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1. Introduction to statistical analysis of experimental data 

 

In the course of repeated experiments, errors varying according to their nature may occur. One 

of them is a systematic uncertainty (formerly a systematic error) which is typical for experiments 

conducted in exactly the same conditions. It results from imperfect instruments, errors during 

calibration, an instrument’s drift over time, optical parallax, and imperfections of an observer. This 

error can be corrected or eliminated by conducting a so called blind test, proper calibration and a 

careful experiment. This type of error determines the accuracy of an experiment, i.e. the closeness of a 

measurement result to an actual value. 

A random uncertainty (formerly a random error) stands for small, uncontrolled fluctuations in 

the experimental measurements that result from a myriad of causes affecting conditions of an 

experiment (a random variable). This error alone can be analysed using statistical methods. It is 

critical for the precision of a measurements i.e. the reproducibility of a result in repeated experiments. 

The two terms accuracy and precision are schematically compared in Fig. 1.1. 

 
Nieprecyzyjnie i niedokładnie Precyzyjnie ale niedokładnie

 
 

Nieprecyzyjnie ale dokładnie Precyzyjnie i dokładnie

 
 

Fig. 1.1. Accuracy vs. precision scheme. 

 

Sometimes we can also distinguish a mistake (gross error) which is associated with inattention 

of an experimenter (e.g. poor reading, damage to equipment). Therefore, a measurement outcome may 

significantly deviate from others.  

The general rule in data analysis is that questionable results cannot be rejected without 

mathematical justification. A questionable result (outlier) can be rejected only if it is indicated by a 

result of an appropriate test such as: Dixon’s, 3d, or Grubbs’s tests, etc. Each has its advantages and 

disadvantages. 

The Dixon's test (test Q) is a common test used for identification and rejection of outliers. In this test, 

the Q ratio is calculated from the formula: 

 

suspect nearest

max min

Q
x x

x x





 

      (1.1) 

 

low precision, low accuracy 

high precision, high accuracy 

high precision, low accuracy 

low precision, high accuracy 
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i.e. the difference between the outlier and the closest result divided by the range (xmax  xmin). The 

suspect result is rejected if the calculated value Q is larger than the critical value (Qcr) indicated in the 

table (Tab. 1.1), dependent on the number of measurements n. 

 

Tab. 1.1. Critical values of Q (Qcr) for Dixon’s test 

 

n 3 4 5 6 7 8 9 10   

Qcr 0.94 0.76 0.64 0.56 0.51 0.47 0.44 0.41 0.00 

 

The Dixon's test allows for rejection of only one outlier in a given series of measurements. 

The 3d test calculates the arithmetic mean of deviations of points from the mean, without 

regard to a outlier: 

 

1

n

i

i

x x

d
n








      (1.2) 

 

According to this method, if a suspected result is not within a prescribed range (±3d), it should be 

rejected.  

 

1.1. Significant digits (figures) 

 

The way a numerical quantity is recorded is closely related to the precision with which this 

value has been set. A correct recording of measurement results related to the calculus of errors 

generally requires that a result and its uncertainty are rounded off. The reason why uncertainties and 

final results should be rounded off can be presented in an example. The mean value and its uncertainty 

obtained after a few hundred measurements of polyester coating thickness using micrometer are 

presented below: 

 

120.342525794323  9.722742949332 m 

 

Putting the result and its uncertainty in such a form suggests that the precision of the measurements is 

larger than the size of an atom (the fourth decimal place), the size of a nucleus of an atom (the eighth 

decimal place) and comparable to the size of a quark (the last, twelfth decimal place). The value and 

its uncertainty so recorded are far from the acceptable precision with which the measurement was 

made. According to the error calculus, this result should be written as follows: 

 

120.3  9.8 m 

 

The example shows that measurement results should be given together with an uncertainty and a unit. 

An uncertainty value is given with an accuracy of up to two significant digits. 

If an uncertainty value (rounded) does not increase by more than 10%, only one digit may be left (for 

example 0.88 is round up to 0.9). It must also be noted that uncertainties are always rounded up. In 

selecting the number of significant digits of a result, the last digit of the result and an uncertainty 

should be in the same decimal place (e.g. 32.3  0.7). 

 According to the rules, the significant figures of a number are digits from 1 to 9 and zero,  

if: 

a) zeroes are placed between other nonzero digits, or 

b) zeroes are placed at the end of a number containing a decimal point. 

 

For example, the number: 

 

6.321 4.345·10-3 0.001307 1.000·104 
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have four significant digits. Examples of the result with various number of significant digits and 

decimal places are presented in Tab. 1.2. 

 

Tab. 1.2. Examples of the result with various number of significant digits and decimal places 

 

Result 
Number of 

significant digits 

Number of 

decimal places 

42.8 3 1 

0.345830 6 6 

0.543 3 3 

0.0038 2 4 

0.00028040 5 8 

 

The measured numbers are usually rounded off to the degree of accuracy. According to the 

rules for rounding off, the numeric values are: 

a) round up, if the last digit is 6, 

b) round down, if the last digit is 4, or 

c) if the last digit is equal 5: round up, if at least one from the removed, nonsignificant digits 

is non-zero, or to the nearest even digit. 

