ERGODIC PROPERTIES OF THE IDEAL GAS MODEL FOR INFINITE BILLIARDS

KRZYSZTOF FRĄCZEK

Abstract. In this paper we study ergodic properties of the Poisson suspension (the ideal gas model) of the billiard flow $(b_t)_{t\in\mathbb{R}}$ on the plane with a Λ -periodic pattern ($\Lambda\subset\mathbb{R}^2$ is a lattice) of polygonal scatterers. We prove that if the billiard table is additionally rational then for a.e. direction $\theta\in S^1$ the Poisson suspension of the directional billiard flow $(b_t^\theta)_{t\in\mathbb{R}}$ is weakly mixing. This gives the weak mixing of the Poisson suspension of $(b_t)_{t\in\mathbb{R}}$. We also show that for a certain class of such rational billiards (including the periodic version of the classical wind-tree model) the Poisson suspension of $(b_t^\theta)_{t\in\mathbb{R}}$ is not mixing for a.e. $\theta\in S^1$.

1. Introduction

In this paper we deal with billiard dynamical systems on the plane with a Λ -periodic pattern ($\Lambda \subset \mathbb{R}^2$ is a lattice) of polygonal scatterers. We focus only on a rational billiards, i.e. the angles between any pair of sides of the polygons (also different polygons) are rational multiplicities of π . The most celebrated example of such billiard table is a periodic version of the wind-tree model introduced by P. Ehrenfest and T. Ehrenfest in 1912 [10], in which the scatterers are \mathbb{Z}^2 -translates of the rectangle $[0,a] \times [0,b]$, where 0 < a,b < 1.

The billiard flow $(b_t)_{t\in\mathbb{R}}$ on a polygonal table $\mathcal{T}\subset\mathbb{R}^2$ (the boundary of the table consists of intervals) is the unit speed free motion on the interior of \mathcal{T} with elastic collision (angle of incidence equals to the angle of reflection) from the boundary of \mathcal{T} . The phase space \mathcal{T}^1 of $(b_t)_{t\in\mathbb{R}}$ consists of points $(x,\theta)\in\mathcal{T}\times S^1$ such that if x belongs to the boundary of \mathcal{T} then $\theta\in S^1$ is an inward direction. The billiard flow preserves the volume measure $\mu\times\lambda$, where μ is the area measure on \mathcal{T} and λ the Lebesgue measure on S^1 . For more details on billiards see [24].

Suppose that \mathcal{T} is the table of a Λ -periodic rational polygonal billiard. Then the volume measure is infinite. Since the table is Λ -periodic the set $D \subset S^1$ of directions of all sides in \mathcal{T} is finite. Denote by Γ the group of isometries of S^1 generated by reflections through the axes with directions from D. Since the table is rational, Γ is a finite dihedral group. Therefore the phase space \mathcal{T}^1 splits into the family $\mathcal{T}^1_{\theta} = \mathcal{T} \times \Gamma \theta$, $\theta \in S^1/\Gamma$ of invariant subsets for $(b_t)_{t \in \mathbb{R}}$. The restriction of $(b_t)_{t \in \mathbb{R}}$ to \mathcal{T}^1_{θ} is called the direction billiard flow in direction θ and is denoted by $(b_t^\theta)_{t \in \mathbb{R}}$. The flow $(b_t^\theta)_{t \in \mathbb{R}}$ preserves μ_{θ} the product of μ and the counting measure of $\Gamma \theta$; this measure is also infinite. Using the standard unfolding process described in [18] (see also [24]), we obtain a connected translation surface $(M_{\mathcal{T}}, \omega_{\mathcal{T}})$ such that the directional linear flow $(\varphi_t^{\mathcal{T},\theta})_{t \in \mathbb{R}}$ on $(M_{\mathcal{T}}, \omega_{\mathcal{T}})$ is isomorphic to the flow $(b_t^\theta)_{t \in \mathbb{R}}$ for every $\theta \in S^1$. Moreover, $(M_{\mathcal{T}}, \omega_{\mathcal{T}})$ is a \mathbb{Z}^2 -cover of a compact connected translation surface.

Date: September 15, 2017.

Key words and phrases. Ideal gas, Poisson suspension, rational billiards, periodic translation surfaces, weak mixing, mixing.

Research partially supported by the Narodowe Centrum Nauki Grant 2014/13/B/ST1/03153.

We are interested in ergodic properties of the directional flows $(b_t^{\theta})_{t \in \mathbb{R}}$ (or equivalently $(\varphi_t^{\mathcal{T},\theta})_{t \in \mathbb{R}}$) in typical (a.e.) direction. Recently, some progress has been made in understanding this problem, especially for periodic wind-tree model. In this model, Avila and Hubert in [2] proved the recurrence of $(b_t^{\theta})_{t \in \mathbb{R}}$ for a.e. direction. The non-ergodicity for a.e. direction was proved by the author and Ulcigrai in [16]. Delecroix, Hubert and Leliévre proved in [7] that for a.e. direction the diffusion rate of a.e. orbit is 2/3. For more complicated scatterers some related results were obtained in [8, 14, 26]. Ergodic properties for non-periodic wind-three models were also recently studied by Málaga Sabogal and Troubetzkoy in [21, 22].

Unlike the approach presented in the mentioned articles, we does not study the dynamics of a single billiard ball, i.e. the flow $(b_t^\theta)_{t\in\mathbb{R}}$. We are interested in dynamical properties of infinite (countable) configurations of billiard balls without mutual interactions. Formally, we deal with the Poisson suspension of the flow $(b_t^\theta)_{t\in\mathbb{R}}$ which models the ideal gas behavior in \mathcal{T} , see [6, Ch. 9]. The main result of the paper is the following:

Theorem 1.1. Let $(b_t)_{t\in\mathbb{R}}$ be the billiard flow on a Λ -periodic rational polygonal billiard table \mathcal{T} . Then for a.e. $\theta \in S^1$ the Poisson suspension of the directional billiard flow $(b_t^{\theta})_{t\in\mathbb{R}}$ is weakly mixing. Moreover, the Poisson suspension of $(b_t)_{t\in\mathbb{R}}$ is also weakly mixing.

In fact, we prove much more general result (Theorem 5.4) concerning \mathbb{Z}^d -covers of compact translation surfaces and their directional flows. Since $(b_t^\theta)_{t\in\mathbb{R}}$ can be treated as a directional flow on the translation surface (M_T, ω_T) , Theorem 1.1 is a direct consequence of Theorem 5.4. Moreover, in Section 6 we give a criterion (Theorem 6.3) for the absence of mixing for the Poisson suspension of typical directional flows on some \mathbb{Z}^d -covers of compact translation surfaces. Its necessary condition (the existence of "good" cylinders) for the absence of mixing coincides with the condition for recurrence provided by [2]. This allows proving the absence of mixing for the Poisson suspension of $(b_t^\theta)_{t\in\mathbb{R}}$ (for a.e. direction) for the standard periodic wind-three model, as well as for other recurrent billiards studied in [14, Sec. 9] and [26, Sec. 8.3].

