not have to be) hierarchical in the sense of being componential. The PP-mechanisms 

being integrated appear at the same componential or mechanistic level (see Craver 2007). 
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unifying, once you have an explanation of a phenomenon, it better be unificatory. That is, in virtue 

of being unificatory – and presumably along with meeting some other criteria – an explanation is 

a good explanation, or one that can be regarded as (approximately) true. However, if we assume 

the mechanist view of cognitive-scientific explanation, the quality of an explanation should be 

disentangled from whether it successfully unifies distinct phenomena. A theoretically 

heterogenous, disjoint, non-unified bunch of mechanistic models, fragmentized in the sense of 

each being directed at explaining a distinct phenomenon, can be regarded perfectly good and 

truth-approximating as long as those models map onto causal structure of relevant mechanisms 

(see Miłkowski 2016). 

Still, it seems that there is a more modest role that unification (of the schema-centered 

variety) could play. Consider a following highly simplified scenario. Imagine that we are interested 

in providing mechanistic explanations for a set of cognitive phenomena P1, P2, P3,… Pn. For each 

phenomenon, there are distinct, competing mechanistic models aimed at explaining it. Imagine 

that we are not in an epistemic situation where any of those models is empirically confirmed 

enough to emerge as a clear winner. Of course, this does not mean that we are unable to judge 

the quality of those proposed models, based on criteria pertaining to, say, how biologically 

realistic they are, how well they fit existing data, the range and level of detail of new empirical 

predictions they afford, etc. The point is simply that for any phenomenon, there exists no single 

model whose confirmatory status is high enough for us to rationally treat this model as 

successfully explaining the phenomenon.  

Imagine, further, that the competing models of mechanisms can be divided into two 

categories. On the one hand, each of P1, P2, P3… Pn has a PP-model that aims to explain it in terms 

of a hierarchical generative model minimizing the prediction error signal. Each of those models 

describes a distinct mechanism, but they all belong to a single ‘family’ in virtue of falling under 

the same scheme. On the other hand, each of P1, P2, P3… Pn also has a number of alternative 

mechanistic models that have close to nothing in common. That is, while PP-models are unified 

under a common schema, other models constitute a theoretically pluralistic hodge-podge. They 

are based on different guiding ideas, differ in paradigmatic assumptions, pertain to different 

computational schemes or drop computationalism altogether. Some of those models postulate 
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rule-based operations over symbolic representations, others explain by appeal to brain-encoded 

Bayesian networks, some assume rich innate knowledge, some eschew innateneness as much as 

possible, some appeal to representation-free, direct coupling, etc.  

Importantly, in this scenario, for any explanandum phenomenon, we are not able to judge 

whether a PP-model or any of the other diverse models is a better explanation. Given criteria like 

those mentioned earlier, it may be that some of the explananda have a PP-model that is up be 

there among with the highest-valued competitors, while for others a PP-model may fall short of 

some of its rivals. On average, however, the family of PP-models does not fare significantly better 

or worse than the models belonging to the pluralistic bunch. 

The purpose of this scenario is to present a case in which we have direct competition 

between a schema-based unification and pure pluralism. That is, unity is the only difference-

maker between competing models here. We are presented with an epistemic situation in which 

we are unable to decide between competing explanantia and everything we have to guide our 

choice is that some of the competitors belong to a recurring explanatory pattern, while others 

are more like isolated islands (Miłkowski 2016). There is nothing going for PP-models other than 

the fact that each of them belongs to larger family.  

Here is an intuition that I want to pump: the fact that a given PP-model fits a recurring 

pattern lends it additional credibility relative to rival explanations. Put differently, there is 

something distinctly ad hoc about other, fragmented explanations, and this works to PP’s 

advantage. It does not, by itself, make PP-models unconditionally good or true. If they are to 

succeed qua explanations, it is still necessary to show that PP-models map onto actual causal 

structure of the brain. But absent this sort of knowledge, unity serves as additional evidence for 

PP-models. Other things being equal, we are rational in ascribing more credibility to the PP-

model. This way, PP’s promise to provide a scheme-centered unification offers a reason to care 

about PP, or to have additional hope that it approximates truth.  

Of course, we should never be satisfied with intuition pumping alone and should rather 

strive to justify the intuitive judgment in a more explicit, rigorous manner. Importantly, there is 

an argument, due to Sober (2003; see also Foster, Sober 1994), that seems tailor-cut for the 

present purposes. Sober’s claim is akin to the one defended here: that unification plays an 
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evidential role, by conferring more credibility on an explanation compared to its less unified 

alternatives. To justify this claim, Sober makes use of Akaike’s solution to the problem of statistical 

model selection. Roughly, the point is that unification makes explanatory models (construed in 

Sober’s discussion as statistical models of data) simpler. When unifying, we trade a variety of 

distinct explanations of distinct sets of data for a single explanation of those sets of data. This 

way, more unified explanations (models) account for data using fewer adjustable parameters – 

they are simpler. And simplicity makes those models less susceptible to bias by noise in data. By 

avoiding overfitting, unified explanations turn out better at predicting new data. This argument 

aims to show that something of a very concrete value – namely, predictive accuracy – is gained 

from unification after all. 