Some rounding examples are presented below: 

 

A= 0.7756 g round to A= 0.776 g rule a) 

A=0.7753 g round to A=0.775 g rule b) 

A= 0.77551 g round to A= 0.776 g rule c) 

A= 0.7755 g round to A= 0.776 g rule c) 

A= 0.7765 g round to A= 0.776 g rule c) 

 

The following scheme (Fig. 1.2) illustrates the rounding of the measured values. 

 

 

 
 

Fig. 1.2. Rounding of the measured values. 
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1.2. Statistical analysis of random error 

 

The occurrence of random errors in the course of repeated measurements means that the 

obtained results (xi) show distribution (dispersion). Therefore, some values of xi are more common 

than others and may be located in the middle range of other values x. Since measurement results are 

largely determined by a large number of (unidentifiable) random factors, methods of probability 

calculus and mathematical statistics are used to assess their uncertainties. 

A structure of results can be analysed by dividing a range of all results into a number of intervals and 

assigning values to each class. The resulting frequency distribution for the corresponding classes can 

be presented in a graph called a histogram (Fig. 1.3). The graph consists of a series of rectangles 

placed on an axis of coordinates which are based on intervals of length h (x), whereas the height is 

determined by the frequency (or cardinality) of results belonging to a specific class interval. 
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Fig. 1.3. Histogram of the frequency distribution of xi for each class of data. 

 

If it was possible to repeat the measurements an infinite number of times, then the resulting 

distribution could be represented as a normal distribution curve for the general population (Fig. 1.4). 

In statistics, the general population is a set of all possible experiments of a given type. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10

p
ro

b
a
b

il
it

y
 d

e
n

s
it

y
 f

u
n

c
ti

o
n

P
(x

)

x

  
Fig. 1.4. Normal (Gaussian) distribution curve. 

 

A normal (Gaussian) distribution is a continuous distribution with mean x ( x ) and variance 2, 

defined for all real x by a probability density function: 
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2

2

( )

2

2

1
( )

2

x x

P x e 






      (1.3) 

 

The general population can be characterized by such values as: 

- population mean of the distribution: 

 

1
lim i
n

i

x
n




 
  

      (1.4) 

 

- population variance, defined as the mean square of the deviations of the x values from the 

mean (): 

 

2 21
lim ( )i
n

i

x
n

 


 
     

 (1.5) 

 

- population standard deviation, which is the square root of the variance:  

 

2 

 

      (1.6) 

 

A population standard deviation () is the most important measure characterizing dispersion 

(population coverage measure) and determines an average deviation of a xi values from a population 

mean value (). An important characteristic feature of a population standard deviation is that for a 

normal distribution the probabilities that a result is far from a mean value at most by , 2 i 3 are 

respectively: 

±     68.26% 

 ± 2  95.46% 

 ± 3  99.73% 
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Fig. 1.5. Probability density distribution function (P(x)) of the Gaussian distribution. 

 

The interval  ± 3  means that 99.73% of results will be far from a mean value by no more than 3 

standard deviations. This feature of a standard deviation is used in statistical tests (3d, threesigma 

rule). 

The probability density function (Fig. 1.5) for a normal distribution is symmetric about a population 

mean (), while a population standard deviation value only affects the shape of the distribution 

(Fig. 1.6). 
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Fig. 1.6. The effect of a population standard deviation value on the shape of a normal distribution. 

 

The density functions presented in Fig. 1.6 indicate that the higher the population standard deviation, 

the more the results are dispersed about the mean (the distribution curve flattens). 

In real measurements, we never have an infinite number of results (general population), what 

we have is only a random sample. Therefore, based on experimental results, we can obtain only an 

approximate description of the entire population distribution. Numbers known as statistical parameters 

(or quantities) are used to describe the structure of results. These parameters can be divided into 4 

groups: 

a) measures of position – indicate the average or typical level of results, i.e. mean, median, mode 

(the number that appears most often) etc., 

b) measures of dispersion (variation) – indicate the degree of result dispersion with respect to a 

mean value (e.g. range, variance, standard deviation, relative standard deviation etc.) 

c) measures of asymmetry – indicate the type and degree of deviation from the symmetry of an 

examined feature (variable) distribution (e.g. skewness) 

d) measures of concentration – indicate the concentration of individual observations around a 

mean (e.g. kurtosis). 

In all real experiments, a finite number of measurements (samples, etc.) prevents determination of 

values  and , and only allows for their estimation using appropriate formulas (estimators). A sample 

mean, defined as the sum of all values x divided by a sample size (n), is an estimated mean for a 

population: 

 

1
i

i

x x
n

          (1.7) 

 

The variance (s2) and standard deviation for the sample (s) can be calculated from the equations: 

 

2 2 21
( )

1
x i

i

s x x
n

   

     (1.8) 

 

 

2 21
( )

1
x x i

i

s s x x
n

    

      (1.9) 

 

in which n – 1 denote the number of degrees of freedom, i.e. the number of independent observations 

(x values), which are used in calculating of s. 
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The standard deviation defined by Equation (1.9) characterizes the mean square error of a 

single measurement. For the analysis of experimental data, the uncertainty of the final result, i.e. the 

mean is of greater importance: 

 

 
 

 

2

1

1

n

i

x i
x

x x
s

u x s
n nn





  




    

 (1.10) 

 

According to the international standard for the measurement uncertainty analysis (described in more 

detail in the next chapter), the quantity defined by the Equation (1.10) is called a standard uncertainty. 