2. Poisson point process and Poisson suspension

Let (X, \mathcal{B}, μ) be a standard σ -finite measure space such that μ has no atom and $\mu(X) = \infty$. Denote by $(X^*, \mathcal{B}^*, \mu^*)$ the associated Poisson point process. For relevant background material concerning Poisson point processes, see [19] and [20]. Then X^* is the space of countable subsets (configurations) of X and the σ -algebra \mathcal{B}^* is generated by the subsets of the form

$$C_{A,n} := \{ \overline{x} \in X^* : \operatorname{card}(\overline{x} \cap A) = n \} \text{ for } A \in \mathcal{B} \text{ and } n \geq 0.$$

For every $A \in \mathcal{B}$ denote by $C_A : X^* \to \mathbb{Z}_{\geq 0}$ the measurable map given by $C_A(\overline{x}) = \operatorname{card}(\overline{x} \cap A)$. Then μ^* is a unique probability measure on \mathcal{B}^* such that:

- (i) for any pairwise disjoint collection A_1, \ldots, A_k in \mathcal{B} the random variables C_{A_1}, \ldots, C_{A_k} on $(X^*, \mathcal{B}^*, \mu^*)$ are jointly independent;
- (ii) for any $A \in \mathcal{B}$ the random variable C_A on $(X^*, \mathcal{B}^*, \mu^*)$ has Poisson distribution with

$$\mu^*(C_{B,n}) = e^{-\mu(A)} \frac{\mu(A)^n}{n!} \text{ for } n \ge 0.$$

The existence and uniqueness of the intensity measure μ^* can be found, for instance, in [19].

Poisson suspension is a classical notion introduced in statistical mechanics to model so called ideal gas. For an infinite measure-preserving dynamical system its Poisson suspension is a probability measure-preserving system describing the

dynamics of infinite (countable) configurations of particles without mutual interactions. For relevant background material we refer the reader to [6]. More formally, for any $(T_t)_{t\in\mathbb{R}}$ measure preserving flow on (X,\mathcal{B},μ) by its *Poisson suspension* we mean the flow $(T_t^*)_{t\in\mathbb{R}}$ acting on $(X^*,\mathcal{B}^*,\mu^*)$ by $T_t^*(\overline{x})=\{T_ty:y\in\overline{x}\}$. Since $(T_t^*)_{t\in\mathbb{R}}$ preserves the measure of any set $C_{A,n}$ and these sets generate the whole σ -algebra, the flow preserves the probability measure μ^* .

Proposition 2.1 (see [27] and [9] for maps). The flow $(T_t^*)_{t\in\mathbb{R}}$ is ergodic if and only if it is weak mixing and if and only if the flow $(T_t)_{t\in\mathbb{R}}$ has no invariant subset of positive and finite measure.

The flow $(T_t^*)_{t\in\mathbb{R}}$ is mixing if and only if for all $A\in\mathcal{B}$ with $0<\mu(A)<\infty$ we have $\mu(A\cap T_{-t}A)\to 0$ as $t\to +\infty$.

Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be two standard σ -finite measure space such that μ and ν have no atoms. Assume that $(T_t)_{t \in \mathbb{R}}$ is a measure preserving flow on $(X \times Y, \mathcal{B} \otimes \mathcal{C}, \mu \times \nu)$ such that $T_t(x, y) = (T_t^y x, y)$. Then $(T_t^y)_{t \in \mathbb{R}}$ is a measure-preserving flow on (X, \mathcal{B}, μ) for every $y \in Y$. Applying a standard Fubini argument we have the following result.

Lemma 2.2. Suppose that for a.e. $y \in Y$ the flow $(T_t^y)_{t \in \mathbb{R}}$ has no invariant subset of positive and finite measure. Then the flow $(T_t)_{t \in \mathbb{R}}$ enjoys the same property.

3. \mathbb{Z}^d -covers of compact translation surfaces

For relevant background material concerning translation surfaces and interval exchange transformations (IETs) we refer the reader to [24], [28], [29] and [30]. Let M be a be a surface (not necessary compact) and let ω be an Abelian differential (holomorphic 1-form) on M. The pair (M,ω) is called a translation surface. Denote by $\Sigma \subset M$ the set of zeros of ω . For every $\theta \in S^1 = \mathbb{R}/2\pi\mathbb{Z}$ denote by $X_\theta = X_\theta^\omega$ the directional vector field in direction θ on $M \setminus \Sigma$, i.e. $\omega(X_\theta) = e^{i\theta}$ on $M \setminus \Sigma$. Then the corresponding directional flow $(\varphi_t^\theta)_{t \in \mathbb{R}} = (\varphi_t^{\omega,\theta})_{t \in \mathbb{R}}$ (also known as translation flow) on $M \setminus \Sigma$ preserves the area measure μ_ω $(\mu_\omega(A) = |\int_A \frac{i}{2}\omega \wedge \overline{\omega}|)$.

We use the notation $(\varphi_t^v)_{t\in\mathbb{R}}$ for the *vertical flow* (corresponding to $\theta = \frac{\pi}{2}$) and $(\varphi_t^h)_{t\in\mathbb{R}}$ for the *horizontal flow* respectively $(\theta = 0)$.

Assume that the surface M is compact. Suppose that \widetilde{M} is a \mathbb{Z}^d -covering of M and $p:\widetilde{M}\to M$ is its covering map. For any holomorphic 1-form ω on M denote by $\widetilde{\omega}$ the pullback of the form ω by the map p. Then $(\widetilde{M},\widetilde{\omega})$ is a translation surface, called a \mathbb{Z}^d -cover of the translation surface $(M.\omega)$.

All \mathbb{Z}^d -covers of M up to isomorphism are in one-to-one correspondence with $H_1(M,\mathbb{Z})^d$. For any pair ξ_1,ξ_2 in $H_1(M,\mathbb{Z})$ denote by $\langle \xi_1,\xi_2 \rangle$ the algebraic intersection number of ξ_1 with ξ_2 . Then the \mathbb{Z}^d -cover \widetilde{M}_{γ} determined by $\gamma \in H_1(M,\mathbb{Z})^d$ has the following properties: if $\sigma:[t_0,t_1]\to M$ is a close curve in M and

$$n := \langle \gamma, [\sigma] \rangle = (\langle \gamma_1, [\sigma] \rangle, \dots, \langle \gamma_d, [\sigma] \rangle) \in \mathbb{Z}^d$$

 $([\sigma] \in H_1(M,\mathbb{Z}))$, then σ lifts to a path $\widetilde{\sigma} : [t_0,t_1] \to \widetilde{M}_{\gamma}$ such that $\sigma(t_1) = n \cdot \sigma(t_0)$, where \cdot denotes the action of \mathbb{Z}^d by deck transformations on \widetilde{M}_{γ} .

Let (M,ω) be a compact translation surface and let $(M_{\gamma},\widetilde{\omega}_{\gamma})$ be its \mathbb{Z}^d -cover. Let us consider the vertical flow $(\widetilde{\varphi}_t^v)_{t\in\mathbb{R}}$ on $(\widetilde{M}_{\gamma},\widetilde{\omega}_{\gamma})$ such that the flow $(\varphi_t^v)_{t\in\mathbb{R}}$ on (M,ω) is uniquely ergodic. Let $I\subset M\setminus\Sigma$ be a horizontal interval in (M,ω) with no self-intersections. Then the Poincaré (first return) map $T:I\to I$ for the flow $(\widetilde{\varphi}_t^v)_{t\in\mathbb{R}}$ is a uniquely ergodic interval exchange transformation (IET). Denote by $(I_{\alpha})_{\alpha\in\mathcal{A}}$ the family of exchanged intervals. Let $\tau:I\to\mathbb{R}_{>0}$ be the corresponding first return time map. Then τ is constant on each interval I_{α} , $\alpha\in\mathcal{A}$.