Sober did not develop his proposal with the mechanistic view of explanation in mind. The 

question now is whether his line of thinking applies for mechanistic explanations. A potential 

problem lies in that the argument just outlined equates unity with simplicity, in a way that does 

not translate straightforwardly to mechanism. The key is to note how mechanism individuates 

explanations. For Sober’s argument to work, what we need is a set of phenomena P1, P2, P3… Pn, 

and a competition between (1) a single explanation E whose scope encompasses all those 

phenomena, and (2) a set of distinct explanations E1, E2, E3… En, each aimed at distinct, single 

phenomenon. Only then it can be argued that (1) is simpler than (2), hence offering more 

predictive power. But this scenario does not necessarily apply to schema-centered unification, as 

understood in mechanistic terms. For mechanists, what counts as distinct explanation is a 

separate mechanism (or a model of such mechanism). And in our imagined scenario, each of P1, 

P2, P3… Pn is explained in terms of a causally/functionally distinct predictive mechanism. So, in this 

case, when comparing PP-models with their alternatives, we are not trading a variety of distinct 

explanations for a single explanation (or more explanations for fewer explanations) of all 

phenomena. Hence, the direct move from unification to simplicity, crucial for Sober’s argument, 

is prohibited. Furthermore, it is not given that for any of the explananda, a PP-model is the 

simplest among all the alternative explanations of this explanandum. Among the diverse 

competitors, there may be ones that have the advantage of being simpler (regardless even of the 

criterion of simplicity we may want to use). Therefore, more simplicity is not guaranteed even 
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relative to a particular explanandum phenomenon. To sum this up, it is hard to see how schema-

centered unification guarantees simplicity, and hence enhances the predictive power of an 

explanation. And Sober’s argument for the value of unity could only work under the assumption 

that it does. 

I think that there are at least two ways in which this argument could be countered. One, 

and less promising, way is to claim that Sober’s reasoning can be salvaged in the present context, 

if we assume a different way of individuating explanations. It might be argued that although PP-

models describe distinct worldly mechanisms, they form a ‘single’ explanation in virtue of sharing 

the same basic assumptions about causal/functional organization of relevant mechanisms. That 

is, there may at be least fewer type-individuated explanatory posits (like ‘error signal’, ‘precision 

weighting’, ‘sensory predictions’) across PP-models than across their competing alternatives. 

Under this construal, PP arguably does offer a simpler ‘explanation’ than the alternatives. The 

problem with this answer is that we would need a further reason to think that simplicity of an 

explanation translates to additional predictive power.  

What I think is much more promising option is to drop the search for a way of defending 

PP-based schema-centered unification on conceptual grounds. Instead, we should rather focus 

on more empirical considerations to see whether we are likely to find a recurring pattern of 

functional organization in neural mechanisms of cognition. If this is the case, then an explanatory 

model that fits a larger pattern would gain additional credibility. For example, some have argued 

that brain circuits are redeployed across the evolutionary and ontogenetic timeline. On this 

view, ‘it is quite common for neural circuits established for one purpose to be exapted (…) during 

evolution or normal development, and be put to different uses, often without losing their original 

functions’ (Anderson 2010, p. 245). We may speculate that FEP makes a predictive mechanism 

likely to emerge at some point in the evolution of nervous systems. And once this kind of 

mechanistic organization emerges, it is then continuously redeployed for other purposes (see also  

Pezzulo 2017). This would make it likely that there is a recurring pattern in neural organization, 

such that different cognitive functions make use of mechanisms based on the same PP-based 

organizational scheme. Thus, assuming neural redeployment, schema-centered unification may 

be regarded as more likely true than rampant pluralism. 
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5. Conclusions 

 

Predictive Processing (PP), the view that the brain is a predictive machine striving to 

minimize precision-weighted prediction error signals, has its roots in the Free Energy Principle 

(FEP), a biological principle meant to capture the nature of entropy-avoiding systems. In this 

paper, I argued that although much of PP’s unificatory ambition stems from its connection to FEP, 

it is hard to see how the appeal to FEP could warrant those pretensions. FEP fails to unify cognitive 

science directly or by entailing PP. The reason for this is that FEP does not equip us with a detailed 

story about the mechanisms of cognition. Even if we agreed that FEP entails commitments about 

mechanisms, it would be only at the expense of them being too general, far from what cognitive 

scientists strive for. If the predictive story about how the brain works is to unify cognitive science, 

this will probably not be achieved by deducing or deriving the truth of PP from first principles. FEP 

serves not as an axiomatic cornerstone for cognitive science, but rather as fertile heuristic guide 

for developing hypotheses about how cognition works. Successful unification through PP can only 

be established by developing detailed PP-based mechanistic models of phenomena, verifying 

those models empirically and finding if they have explanatory advantages over competing 

models. I argued that what can be achieved this way is what Danks (2014) calls a ‘schema-

centered’ unification. The idea is that distinct phenomena are presumably underpinned by 

distinct mechanisms, i.e. concrete, spatiotemporally bound collections of active component parts 

of the central nervous system. Those mechanisms interact, sometimes partially overlap, but often 

they are functionally or causally independent from each other. The point is that on the PP view 

of things these mechanisms, while separate, instantiate the same schema. I outlined different 

ways is which a collection of distinct PP-mechanisms could explain a variety of cognitive 

phenomena, unifying them under the same core schema. There is no tension between that sort 

of unity and the mechanistic view of cognitive-scientific explanation.  

All this opens the question of why we should care about unified explanations in cognitive 

science at all. The mechanistic view not only claims that explanation is distinct from unification, 

but also that unificatory power is not a normative criterion on which a given explanation should 
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be evaluated. To address this issue, I argued that unification could play a role in deciding between 

competing models of a given phenomenon, where none of those models emerges as clear winner 

according to other criteria of explanatory value. The fact that a cognitive model fits into a 

recurring pattern could be taken as lending additional credibility to this model relative to its 

competitors. Unity is not a universal, unconditional measure of explanatory quality – yet 

sometimes it could have a role to play in guiding rational choices between competing 

explanations. 
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