Literature, however, still uses its original name: a standard deviation of a mean. Another concept used 

and derived from statistics, is a confidence interval for a mean, indicating insufficient number of data 

sets (n < 30). A confidence interval for a mean arithmetic sample is an interval symmetrical with 

respect to the mean, while the expected value is in it with an assumed probability equal to 1  : 

 

1, 1, 1x x
n x n

s s
P x t x t

n n
   

 
      

 
   (1.11) 

 

In this expression  is the level of significance, and 1,nt   is the Student’s distribution parameter 

(Tab. 1.3.), i.e. a measure of deviations of the distribution of a small number of results from the 

normal distribution. 

 

Tab. 1.3. Selected values of the Student’s distribution parameter (pen name of W. Gosset (1876 – 

1937)) 

 

Number of 

degrees of 

freedom 

Confidence level 

90% 95% 99% 

1 

2 

3 

5 

7 

9 

6.31 

2.92 

2.35 

2.02 

1.90 

1.83 

12.7 

4.30 

3.18 

2.57 

2.36 

2.26 

63.7 

9.92 

5.84 

4.03 

3.50 

3.25 

 

According to the Equation (1.11), the sample mean can be put along with the confidence interval in 

the following way: 

 

1,
x

X n

s
x t

n
         (1.12) 

Expected value = arithmetic mean of the sample  one half of the confidence interval 

 

The international standard, in force also in Poland, obliges to use an expanded uncertainty (U) which 

determines (as well as a confidence interval for a mean) an interval around the result of analysis which 

can be expected (in accordance with the accepted level of significance (probability)) to contain the 

expected value. An expanded uncertainty is used when the repeatability of measurements is the 

dominant parameter influencing the estimation of uncertainty. It can be calculated from the formula 

 

( )xs
U k k u x

n
  

     

 (1.13) 

 

in which k denote the coverage factor (2  k  3). 
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The analysis of measurement uncertainty will be discussed more broadly in the next chapter. 

 

EXAMPLE 

 

Ten measurements of the pH of an aqueous solution were conducted, providing the following results: 

 

6.254 6.312 6.277 6.261 6.291 6.330 6.289 6.288 6.326 6.293 

 

Calculate uncertainty and expanded uncertainty of the mean.  

 

SOLUTION 

 

This task can be solved using appropriate formulas for standard deviation (Eq. (1.9)) and standard 

uncertainty (Eq. (1.10)) or using standard functions of a calculation spreadsheet, e.g.: 

 

=AVERAGE(range) 

 =VAR(range) (older versions of Excel) 

=VAR.S(range) (Excel 2010) 

=STDEV(range) (older versions of Excel) 

=STDEV.S(range) (Excel 2010) 

 

Results can be more easily obtained using the Data analysis add-in. After selecting from the menu: 

DataData analysisDescriptive statistics (or in older versions of Excel: ToolsData analysis 

Descriptive statistics) and selecting the Input range, Confidence level for the mean (95%) and 

Summary statistics: 

 

 
 

we get the following summary of the analysis: 
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Column1

Mean 6.293

Standard Error 0.0079401

Median 6.292

Mode #N/D!

Standard Deviation 0.0251087

Sample Variance 0.0006304

Kurtosis -0.704528

Skewness -0.024058

Range 0.076

Minimum 6.254

Maximum 6.33

Sum 62.93

Count 10

Confidence Level(95.0%) 0.0179617  
 

This table summarizes the most important statistical parameters. The quantity in Excel called Standard 

error is the standard deviation of a mean, i.e. standard uncertainty, defined by the formula 1.10. 

Confidence level (95.0%) is half the width of the confidence interval (Eq. (1.12)). In order to 

determine the coefficient of the Student’s t-distribution occurring in the equation, we can use the 

functions: 

=TINV(, n1) (older versions of Excel) 

=T.INV.2T(, n1) (Excel 2010) 

According to the general rule that correctly rounded values of a quantity and its uncertainty have the 

same number of decimal places, the end result can be put as follows: 

 

pH = 6.293, u(pH) = 0.008 with the standard uncertainty, 

 

pH = (6.293±0.016) for k = 2 with the expanded uncertainty, or 

 

pH = 6.293±0.018  with the confidence interval of the mean (not recommended). 

 

The mean and standard deviation can be calculated by using an alternative recursive method. 

In this method the first value x1 is the first trial value of a mean: 

 

m1
 
= x1        (1.14) 

 

In this case, the initial sum of squared deviations is zero: 

 

q1 = 0       (1.15) 

 

 

In further calculations, recursive formulas for a mean value (m) and the sum of squared deviations (q) 

are used as follows: 

 

1( 1) i i
i

i m x
m

i

 
        (1.16) 

 
2

1
1

( 1)( )i i
i i

i x m
q q

i




 
        (1.17) 

 

After completing the calculations for all values of i (i = 1, 2, ..n), the final mi value is the mean of the 

entire data set (mn) whereas the standard deviation (s) is computed using the equation: 
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1

nq
s

n



       (1.18) 

 

where qn denote the final value of sum-squared deviations (qi). 