For every $\alpha \in \mathcal{A}$ we denote by $\xi_{\alpha} = \xi_{\alpha}(\omega, I) \in H_1(M, \mathbb{Z})$ the homology class of any loop formed by the segment of orbit for $(\varphi_t^v)_{t\in\mathbb{R}}$ starting at any $x\in \operatorname{Int} I_\alpha$ and ending at Tx together with the segment of I that joins Tx and x.

Proposition 3.1 (see [16] for d=1). Let $I \subset M \setminus \Sigma$ be a horizontal interval in (M,ω) with no self-intersections. Then for every $\gamma \in H_1(M,\mathbb{Z})^d$ the vertical flow $(\widetilde{\varphi}_t^v)_{t\in\mathbb{R}}$ on the \mathbb{Z}^d -cover $(\widetilde{M}_{\gamma},\widetilde{\omega}_{\gamma})$ has a special representation over the skew product $T_{\psi_{\gamma,I}}: I \times \mathbb{Z}^d \to I \times \mathbb{Z}^d$ of the form $T_{\psi_{\gamma,I}}(x,m) = (Tx, m + \psi_{\gamma,I}(x)),$ where $\psi_{\gamma,I}:I\to\mathbb{Z}^d$ is a piecewise constant function given by

$$\psi_{\gamma,I}(x) = \langle \gamma, \xi_{\alpha} \rangle = (\langle \gamma_1, \xi_{\alpha} \rangle, \dots, \langle \gamma_d, \xi_{\alpha} \rangle)$$

if $x \in I_{\alpha}$ for $\alpha \in \mathcal{A}$. Moreover, the roof function $\widetilde{\tau}: I \times \mathbb{Z}^d \to \mathbb{R}_{>0}$ is given by $\widetilde{\tau}(x,m) = \tau(x) \text{ for } (x,m) \in I \times \mathbb{Z}^d.$

Remark 3.2. Since the roof function $\tilde{\tau}$ is bounded and uniformly separated from zero, the absence of invariant set of finite and positive measure for the flow $(\widetilde{\varphi}_t^v)_{t\in\mathbb{R}}$ on $(M_{\gamma}, \widetilde{\omega}_{\gamma})$ is equivalent the absence of invariant set of finite and positive measure for the skew product $T_{\psi_{\gamma,I}}$.

Cocycles for transformations and essential values. Given an ergodic automorphism T of a standard probability space (X, \mathcal{B}, μ) , a locally compact abelian second countable group G and a measurable map $\psi: X \to G$, called a cocycle for T, consider the skew-product extension T_{ψ} acting on $(X \times G, \mathcal{B} \times \mathcal{B}_G, \mu \times m_G)$ (\mathcal{B}_G is the Borel σ -algebra on G) by

$$T_{\psi}(x,y) = (Tx, y + \psi(x)).$$

Clearly T_{ψ} preserves the product of μ and the Haar measure m_G on G. Moreover, for any $n \in \mathbb{Z}$ we have

$$T_{\psi}^{n}(x,y) = (T^{n}x, y + \psi^{(n)}(x)),$$

where

where
$$\psi^{(n)}(x) = \left\{ \begin{array}{ll} \sum_{0 \leq j < n} \psi(T^j x) & \text{if} \quad n \geq 0 \\ -\sum_{n \leq j < 0} \psi(T^j x) & \text{if} \quad n < 0. \end{array} \right.$$
 The cocycle $\psi: X \to G$ is called a *coboundary* for T if there exists a measurable

map $h: X \to G$ such that $\psi = h - h \circ T$. Then $\psi^{(n)} = h - h \circ T^n$ for every $n \in \mathbb{Z}$.

An element $g \in G$ is said to be an essential value of $\psi: X \to G$, if for each open neighborhood V_g of g in G and each $B \in \mathcal{B}$ with $\mu(B) > 0$, there exists $n \in \mathbb{Z}$ such that

$$\mu\big(B\cap T^{-n}B\cap \{x\in X: \psi^{(n)}(x)\in V_g\}\big)>0.$$

Proposition 3.3 (see [25]). The set of essential values $E_G(\psi)$ is a closed subgroup of G. If ψ is a coboundary then $E_G(\psi) = \{0\}$.

Proposition 3.4 (see [3]). If T is an ergodic automorphism of (X, \mathcal{B}, μ) then the $cocycle \ \psi : X \to G \ for \ T \ is \ a \ coboundary \ if \ and \ only \ if \ the \ skew \ product \ T_{\psi} :$ $X \times G \to X \times G$ has an invariant set of positive and finite measure.

Proposition 3.5 (see [5]). Let \mathcal{B} be the σ -algebra of Borel sets of a compact metric space (X,d) and let μ be a probability Borel measure on \mathcal{B} . Suppose that Tis an ergodic measure-preserving automorphism of (X, \mathcal{B}, μ) for which there exist a sequence of Borel sets $(C_n)_{n>1}$ and an increasing sequence of natural numbers $(h_n)_{n>1}$ such that

$$\mu(C_n) \to \alpha > 0, \ \mu(C_n \triangle T^{-1}C_n) \to 0 \quad and \quad \sup_{x \in C_n} d(x, T^{h_n}x) \to 0.$$

If $\psi: X \to G$ is a measurable cocycle such that $\psi^{(h_n)}(x) = g_n$ for all $x \in C_n$ and $g_n \to g$, then $g \in E(\psi)$.

4. Teichmüller flow and Kontsevich-Zorich cocycle

Given a compact connected oriented surface M, denote by $\operatorname{Diff}^+(M)$ the group of orientation-preserving homeomorphisms of M. Denote by $\operatorname{Diff}^+(M)$ the subgroup of elements $\operatorname{Diff}^+(M)$ which are isotopic to the identity. Let $\Gamma(M) := \operatorname{Diff}^+(M)/\operatorname{Diff}^+_0(M)$ be the mapping-class group. We will denote by $\mathcal{T}(M)$ the Teichmüller space of Abelian differentials, that is the space of orbits of the natural action of $\operatorname{Diff}^+_0(M)$ on the space of all Abelian differentials on M. We will denote by $\mathcal{M}(M)$ the moduli space of Abelian differentials, that is the space of orbits of the natural action of $\operatorname{Diff}^+(M)$ on the space of Abelian differentials on M. Thus $\mathcal{M}(M) = \mathcal{T}(M)/\Gamma(M)$.

The group $SL(2,\mathbb{R})$ acts naturally on $\mathcal{T}(M)$ and $\mathcal{M}(M)$ as follows. Given a translation structure ω , consider the charts given by local primitives of the holomorphic 1-form. The new charts defined by postcomposition of this charts with an element of $SL(2,\mathbb{R})$ yield a new complex structure and a new differential which is Abelian with respect to this new complex structure, thus a new translation structure. We denote by $g \cdot \omega$ the translation structure on M obtained acting by $g \in SL(2,\mathbb{R})$ on a translation structure ω on M. The Teichmüller flow $(g_t)_{t\in\mathbb{R}}$ is the restriction of this action to the diagonal subgroup $(\mathrm{diag}(e^t,e^{-t}))_{t\in\mathbb{R}}$ of $SL(2,\mathbb{R})$ on $\mathcal{T}(M)$ and $\mathcal{M}(M)$. We will deal also with the rotations $(r_\theta)_{\theta \in S^1}$ that acts on $\mathcal{T}(M)$ and $\mathcal{M}(M)$ by $r_\theta \omega = e^{i\theta} \omega$. Then the flow $(\varphi_t^\theta)_{t\in\mathbb{R}}$ on (M,ω) coincides with the vertical flow on $(M, r_{\pi/2-\theta}\omega)$. Moreover, for any \mathbb{Z}^d -cover $(M_\gamma, \widetilde{\omega}_\gamma)$ the directional flow $(\widetilde{\varphi}_t^\theta)_{t\in\mathbb{R}}$ on $(\widetilde{M}_\gamma, \widetilde{v}_{\pi/2-\theta}\omega)_\gamma$.