 

1.3. Uncertainty of measurement 

 

In 1995 a group of international institutions (ISO, BIMP, IEC, IFCC, UIPAC, UIPAP, OMIL, 

NIST) established international standards of measurement uncertainties. In 1999 such a standard was 

adopted also in Poland. Legal requirements concerning the analysis of measurement results oblige to 

follow the recommendations of this standard. 

The new standard requires a statistical approach to the uncertainty calculus. In accordance 

with the accepted principles, a measurement error is a measure of difference between two specific 

values: 

MEASUREMENT ERROR = measured value  true value 

 

For individual measurements the following formulas are used for the absolute error: 

 

ε rx x         (1.19) 

 

and relative error: 

 

ε r

r r

x x

x x



        (1.20) 

 

in which x denote the measured value, while xr is the true value. 

UNCERTAINTY is a parameter associated with a measurement result that characterizes the 

dispersion of results and can be reasonably attributed to the measured value. 

Following the recommendations of the standard, a STANDARD UNCERTAINTY is taken as 

a measurement uncertainty, and it is calculated as the square root of a variance estimator. The symbol 

adopted for a standard uncertainty is u or u(x).  

An important element of the standard is also a distinction between two ways of assessing 

uncertainty which are classified into two categories according to a calculation method (type A and 

type B). Type-A uncertainties characterize random errors and their analysis is based on statistical 

calculations. Type B uncertainties relate to systematic errors analysed using methods other than 

statistical calculations. 

 

TYPE A     TYPE B 

An analysis based on statistical  Non-statistical methods: 

calculations     - experimenter’s experience, 

- comparison with previous similar 

measurements, 

-  manufacturer’s certificate for measuring 

instruments used (instrument grade), 

- reference material analysis (references). 

 

Moreover the new standard: makes a distinction between correlated and uncorrelated measurements in 

indirect measurements, introduces the concept of "expanded uncertainty" and determines how to 

record measurement results and their uncertainties. 

According to the standard, analysed measured values can be divided into two groups: 

a) quantities measured in direct measurements (measuring one quantity, e.g. mass, temperature, 

etc.), 
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b) quantities measured in indirect measurements (measuring several quantities x1, x2, …, and 

calculating an indirect quantity according to the functional formula y = f(x1, x2, …), i.e. density 

measurement according to the formula d = m/V) 

The adopted standard also defines how to record uncertainty: 

standard uncertainty  m = 0.82 g, u(m) = 0.14 g 

expanded uncertainty  m = 0.82 g, U(m) = 0.28 g 

     m = (0.82 ± 0.28) g for k = 2 

In the presented example the uncertainty is given with two significant digits. 

 

1.3.1. Type B evaluation of uncertainty 

 

Type B evaluation of uncertainty is used when we deal with one measurement result or if there 

is no dispersion in a series of results. A standard uncertainty can be calculated from the corresponding 

formulas, for example, we can use the following formula to calculate an uncertainty resulting from the 

accuracy of an instrument (calibration uncertainty): 

 

Δ
( )

3

d x
u x         (1.21) 

 

where Δd x  is the calibration uncertainty, equal to the scale interval of the measuring device used. 

Once it can be assumed on the basis of general knowledge that a variable has a triangular distribution, 

the standard uncertainty is calculated from the formula: 

 

( )
6

d x
u x


        (1.22) 

 

Another factor affecting a measurement uncertainty is the uncertainty of an experimenter triggered by 

causes beyond his/her control. In most cases the uncertainty can be calculated from the expression:  

 

( )
3

exu x


        (1.23) 

 

For uncertainties of literature data or values calculated using a calculator (no standard deviation 

values), the following equation is applied: 

 

( )
3

t xu x


        (1.24) 

 

The total standard uncertainty (type B) for a single measurement can be calculated from the formula:  

 
2 2 2( ) ( ) ( )

( )
3 3 3

d e tx x x
u x

  
       (1.25) 

 

EXAMPLE 

 

Calculate the standard uncertainty of a volume measured by a volumetric flask of 250±0.4ml and 

calculate the standard uncertainty of mass measurement on an analytical balance ±0.0001g. 

 

SOLUTION 

 

Using the Equation (1.21) for calibration uncertainty, we obtain: 
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0.4
( ) 0.231 0.24

3 3

dVu V ml ml


     

 

which according to the rules can be put as: 

 

V = 250.00 ml, u(V) = 0.24 ml 

 

and 

 

0.0001
( ) 0.000058

3 3

d m
u m g


    

 

1.3.1.1. Propagation of uncertainty 

 

If the measured quantity y is a function of several input (independent) variables y = f (x1, x2, 

…, xn), the combined standard uncertainty, in accordance with the rule of error propagation, can be 

calculated from the formula: 

 
22 2

2 2 2

1 2

1 2

( ) ...c n

n

y y y
u y u u u

x x x

      
        

       
   (1.26) 

 

In Equation (1.26) symbol 
y

x

 
 
 

 denote the partial derivative of y function with respect to a given 

variable (x). Uncertainty evaluation therefore requires basic knowledge about the derivatives of 

functions. In order to explain this issue, the basic information and formulas for calculating derivatives 

are presented below. The table 1.4 shows some examples of elementary functions and their 

derivatives. 

 

Tab. 1.4. Some examples of elementary functions and their derivatives 

 

Function f(x) Derivative f’(x) Comments 

c 0 
constant 

function  

xn nxn1 
nN 

xR 

ax axlna 
aR+{1} 

xR+ 

ex ex xR 

ln x 1/x xR{0} 

sin x cos x  

cos x sin x  

 

In order to calculate derivatives of functions that are a combination of elementary functions, the 

following formulas can be used: 

 

Product of a function and a constant: 

 

[c f(x)]’=c f’(x)      (1.27) 

 

Sum of the function: 
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[f(x)+g(x)]’ = f’(x) + g’(x)     (1.28) 

 

Product of the function: 

 

[f(x) g(x)]’ = f’(x) g’(x) + f(x) g’(x)    (1.29) 

 

Quotient of the function: 

 

2

( ) ( ) ( ) ( ) ( )

( ) ( ( ))

f x f x g x f x g x

g x f x


   

 
 

     (1.30) 

 

In the case of functions of several variables y = f(x1, x2, …, xn), a derivative with respect to one 

variable, assuming that other variables are constant, is called a partial derivative. 

 

EXAMPLE 

 

Calculate the partial derivatives of the function: 

 
2( , ) 4z f x y x y    

SOLUTION 

 

Using the formulas from table 4 and definition of a partial derivative we get: 

 

8
z

x
x




   and  
1

z

y





 

 

The expression 
z

x




 is read as „the partial derivative of z with respect to x”.  

 

EXAMPLE (MODIFIED) 

[L. Sobczyk, A. Kisza, K. Gatner, A. Koll, Eksperymentalna chemia fizyczna, PWN, Warszawa 1982, 

str. 27] 

 

The molecular weight of substance was determined with the Mayer’s method, yielding the following 

results: 

 

Mass of the substance m = 0.1250 g = 0.12510
-3

 kg 

Volume of displaced air V = 32.18 cm
3

 = 32.1810
-6

 m
3

 

Air pressure p = 748.2 mm Hg = 99750.0 Pa (minus the saturated vapor pressure) 

Temperature T = 298.2 K 

 

Based on the sensitivity of the apparatus, the following maximum errors were determined: 

 m = 0.0005 g = 5.010-7 kg 

 V = 0.05 cm3 = 5.010-8 m3  

 p = 1.1 mm Hg = 146.6 Pa 

 T = 0.1 K 

 

Based on the results, calculate the molecular weight of substance and the combined standard 

uncertainty. 
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SOLUTION 

 

Using the Equation (1.21) for the type B uncertainty and omitting the experimenter’s uncertainty and 

the uncertainty of gas constant (R), we get: 

 

u(m) = 0.000289 g 

u(V) = 0.0288 cm3 

u(p) = 0.635 mm Hg 

u(T) = 0.0577 K 

 

Substituting the data in the formula for the molecular weight, we obtain: 

 

R
96.54g/mol

m T
M

pV
   

 

To calculate the combined standard uncertainty, it is necessary to designate partial derivatives with 

respect to each variable occurring in the equation. After inserting the appropriate values, we get:  

 

R
772.35

M T

m pV


 


 

2

R
3.00

M m T

V pV


   


 

2

R
0.01

M m T

p p V


   


 

R
0.32

M m

T pV


 


 

 

Now we can use the formula for the combined standard uncertainty which is as follows: 

 
22 2 2

2 2 2 2( ) ( ) ( ) ( ) ( ) 0.24
M M M M

u M u m u V u T u p g
m V T p

         
          

          
 

 

The final result can therefore be put in the following way: 

 

M = 96.54 g/mol, u(M) = 0.24 g/mol 

 

1.3.2. Type A evaluation of uncertainty 

 

Type A evaluation of uncertainty involves determining the uncertainty of a measurement 

result series using statistical analysis. In the case of a simple quantity, derived from direct 

measurements, the standard uncertainty of a mean is calculated as the standard deviation of the mean:  

 

 
 

 

2

1

1

n

i

x i
x

x x
s

u x s
n nn





  



     (1.31) 

 

If the repeatability of measurements is the dominant parameter influencing the evaluation of 

uncertainty, an expanded uncertainty, defining the interval around a measurement result, can be 

calculated from the equation: 

 

( )xs
U k k u x

n
         (1.32) 

 

in which xs  denote the standard deviation, n – the number of measurements, while k – denote the 

coverage factor. The dimensionless coverage factor usually takes values from k=2 (recommended) to 

k=3, which corresponds to 95 or 99% probability of finding a result in this range. 
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In the case of experimental studies of simple quantities (x1, x2, …, xn) being part of a complex 

quantity (y = f (x1, x2, …, xn)), as in type B uncertainty analysis, the value of a combined standard 

uncertainty, when variables x are independent, can be determined from the formula: 