Kontsevich-Zorich cocycle. The Kontsevich-Zorich (KZ) cocycle $(A_g)_{g \in SL(2,\mathbb{R})}$ is the quotient of the product action $(g \times \mathrm{Id})_{g \in SL(2,\mathbb{R})}$ on $\mathcal{T}(M) \times H_1(M,\mathbb{R})$ by the action of the mapping-class group $\Gamma(M)$. The mapping class group acts on the fiber $H_1(M,\mathbb{R})$ by induced maps. The cocycle $(A_g)_{g \in SL(2,\mathbb{R})}$ acts on the homology vector bundle

$$\mathcal{H}_1(M,\mathbb{R}) = (\mathcal{T}(M) \times H_1(M,\mathbb{R}))/\Gamma(M)$$

over the $SL(2,\mathbb{R})$ -action on the moduli space $\mathcal{M}(M)$.

Clearly the fibers of the bundle $\mathcal{H}_1(M,\mathbb{R})$ can be identified with $H_1(M,\mathbb{R})$. The space $H_1(M,\mathbb{R})$ is endowed with the symplectic form given by the algebraic intersection number. This symplectic structure is preserved by the action of the mapping-class group and hence is invariant under the action of $(A_g)_{g \in SL(2,\mathbb{R})}$.

The standard definition of KZ-cocycle bases on cohomological bundle. The identification of the homological and cohomological bundle and the corresponding KZ-cocycles is established by the Poincaré duality $\mathcal{P}: H_1(M,\mathbb{R}) \to H^1(M,\mathbb{R})$. This correspondence allow us to define so called Hodge norm (see [13] for cohomological bundle) on each fiber of the bundle $\mathcal{H}_1(M,\mathbb{R})$. The norm on the fiber $H_1(M,\mathbb{R})$ over $\omega \in \mathcal{M}(M)$ will be denoted by $\|\cdot\|_{\omega}$.

Generic directions. Let $\omega \in \mathcal{M}(M)$ and denote by $\mathcal{M} = \overline{SL}(2,\mathbb{R})\omega$ the closure of the $SL(2,\mathbb{R})$ -orbit of ω in $\mathcal{M}(M)$. The celebrated result of Eskin, Mirzakhani and Mohammadi, proved in [12] and [11], says that $\mathcal{M} \subset \mathcal{M}(M)$ is an affine $SL(2,\mathbb{R})$ -invariant submanifold. Denote by $\nu_{\mathcal{M}}$ the corresponding affine $SL(2,\mathbb{R})$ -invariant probability measure supported on \mathcal{M} . The measure $\nu_{\mathcal{M}}$ is ergodic under the action of the Teichmüller flow.

Theorem 4.1 (see [4]). For every $\phi \in C_c(\mathcal{M})$ and almost all $\theta \in S^1$ we have

(4.1)
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \phi(g_t r_\theta \omega) dt = \int_{\mathcal{M}} \phi d\nu_{\mathcal{M}}.$$

Theorem 4.2 (see [23]). For a.e. direction $\theta \in S^1$ the directional flows $(\varphi_t^v)_{t \in \mathbb{R}}$ and $(\varphi_t^h)_{t \in \mathbb{R}}$ on $(M, r_\theta \omega)$ are uniquely ergodic.

All directions $\theta \in S^1$ for which the assertion of Theorems 4.1 and 4.2 holds are called *Birkhoff-Masur generic* for the translation surface (M, ω) .

5. Directional flows on \mathbb{Z}^d -covers and weak mixing of their Poisson suspensions

Suppose that the direction $0 \in S^1$ is Birkhoff-Masur generic for (M, ω) . Then the vertical and horizontal flows $(\varphi_t^v)_{t \in \mathbb{R}}$, $(\varphi_t^h)_{t \in \mathbb{R}}$ on (M, ω) is uniquely ergodic. Let $I \subset M \setminus \Sigma$ (Σ is the set of zeros of ω) be a horizontal interval. Then the interval I has no self-intersections and the Poincaré return map $T: I \to I$ for the flow $(\varphi_t^v)_{t \in \mathbb{R}}$ is a uniquely ergodic IET. Denote by I_{α} , $\alpha \in \mathcal{A}$ the intervals exchanged by T. Let $\lambda_{\alpha}(\omega, I)$ stands for the length of the interval I_{α} .

Denote by $\tau: I \to \mathbb{R}_{>0}$ the map of the first return time to I for the flow $(\varphi_t^v)_{t \in \mathbb{R}}$. Then τ is constant on each I_{α} and denote by $\tau_{\alpha} = \tau_{\alpha}(\omega, I) > 0$ its value on I_{α} , $\alpha \in \mathcal{A}$. Let us denote by $\delta(\omega, I) > 0$ the maximal number $\Delta > 0$ for which the set $\mathcal{R}^{\omega}(I, \Delta) := \{\varphi_t^v x : t \in [0, \Delta), x \in I\}$ is a rectangle in (M, ω) without any singular point (from Σ).

Suppose that $J\subset I$ is a subinterval. Denote by $S:J\to J$ the Poincaré return map to J for the flow $(\varphi^v_t)_{t\in\mathbb{R}}$. Then S is also an IET and suppose it exchanges intervals $(J_\alpha)_{\alpha\in\mathcal{A}}$. The IET S is the induced transformation of T on J. Moreover, all elements of J_α have the same time of the first return to J for the transformation T and let us denote this return time by $h_\alpha\geq 0$ for $\alpha\in\mathcal{A}$. Then I is the union of disjoint towers $\{T^jJ_\alpha:0\leq j< h_\alpha\},\ \alpha\in\mathcal{A}$.

The following result follows directly from Lemmas 4.12 and 4.13 in [15].

Lemma 5.1. Assume that for some $\Delta > 0$ the set $\mathcal{R}^{\omega}(J, \Delta)$ is a rectangle in (M, ω) without any singular point. Let $h = \left[\Delta / \max_{\alpha \in \mathcal{A}} \tau_{\alpha} \right]$. Then for every $\gamma \in H_1(M, \mathbb{Z})$ we have

(5.1)
$$\psi_{\gamma,I}^{(h_{\alpha})}(x) = \langle \gamma, \xi_{\alpha}(\omega, J) \rangle$$
 and $|T^{h_{\alpha}}x - x| \leq |J|$ for $x \in C_{\alpha} := \bigcup_{0 \leq j \leq h} T^{j} J_{\alpha}$.

The following result follows directly from Lemmas A.3 and A.4 in [14].