 
22 2

2 2 2

1 2

1 2

( ) ( ( )) ( ( )) ... ( ( ))c n

n

y y y
u y u x u x u x

x x x

      
        

       
   (1.33) 

 

EXAMPLE 

 

Determine the concentration of substance A (cA) prepared by dissolving 1g of A in 1 dm3 of 

water. The experiment was repeated five times, giving the corresponding standard uncertainties: 

( ) 0.001gAu m  , and 
3( ) 0.002 dmu V   

 

SOLUTION 

 

The partial derivatives cA relative to mA and V are as follows: 

 

[ ] 1
1

A

A

m V


 


 and 

2

[ ]
1

A

A m

V V


   


 

 

Substituting the calculated values into the equation (1.32) yields: 

 

2 2

2 2 2 2 2 2 3( ) ( ( )) ( ( )) (0.001) (1) (0.002) ( 1) 0.002236 g/dmc A A

A

A A
u c u m u V

m V

   
        

   
 

 

The final result can be presented in the form:  

 

cA = 1.0000 g/dm3, u(cA) = 0.0023 g/dm3 with the standard uncertainty, or 

cA = 1.0000 g/dm3, U(cA) = 0.0046 g/dm3 with the expanded uncertainty. 

 

EXAMPLE 

 

 The refractive index (n) and density (d) of benzene (M = 78.114 g/mol) at a temperature of 

25°C were examined to determine the molar refraction according to the formula: 

d

M

n

n
R 






2

1
2

2

 

The average results were as follows: 

 

     d=0.8737 g/cm3 

     n=1.4979 

for which corresponding standard uncertainties were calculated: 

 

u(d) = 0.0002 g/cm3 

u(n) = 0.0003 

Calculate the molar refraction (R) and the standard and expanded uncertainties for this value. 

 

SOLUTION 

 

Substituting the obtained values in the formula for the molar refraction, we get R = 26.20225 cm3/mol. 

In order to calculate the standard uncertainty, we need to have the values of appropriate partial 

derivatives R with respect to d and n: 
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98.29




d

R

d

R
 and 

2 2

6
44.61

( 1)( 2)

R n
R

n n n


 

  
 

 

From Equation (1.33), we obtain: 

 

 

   
2 2

2 22 2 4 2 4 2 3( ) ( ( )) ( ( )) (2 10 ) 29.98 (3 10 ) 44.61 0.014 cm / mol
R R

u R u d u n
d n

     
         

    
 

 

Therefore, we get: 

 

R = 26.202 cm3/mol, u(R) = 0.014 cm3/mol 

or R = 26.202 cm3/mol, U(R) = 0.028 cm3/mol 

 

According to the rule of error propagation, equations for calculating uncertainties arising from basic 

arithmetic operations can be derived from the Equation (1.33): 

 

Addition and subtraction – for the function in the form: 

 

1 2y ag bg         (1.34) 

 

the partial derivatives are: 

 

1

y
a

g





 and 

2

y
b

g





      (1.35) 

 

and the standard uncertainty can be calculated from the formula: 

 

2 2 2 2

1 2( ) ( ( )) ( ( ))u y a u g b u g       (1.36) 

 

 

Multiplication and division – for the function in the form: 

 

1 2y ag g        (1.37) 

 
the partial derivatives are given by:

  

2

1

y
ag

g





 and 1

2

y
ag

g





      (1.38) 

 

and the expression for the standard uncertainty is defined as: 

 

2 2 2 2 2 2

2 1 1 2( ) ( ( )) ( ( ))u y a g u g a g u g       (1.39) 

 

or: 
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2 2

1 2

2 2

1 2

( ( )) ( ( ))( ) u g u gu y

y g g
        (1.40) 

 

1.3.3. Combined standard uncertainty  

 

If A and B type uncertainties occur simultaneously, based on the known standard uncertainties 

of direct measurements, a combined standard uncertainty is determined according to the equation:  

 

2 2 2
2 2 2

1

( ) ( ) ( )1
( ) ( ( )) ( ( )) ( )

( 1) 3 3 3

n
d e t

A B i

i

x x x
u x u x u x x x

n n 

  
      




 

(1.41) 

 

where:  

u(x) – combined standard uncertainty, 

uA(x) – uncertainty calculated from the statistical dispersion of a measurement result series, 

uB(x) – uncertainty calculated otherwise than from the dispersion of results. 

 

2. Linear regression – least square method 

 

In experimental sciences, fitting mathematical equations to measurement results (in the form 

of numbers) is a routine practice. The aim of this procedure is to: 

a) generalize a data set using an appropriate mathematical function with several parameters 

(coefficients), or 

b) make a theoretical model fit (which results from our knowledge) to check a particular 

hypothesis.  

The equation thus determined can be used inter alia for the purpose of: 

a) integration (calculating the area under a curve connecting experimental points), 

b) interpolation, i.e. predicting values that have not been measured and are within the range of 

independent variables used to determine the equation parameters,  

c)  differentiation, and the consequent calculation of the slopes of tangents to a curve to 

calculate the instantaneous reaction rates, physicochemical partial quantities, etc., 

d) apparatus calibration (chromatograph, refractometer, spectrophotometer, etc.).  