Lemma 5.2. If $0 \in S^1$ is Birkhoff-Masur generic for (M,ω) then there exist positive constants A,C,c>0, a sequence of nested horizontal intervals $(I_k)_{k\geq 0}$ in (M,ω) and an increasing divergent sequence of real numbers $(t_k)_{k\geq 0}$ with $t_0=0$ such that for every $k\geq 0$ we have

$$(5.2) \quad \frac{1}{c}\|\xi\|_{g_{t_k}\omega} \leq \max_{\alpha} |\langle \xi_{\alpha}(g_{t_k}\omega,I_k),\xi\rangle| \leq c\|\xi\|_{g_{t_k}\omega} \quad \textit{for every} \quad \xi \in H_1(M,\mathbb{R}),$$

$$(5.3) \quad \lambda_{\alpha}(g_{t_k}\omega, I_k) \, \delta(g_{t_k}\omega, I_k) \geq A \ \ and \ \ \frac{1}{C} \leq \tau_{\alpha}(g_{t_k}\omega, I_k) \leq C \ \ for \ \ any \ \ \alpha \in \mathcal{A}.$$

Lemma 5.3. If $0 \in S^1$ is Birkhoff-Masur generic for (M,ω) then for every non-zero $\gamma \in H_1(M,\mathbb{Z})$ the cocycle $\psi_{\gamma,I}: I \to \mathbb{Z}$ $(I:=I_0 \text{ come from Lemma 5.2})$ is not a coboundary.

Proof. By Lemma 5.2, there exist a sequence of nested horizontal intervals $(I_k)_{k\geq 0}$ in (M,ω) and an increasing divergent sequence of real numbers $(t_k)_{k\geq 0}$ such that (5.2) and (5.3) hold for $k\geq 0$ and $t_0=0$. Let $I:=I_0$ and denote by $T:I\to I$ the Poincaré return map to I for the vertical flow $(\varphi_t^v)_{t\in\mathbb{R}}$. Suppose, contrary to our claim, that $\psi_{\gamma,I}:I\to\mathbb{Z}$ is a coboundary with a measurable transfer function $u:I\to\mathbb{R}$, i.e. $\psi_{\gamma,I}=u-u\circ T$.

For every $k \geq 1$ the Poincaré return map $T_k : I_k \to I_k$ to I_k for the vertical flow $(\varphi_t^v)_{t \in \mathbb{R}}$ on (M, ω) is an IET exchanging intervals $(I_k)_{\alpha}$, $\alpha \in \mathcal{A}$. The length of $(I_k)_{\alpha}$ in (M, ω) is equal to $\lambda_{\alpha}(\omega, I_k) = e^{-t_k} \lambda_{\alpha}(g_{t_k}\omega, I_k)$ for $\alpha \in \mathcal{A}$. In view of (5.3), the length of I_k in (M, ω) is

$$|I_k| = \sum_{\alpha \in \mathcal{A}} e^{-t_k} \lambda_{\alpha}(g_{t_k}\omega, I_k) \le C e^{-t_k} \sum_{\alpha \in \mathcal{A}} \lambda_{\alpha}(g_{t_k}\omega, I_k) \tau_{\alpha}(g_{t_k}\omega, I_k) = C e^{-t_k} \mu_{\omega}(M).$$

By the definition of δ , the set $\mathcal{R}^{\omega}(I_k, e^{t_k}\delta(g_{t_k}\omega, I_k)) = \mathcal{R}^{g_{t_k}\omega}(I_k, \delta(g_{t_k}\omega, I_k))$ is a vertical rectangle in $(M, g_{t_k}\omega)$ without any singular point. It follows that the set $\mathcal{R}^{\omega}(I_k, e^{t_k}\delta(g_{t_k}\omega, I_k))$ is a rectangle in (M, ω) without any singular point.

Denote by $h_{\alpha}^{k} \geq 0$ the first return time of the interval $(I_{k})_{\alpha}$ to I_{k} for the IET T. Let

$$h_k := \left[e^{t_k} \delta(g_{t_k} \omega, I_k) / \max_{\alpha \in \mathcal{A}} \tau_{\alpha}(\omega, I) \right] \text{ and } C_{\alpha}^k := \bigcup_{0 \le j \le h_k} T^j(I_k)_{\alpha}.$$

Now Lemma 5.1 applied to $J = I_k$ and $\Delta = e^{t_k} \delta(g_{t_k} \omega, I_k)$ gives

(5.4)
$$\psi_{\gamma,I}^{(h_{\alpha}^{k})}(x) = \langle \gamma, \xi_{\alpha}(\omega, I_{k}) \rangle$$
 and $|T^{h_{\alpha}^{k}}x - x| \leq |I_{k}| \leq Ce^{-t_{k}}\mu_{\omega}(M)$ for $x \in C_{\alpha}^{k}$ for every $k \geq 1$ and $\alpha \in \mathcal{A}$. Moreover, by (5.3),

$$Leb(C_{\alpha}^k) = (h_k + 1)|(I_k)_{\alpha}| \ge \frac{e^{t_k}\delta(g_{t_k}\omega, I_k)}{\max_{\alpha \in \mathcal{A}} \tau_{\alpha}} e^{-t_k}\lambda_{\alpha}(g_{t_k}\omega, I_k) \ge \frac{A}{\max_{\alpha \in \mathcal{A}} \tau_{\alpha}} =: a > 0.$$

By assumption, in view of (5.2), we have

$$\|\gamma\|_{g_{t_k}\omega} \le c \max_{\alpha \in \mathcal{A}} |\langle \gamma, \xi_{\alpha}(g_{t_k}\omega, I_k) \rangle|.$$

Choose B>0 such that $Leb(U_B)< a/2$ for $U_B=\{x\in I: |u(x)|>B\}$. For every $m\geq 1$ let $J_m:=I\setminus (U_B\cup T^{-m}U_B)$. Then $Leb(I\setminus J_m)< a$ and for every $x\in J_m$ we have both $|u(x)|\leq B, \ |u(T^mx)|\leq B.$ As $Leb(I\setminus J_{h^k_\alpha})< a$ and $Leb(C^k_\alpha)\geq a$, there exists $x^k_\alpha\in C^k_\alpha\cap J_{h^k_\alpha}$. Therefore, by (5.4), for all $k\geq 1$ and $\alpha\in \mathcal{A}$ we have

$$|\langle \gamma, \xi_{\alpha}(\omega, I_k) \rangle| = |\psi_{\gamma, I}^{(h_{\alpha}^k)}(x_{\alpha}^k)| = |u(x_{\alpha}^k) - u(T^{h_{\alpha}^k}x_{\alpha}^k)| \le |u(x_{\alpha}^k)| + |u(T^{h_{\alpha}^k}x_{\alpha}^k)| \le 2B.$$

Since $\langle \gamma, \xi_{\alpha}(\omega, I_k) \rangle \rangle \in \mathbb{Z}$, passing to a subsequence, if necessary, we can assume that for every $\alpha \in \mathcal{A}$ the sequence $(\langle \gamma, \xi_{\alpha}(\omega, I_k) \rangle)_{k \geq 1}$ is constant. Since (5.4) holds and $Leb(C_{\alpha}^k) \geq a > 0$ for $k \geq 1$ and $\alpha \in \mathcal{A}$, we can apply Proposition 3.5 to $\psi = \psi_{\gamma,I}$, $C_k = C_{\alpha}^k$ and $h_k = h_{\alpha}^k$. This gives $\langle \gamma, \xi_{\alpha}(\omega, I_k) \rangle \in E(\psi_{\gamma,I})$ for all $k \geq 1$ and $\alpha \in \mathcal{A}$. In view of Proposition 3.3, as $\psi_{\gamma,I}$ is a coboundary, we have $E(\psi_{\gamma,I}) = \{0\}$, so $\langle \gamma, \xi_{\alpha}(\omega, I_k) \rangle = 0$ for all $k \geq 1$ and $\alpha \in \mathcal{A}$. Since $\langle \gamma, \xi_{\alpha}(g_{t_k}\omega, I_k) \rangle = \langle \gamma, \xi_{\alpha}(\omega, I_k) \rangle$, this gives

$$\|\gamma\|_{g_{t_k}\omega} \leq c \max_{\alpha \in \mathcal{A}} |\langle \gamma, \xi_\alpha(g_{t_k}\omega, I_k) \rangle| = 0.$$

It follows that $\gamma=0$, contrary to $\gamma\neq 0$. Consequently, the cocycle $\psi_{\gamma,I}$ is not a coboundary for the IET $T:I\to I$.