 

The method of least squares is one of the oldest methods for fitting curves to experimental 

data. It involves minimizing the sum of squared deviations between the observed and calculated from 

the model values of a dependent variable (y). In this case the minimized value is squared deviations 

(Q), as defined by the equation: 

 

2

1

ˆ( )
n

i i

i

Q y y


 
     

(2.1) 

 

where n denote the number of data points (pairs of x  y) being fitted, yi  the values of the observed 

dependent variables y, ˆ
iy  the values of the dependent variable calculated on the basis of the fitted 

equation ( ˆ ( )iy f x ). The Equation (2.1) can be put as follows: 

 

2

1

( ( ))
n

i i

i

Q y f x


 
     

(2.2) 

 

The difference ˆ( )i iy y
 can be presented in a graph (Fig. 2.1. a) as a vertical line segment between 

the observed value and the value calculated from the model (deviation of the i-th point from the 

regression line). Q is the sum of all squared deviations (Fig. 2.1. b). According to the method of least 

squares, the curve is located relative to experimental points so that the value of Q is the smallest 
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Fig. 2.1. Graphical interpretation of the method of least squares. 

 

For a linear function in the form: 

 

0 1
ˆ ( )i i iy f x a a x  

     
(2.3) 

 

equation (2.1) can be rewrite as: 

 

2

0 1

1

( )
n

i i

i

Q y a a x


  
     

(2.4) 

 

As for the linear regression, Q is a function of two regression coefficients, it can be presented in a 

figure (Fig. 2.2) as a parabolic surface with a minimum for only one pair of a0 and a1. 
 

 
 

Fig. 2.2. The sumsquared error (Q), as a function of the model parameters a0 and a1. 

 

To calculate the values of a0 and a1 corresponding to Qmin, we can use a standard procedure in which 

the calculated partial derivatives Q with respect to a0 and a1 are compared to zero and then a system of 

equations relative to these variables is solved. This procedure gives the following results: 

 

0 1

10

2 ( )( 1) 0
n

i i

i

Q
y a a x

a 


    




    

(2.5) 

 

Divide through by 2 we get: 

 

0 1

10

( ) 0
n

i i

i

Q
y a a x

a 


   




     

(2.6) 
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After multiplication the above expression takes the form: 

 

0 1

1 10

0
n n

i i

i i

Q
y na a x

a  


   


 

     

(2.7) 

 

In order to obtain an equation for a0 for calculating the intercept (Fig. 2.3), the Equation (2.7) is 

multiplied by n to give the formula: 

 

0 1 0
i iy x

a a
n n

  
 

     
(2.8) 

 

which can be put as follows: 

 

0 1a y a x 
       

(2.9) 

 

In this equation y
 

and x  denotes the mean value of the dependent and independent variable, 

respectively. 

 

 
 

Fig. 2.3. Graphical interpretation of the a0 coefficient (intercept). 

 

Similar calculation for a1, yields: 

 

0 1

11

2 ( )( ) 0
n

i i i

i

Q
y a a x x

a 


    




    

(2.10) 

 

and: 

 

0 1

11

( ) 0
n

i i i

i

Q
y a a x x

a 


   




     

(2.11) 

 

After multiplication: 

 

 

2

0 1

1 1 1

0
n n n

i i i i

i i i

y x a x a x
  

    
     

(2.12) 

 

After inserting equation (2.9) into the above expression, we obtain the following equation: 
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1 1 1
1 2

2

1 1

n n n

i i i i

i i i

n n

i i

i i

n y x x y

a

n x x

  

 




 

  
 

  

 
    

(2.13) 

 

which allows determination of the value a1, called a slope. Graphical interpretation of the slope is 

presented in Fig. 2.4. 

 

 
 

Fig. 2.4. Graphical interpretation of the a1 (slope) and a0 (intercept) coefficients. 

 

The Equation (2.13) can also be put in the following, frequently encountered form: 

 

1
1

2

1

( )( )

( )

n

i i

i

n

i

i

x x y y

a

x x





 








     

(2.14) 

 

The Equation (2.13) is considerably simplified in the case of regression analysis with no a0 (intercept) 

coefficient (if a0 = 0 a line passing through the center of the coordinate system). The general equation 

takes the following form: 

 

1 1
ˆ ( )i iy f x a x 

     
(2.15) 

 

and a1 coefficient can be calculated from: 

 

1
1

2

1

n

i i

i

n

i

i

y x

a

x









      

(2.16) 

 

Graphical interpretation of the linear regression (without intercept) is presented in Fig. 2.5. 
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Fig. 2.5. Graphical interpretation of the a1 coefficient (slope) without intercept (a0 = 0). 

 

EXAMPLE: 

 

For the following results: 

 

x y 

1 2 

2 2.8 

3 4 

4 4.9 

5 6 

 

determine the linear equation (a1 and a0 coefficients) using method of least squares. 