Theorem 5.4. Let (M, ω) be a compact connected translation surface and let $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$ be its non-trivial \mathbb{Z}^d -cover (i.e. $\gamma \in H_1(M, \mathbb{Z})^d$ is non-zero). Then for a.e. $\theta \in S^1$ the Poisson suspension of the directional flow $(\widetilde{\varphi}_t^{\theta})_{t \in \mathbb{R}}$ flow on $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$ is weakly mixing.

Proof. By Theorems 4.1 and 4.2, the set $\Theta \subset S^1$ of all $\theta \in S^1$ for which $\pi/2 - \theta$ is Birkhoff-Masur generic for (M, ω) has full Lebesgue measure in S^1 . We show that for every $\theta \in \Theta$ the directional flow $(\widetilde{\varphi}_t^{\theta})_{t \in \mathbb{R}}$ flow on $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$ has no invariant set of positive and finite measure. In view of Proposition 2.1, this proves the theorem.

Suppose that $\theta \in \Theta$. Then $0 \in S^1$ is a Birkhoff-Masur generic direction for $(M, r_{\pi/2-\theta}\omega)$ and the flow $(\widetilde{\varphi}^{\theta}_t)_{t\in\mathbb{R}}$ on $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$ coincides with the vertical flow $(\widetilde{\varphi}^{v}_t)_{t\in\mathbb{R}}$ on $(\widetilde{M}_{\gamma}, (r_{\pi/2-\theta}\omega)_{\gamma})$.

Assume that $\gamma = (\gamma_1, \ldots, \gamma_d)$ and $\gamma_j \in H_1(M, \mathbb{Z})$ is non-zero for some $1 \leq j \leq d$. By Lemma 5.2 and 5.3, there exists a horizontal interval in $(M, r_{\pi/2-\theta}\omega)$ such that $\psi_{\gamma_j,I}: I \to \mathbb{Z}$ is not a coboundary for the Poincaré return map $T: I \to I$ for the vertical flow on $(M, r_{\pi/2-\theta}\omega)$. Since $\psi_{\gamma_j,I}$ is the j-th coordinate function of $\psi_{\gamma,I}: I \to \mathbb{Z}^d$, the latter is also not a coboundary for T. In view of Proposition 3.4, the skew product $T_{\psi_{\gamma,I}}$ on $I \times \mathbb{Z}^d$ has no invariant set of positive and finite measure.

By Proposition 3.1 and Remark 3.2, the vertical flow on $(\widetilde{M}_{\gamma}, (r_{\pi/2-\theta}\omega)_{\gamma})$ has no invariant set of positive and finite measure as well. As the vertical flow $(\widetilde{\varphi}_t^v)_{t\in\mathbb{R}}$ on $(\widetilde{M}_{\gamma}, (r_{\pi/2-\theta}\omega)_{\gamma})$ coincides with the directional flow $(\widetilde{\varphi}_t^\theta)_{t\in\mathbb{R}}$ on $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$, this completes the proof.

Proof of Theorem 1.1. The first part of Theorem 1.1 follows directly from Theorem 5.4 applied to the \mathbb{Z}^2 -cover $(M_{\mathcal{T}}, \omega_{\mathcal{T}})$. Non-triviality of the \mathbb{Z}^2 -cover follows from the connectivity of $M_{\mathcal{T}}$.

The second part of Theorem 1.1 is based on the fact that the billiard flow $(b_t)_{t\in\mathbb{R}}$ of \mathcal{T}^1 is metrically isomorphic to the flow $(\varphi_t^{\mathcal{T}})_{t\in\mathbb{R}}$ on $M_{\mathcal{T}} \times S^1/\Gamma$ given by $\varphi_t^{\mathcal{T}}(x,\theta) \mapsto (\varphi_t^{\mathcal{T},\theta}x,\theta)$. By Theorem 5.4, for a.e. $\theta \in S^1/\Gamma$ the flow $(\varphi_t^{\mathcal{T},\theta})_{t\in\mathbb{R}}$ has no invariant subset of positive and finite measure. In view Lemma 2.2, the flow $(\varphi_t^{\mathcal{T}})_{t\in\mathbb{R}}$ enjoys the same property. The proof is completed by applying Proposition 2.1.

6. Absence of mixing

Let (M, ω) be a compact connected translation surface and let $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$ be its \mathbb{Z}^d -cover determined by $\gamma \in H_1(M, \mathbb{Z})^d$. Denote by $p_{\gamma} : \widetilde{M}_{\gamma} \to M$ the covering map. Let d_{γ}^{ω} be the geodesic distance on $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$. Of course, $d_{\gamma}^{\omega} = d_{\gamma}^{r_{\theta}\omega}$ for every $\theta \in S^1$. Denote by $(\widetilde{\varphi}_t^{v})_{t \in \mathbb{R}}$ the vertical flow on $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$.

Definition (cf. [2]). Given real numbers $c, L, \delta > 0$ the \mathbb{Z}^d -cover $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$ is called (c, L, δ) -recurrent if there exist a horizontal interval $I \subset M \setminus \Sigma$ such that the set $\mathcal{R}^{\omega}(I, L) = \{\varphi_t^v x : x \in I, t \in [0, L)\}$ is a vertical rectangle (without any singularity) in (M, ω) with $\mu_{\omega}(\mathcal{R}^{\omega}(I, L)) \geq c$ and for every $\widetilde{x} \in p_{\gamma}^{-1}(\mathcal{R}^{\omega}(I, L))$ the points \widetilde{x} and $\widetilde{\varphi}_L^v \widetilde{x}$ belong to the same horizontal leaf on $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$ and the distance between them along this leaf is smaller than δ .

Let $\mathcal{M} = \overline{SL(2,\mathbb{R})\omega}$ and let us consider the bundle $\mathcal{H}_1^{\mathcal{M}}(M,\mathbb{R}) \to \mathcal{M}$ which is the restriction of the homological bundle to \mathcal{M} . Assume that

(6.1)
$$\mathcal{H}_1^{\mathcal{M}}(M,\mathbb{R}) = \mathcal{K} \oplus \mathcal{K}^{\perp}$$

is a continuous symplectic orthogonal splitting of the bundle which is $(A_g)_{g \in SL(2,\mathbb{R})}$ invariant. Denote by $H_1(M,\mathbb{R}) = K_{\omega'} \oplus K_{\omega'}^{\perp}$ the corresponding splitting of the fiber
over any $\omega' \in \mathcal{M}$.

A cylinder C on (M,ω) is a maximal open annulus filled by homotopic simple closed geodesics. The direction of C is the direction of these geodesics and the homology class of them is denoted by $\sigma(C) \in H_1(M,\mathbb{Z})$. A cylinder C on $(M,\omega') \in \mathcal{M}$ is called \mathcal{K} -good if $\sigma(C) \in K_{\omega'}^{\perp} \cap H_1(M,\mathbb{Z})$. If a cylinder C on (M,ω) is \mathcal{K} -good and $\gamma \in (K_{\omega} \cap H_1(M,\mathbb{Z}))^d$ then C lifts to a cylinder on the \mathbb{Z}^d -cover $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$.

Proposition 6.1 (see the proof of Proposition 2 in [2]). Suppose that $(M, \omega_*) \in \mathcal{M}$ has a vertical K-good cylinder. If the positive $(g_t)_{t \in \mathbb{R}}$ orbit of (M, ω) accumulates on

 (M, ω_*) then for any $\gamma \in (K_\omega \cap H_1(M, \mathbb{Z}))^d$ there exists c > 0 and two sequences of positive numbers $(L_n)_{n \geq 1}$, $(\delta_n)_{n \geq 1}$ such that $L_n \to +\infty$, $\delta_n \to 0$ and the \mathbb{Z}^d -cover $(\widetilde{M}_\gamma, \widetilde{\omega}_\gamma)$ is (c, L_n, δ_n) -recurrent for $n \geq 1$.

For every \mathbb{Z}^d -cover $(\widetilde{M}_\gamma,\widetilde{\omega}_\gamma)$ let $D_\gamma^\omega\subset\widetilde{M}_\gamma$ be a fundamental domain for the deck group action so that the boundary of D_γ^ω is a finite union of intervals. Then, $\mu_{\widetilde{\omega}_\gamma}(D_\gamma^\omega)=\mu_\omega(M)\in(0,+\infty)$. Moreover, choose the fundamental domains such that $D_\gamma^\omega=D_\gamma^{r_\theta\omega}$ for every $\theta\in S^1$.

Theorem 6.2. Suppose that (M, ω) has a K-good cylinder C. If $\pi/2 - \theta \in S^1$ is a Birkhoff generic direction then for every $\gamma \in (K_{\omega} \cap H_1(M, \mathbb{Z}))^d$ we have

$$\lim_{t \to +\infty} \inf \mu_{\widetilde{\omega}_{\gamma}}(D_{\gamma}^{\omega} \cap \widetilde{\varphi}_{t}^{\theta} D_{\gamma}^{\omega}) > 0.$$

Proof. Denote by $\theta_0 \in S^1$ the direction of the cylinder C on (M,ω) . Since the splitting (6.1) is $(A_g)_{g \in SL(2,\mathbb{R})}$ -invariant, C is a vertical \mathcal{K} -good cylinder on the translation surface $(M, r_{\pi/2-\theta_0}\omega) \in \mathcal{M}$. Since $\pi/2-\theta \in S^1$ is Birkhoff generic, applying (4.1) to a sequence $(\phi_k)_{k \geq 1}$ in $C_c(\mathcal{M})$ such that $(\sup(\phi_k))_{k \geq 1}$ is a decreasing nested sequence of non-empty compact subsets with the intersection $\{r_{\pi/2-\theta_0}\omega\}$, there exists $t_n \to +\infty$ such that $g_{t_n}(r_{\pi/2-\theta}\omega) \to r_{\pi/2-\theta_0}\omega$. By Proposition 6.1, there exists c>0 and two sequences of positive numbers $(L_n)_{n \geq 1}$, $(\delta_n)_{n \geq 1}$ such that $L_n \to +\infty$, $\delta_n \to 0$ and the \mathbb{Z}^d -cover $(\widetilde{M}_{\gamma}, \widetilde{r_{\pi/2-\theta}\omega_{\gamma}})$ is (c, L_n, δ_n) -recurrent for $n \geq 1$. Let us denote by $(\widetilde{\varphi}_t^v)_{t \in \mathbb{R}}$ the vertical flow on $(\widetilde{M}_{\gamma}, \widetilde{r_{\pi/2-\theta}\omega_{\gamma}})$ which coincides with the flow $(\widetilde{\varphi}_t^v)_{t \in \mathbb{R}}$ in direction $\theta \in S^1$ on $(\widetilde{M}_{\gamma}, \widetilde{\omega_{\gamma}})$. Then there exists a sequence $(I_n)_{n \geq 1}$ of horizontal intervals in $(M, r_{\pi/2-\theta}\omega)$ such that $\mathcal{R}^{r_{\pi/2-\theta}\omega}(I_n, L_n)$ is a rectangle in $(M, r_{\pi/2-\theta}\omega)$ such that $\mu_{\omega}(\mathcal{R}^{r_{\pi/2-\theta}\omega}(I_n, L_n)) = \mu_{r_{\pi/2-\theta}\omega}(\mathcal{R}^{r_{\pi/2-\theta}}(I_n, L_n)) > c$ and

(6.2) for every
$$\widetilde{x} \in p_{\gamma}^{-1}(\mathcal{R}^{r_{\pi/2-\theta}\omega}(I_n, L_n))$$
 we have $d_{\gamma}^{\omega}(\widetilde{x}, \widetilde{\varphi}_{L_n}^v \widetilde{x}) < \delta_n$.

As $D^{\omega}_{\gamma} \subset \widetilde{M}_{\gamma}$ is a fundamental domain for the \mathbb{Z}^d -action of the deck group, we have

(6.3)
$$\mu_{\widetilde{\omega}_{\gamma}}(D_{\gamma}^{\omega} \cap p_{\gamma}^{-1}(\mathcal{R}^{r_{\pi/2-\theta}\omega}(I_n, L_n))) = \mu_{\omega}(\mathcal{R}^{r_{\pi/2-\theta}}(I_n, L_n)) > c.$$

For every $\delta > 0$ denote by $\partial_{\delta} D_{\gamma}^{\omega}$ the δ -neighborhood in $(\widetilde{M}_{\gamma}, d_{\gamma}^{\omega})$ of the boundary $\partial D_{\gamma}^{\omega}$. Since $\mu_{\widetilde{\omega}_{\gamma}}(\partial D_{\gamma}^{\omega}) = 0$, we have

(6.4)
$$\mu_{\widetilde{\omega}_{\gamma}}(\partial_{\delta}D_{\gamma}^{\omega}) \to 0 \text{ as } \delta \to 0.$$

In view of (6.2), we obtain

$$\widetilde{\varphi}^v_{L_n}\big(\big(D^\omega_\gamma\cap p_\gamma^{-1}(\mathcal{R}^{r_{\pi/2-\theta}\omega}(I_n,L_n))\big)\setminus\partial_{\delta_n}D^\omega_\gamma\big)\subset D^\omega_\gamma.$$

It follows that

$$\begin{split} \mu_{\widetilde{\omega}_{\gamma}}(D_{\gamma}^{\omega} \cap \widetilde{\varphi}_{L_{n}}^{\theta} D_{\gamma}^{\omega}) &= \mu_{\widetilde{\omega}_{\gamma}}(D_{\gamma}^{\omega} \cap \widetilde{\varphi}_{L_{n}}^{v} D_{\gamma}^{\omega}) \\ &\geq \mu_{\widetilde{\omega}_{\gamma}} \left(\widetilde{\varphi}_{L_{n}}^{v} \left(\left(D_{\gamma}^{\omega} \cap p_{\gamma}^{-1} (\mathcal{R}^{r_{\pi/2 - \theta} \omega}(I_{n}, L_{n})) \right) \setminus \partial_{\delta_{n}} D_{\gamma}^{\omega} \right) \right) \\ &= \mu_{\widetilde{\omega}_{\gamma}} \left(\left(D_{\gamma}^{\omega} \cap p_{\gamma}^{-1} (\mathcal{R}^{r_{\pi/2 - \theta} \omega}(I_{n}, L_{n})) \right) \setminus \partial_{\delta_{n}} D_{\gamma}^{\omega} \right) \\ &\geq \mu_{\widetilde{\omega}_{\gamma}} \left(D_{\gamma}^{\omega} \cap p_{\gamma}^{-1} (\mathcal{R}^{r_{\pi/2 - \theta} \omega}(I_{n}, L_{n})) \right) - \mu_{\widetilde{\omega}_{\gamma}} (\partial_{\delta_{n}} D_{\gamma}^{\omega}). \end{split}$$

By (6.3) and (6.4), this gives $\liminf_{n\to+\infty} \mu_{\widetilde{\omega}_{\gamma}}(D_{\gamma}^{\omega} \cap \widetilde{\varphi}_{L_{n}}^{\theta}D_{\gamma}^{\omega}) \geq c > 0$, which completes the proof.

In view of Proposition 2.1 and Theorem 4.1, this leads to the following result:

Theorem 6.3. Suppose that (M, ω) is a compact connected translation surface with a K-good cylinder. Then for every $\gamma \in (K_{\omega} \cap H_1(M, \mathbb{Z}))^d$ and for a.e. $\theta \in S^1$ the Poisson suspension of the directional flow $(\widetilde{\varphi}_t^{\theta})_{t \in \mathbb{R}}$ on the \mathbb{Z}^d -cover $(\widetilde{M}_{\gamma}, \widetilde{\omega}_{\gamma})$ is not mixing.

The notion of K-good cylinder was introduced in [2] and applied to prove recurrence for a.e. directional billiard flow in the standard periodic wind tree model. The existence of K-good cylinders was also shown in more complicated billiards on periodic tables in [14] and [26]. The paper [26] deal with \mathbb{Z}^2 -periodic patterns of scatterers of right-angled polygonal shape with horizontal and vertical sides; the obstacles are horizontally and vertically symmetric. Some Λ -periodic patterns of scatterers with horizontal and vertical sides are considered in [14] for any lattice $\Lambda \subset \mathbb{R}^2$; here obstacles are centrally symmetric. Among others, the existence of K-good cylinders was shown for Λ_{λ} -periodic wind tree model (obstacles are rectangles), where Λ_{λ} is any lattice of the form $(1,\lambda)\mathbb{Z}+(0,1)\mathbb{Z}$. In view of Theorem 6.3, we have the absence of mixing for the Poisson suspension of the directional billiard flows $(b_t^\theta)_{t\in\mathbb{R}}$ for a.e. $\theta \in S^1$ on all billiards tables considered in [2, 14, 26].

References

- [1] J. Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, 50, AMS, Providence, RI, 1997.
- A. Avila, P. Hubert, Recurrence for the wind-tree model, to appear in Ann. Inst. H. Poincaré Anal. Non Lineaire.
- [3] V. Bergelson, A. del Junco, M. Lemańczyk, J. Rosenblatt, *Rigidity and non-recurrence along sequences*, Ergodic Theory Dynam. Systems 34 (2014), 1464-1502.
- [4] J. Chaika, A. Eskin, Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn. 9 (2015), 1-23.
- [5] J.-P. Conze, K. Fraczek, Cocycles over interval exchange transformations and multivalued Hamiltonian flows, Adv. Math. 226 (2011), 4373-4428.
- [6] I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.
- [7] V. Delecroix, P. Hubert, S. Lelievre, Diffusion for the periodic wind-tree model, Ann. Sci. Ec. Norm. Super. 47 (2014), 1085-1110.
- [8] V. Delecroix, A. Zorich, Cries and whispers in wind-tree forests, arXiv:1502.06405
- Y. Derriennic, K. Frączek, M. Lemańczyk, F. Parreau, Ergodic automorphisms whose weak closure of off-diagonal measures consists of ergodic self-joinings, Colloq. Math. 110 (2008), 81-115.
- [10] P. and T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German, translated in:) The conceptual foundations of the statistical approach in mechanics, (trans. Moravicsik, M. J.), 10-13 Cornell University Press, Itacha NY, (1959).
- [11] A. Eskin, M. Mirzakhani, Invariant and stationary measures for the $SL(2,\mathbb{R})$ action on moduli space, arXiv:1302.3320.
- [12] A. Eskin, M. Mirzakhani, A. Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. (2) 182 (2015), 673-721.
- [13] G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), 1-103.
- [14] K. Frączek, P. Hubert, Recurrence and non-ergodicity in generalized wind-tree models, arXiv: 1506.05884.
- [15] K. Fraczek, M. Schmoll, On ergodicity of foliations on Z^d-covers of half-translation surfaces and some applications to periodic systems of Eaton lenses, arXiv:1708.05550.
- [16] K. Fraczek, C. Ulcigrai, Non-ergodic Z-periodic billiards and infinite translation surfaces, Invent. Math. 197 (2014), 241-298.
- [17] P. Hubert, B. Weiss, Ergodicity for infinite periodic translation surfaces, Compos. Math. 149 (2013), 1364-1380.
- [18] A. Katok, A. Zemljakov, Topological transitivity of billiards in polygons, Math. Notes 18 (1975), 760-764.
- [19] J.F.C. Kingman, Poisson processes, Oxford Studies in Probability, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.
- [20] J.F.C. Kingman, Poisson processes revisited, Probab. Math. Statist. 26 (2006), 77-95.
- [21] A. Malaga Sabogal, S. Troubetzkoy, Ergodicity of the Ehrenfest wind-tree model, C. R. Math. Acad. Sci. Paris 354 (2016), 1032-1036.
- [22] A. Malaga Sabogal, S. Troubetzkoy, Infinite ergodic index of the ehrenfest wind-tree model, arXiv: 1701.04585.
- [23] H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992), 387-442.

- [24] H. Masur, S. Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, 1015-1089, North-Holland, Amsterdam, 2002.
- [25] K. Schmidt, Cocycle of Ergodic Transformation Groups, Lect. Notes in Math. Vol. 1 Mac Milan Co. of India, 1977.
- [26] A. Pardo, Counting problem on wind-tree models, arXiv:1604.05654, to appear in Geometry & Topology.
- [27] E. Roy, Ergodic properties of Poissonian ID processes, Ann. Probab. 35 (2007), 551-576.
- [28] M. Viana, Dynamics of Interval Exchange Transformations and Teichmüller Flows, lecture notes available from http://w3.impa.br/~viana/out/ietf.pdf
- [29] J.-C. Yoccoz, Interval exchange maps and translation surfaces. Homogeneous flows, moduli spaces and arithmetic, 1-69, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010.
- [30] A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin (2006), 437-583.

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina $12/18,\ 87\text{-}100$ Toruń, Poland

 $E ext{-}mail\ address: fraczek@mat.umk.pl}$