 

SOLUTION 

 

To determine a0 and a1 coefficients from the equations (2.9) and (2.13), it is necessary to make simple 

calculations of corresponding means and sums which can be computed in a calculation spreadsheet or 

using a calculator: 
 

x y xy x
2

1 2 2 1

2 2.8 5.6 4

3 4 12 9

4 4.9 19.6 16

5 6 30 25

Suma 15 19.7 69.2 55

Średnia 3 3.94  
 

Substituting the calculated values into the equation (2.9) and (2.13) we get: 

 

1 1 1
1 2 2

2

1 1

5 69.2 15 19.7
1.01

5 55 15

n n n

i i i i

i i i

n n

i i

i i

n y x x y

a

n x x

  

 


  

  
  

  
 

  

 

 

and 

0 1 3.94 1.01 3 0.91a y a x       

The regression parameters (coefficients) in Excel ca be calculated from worksheet functions: 

=SLOPE(known_ys; known_xs)  (a1 coefficient) and 

=INTERCEPT(known_ys;known_xs)  (a0 coefficient). 

Sum 

Mean 
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2.1.Weighted linear regression 

 

In the regression equations made so far, all values yi were assumed to be encumbered with an 

identical error. This assumption is usually not true for real experimental data, because values yi are 

subject to various errors. A proper analysis requires the use of a weighted least squares method and the 

application of an appropriate statistical weights during the calculations. 

According to this method, the general equation for Q (sumsquared error, Eq. (2.2)) is given 

by: 

 

2

1

( ( ))
n

i i i

i

Q w y f x


       (2.17) 

 

Thus, by analyzing the simplest case of a weighted linear regression, the above equation can be 

presented as follows: 

 

2

0 1

1

( )
n

i i i

i

Q w y a a x


       (2.18) 

 

where the weighting factors wi (statistical weight) corresponds to the ith point. If the point (xi, yi) was 

determined with greater accuracy, the fitting curve should move closer to this point and hence the 

value wi should be higher. If wi = 1 for all values i, Equation (2.18) is reduced to Equation (2.4) and 

the weighting coefficients are called absolute weights. For different experimental data, numerical 

values of weights (wi) can be determined in various ways, i.e. as the inverse of a dependent variable: 

 

1
i

i

w
y



      (2.20) 

 

or in the most common way, as the inverse of a variance for each value yi: 

 

2

1
i

i

w
s



      (2.21) 

 

The a0 and a1 coefficients n the weighted linear regression can be calculated by the following 

equations: 

 

0 1w wa y a x        (2.22) 

 

1 1 1 1
1 2

2

1 1 1

n n n n

i i i i i i i i

i i i i

n n n

i i i i i

i i i

w w x y w x w y

a

w w x w x

   

  




 

  
 

   

  
    

(2.23) 

 

where the values of wwy  and wwx  (weighted centroids) are defined by equations: 

 

1

1

n

i i

i
w n

i

i

w y

y

w









      (2.24) 
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1

1

n

i i

i
w n

i

i

w x

x

w









      

(2.25) 

 

 

The goodness of fit of the linear function to experimental data can be assessed by calculating 

the average deviation from the regression line (residual standard deviation, standard error of estimate): 

 

2
y

Q
s

n


       

(2.26) 

 

which is a measure of the accuracy of predictions based on the regression equation and determines the 

standard deviation of all points around the regression. In this equation Q is defined by Equation (2.18), 

while n2 corresponds to the number of degrees of freedom. 

Standard deviations for each of the regression coefficients (a0 and a1) can be calculated from 

the equations: 
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where: 
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In practical calculations, due to the fact that 
2

is  is a function of a number of measurements, weights 

are redefined as follows: 
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therefore Equations (2.22) – (2.25) take the following form: 

 

0 w wa y bx 
      

(2.31) 
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and 
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(2.34) 

 

EXAMPLE 

 

For six standard solutions with a concentration of C (mol/dm3), absorbance measurements (A) were 

made and the corresponding standard deviations (si) were determined: 

 

C A s i

1.0E-06 0.02 0.009

1.0E-05 0.22 0.02

2.0E-05 0.49 0.013

3.0E-05 0.62 0.046

4.0E-05 0.78 0.051

5.0E-05 1.152 0.011  
 

Determine the weighted linear regression equation and compare it with the standard linear regression. 

Based on the equations, determine the concentration of an unknown sample (A = 1.1) and calculate the 

relative error. 

 

SOLUTION 

 

The application of the equations (2.31) and (2.32) in the calculations requires an initial calculation of 

respective sums and means. The results are compared below: 

 

C A s i 1/(s i
2
) w' i w' i x i w' i y i w' i x i y i w i x i

2

1.0E-06 0.02 0.009 12346 2.48 2.48E-06 0.050 4.96E-08 2.48E-12

1.0E-05 0.22 0.02 2500 0.50 5.02E-06 0.110 1.10E-06 5.02E-11

2.0E-05 0.49 0.013 5917 1.19 2.38E-05 0.582 1.16E-05 4.75E-10

3.0E-05 0.62 0.046 473 0.09 2.85E-06 0.059 1.76E-06 8.54E-11

4.0E-05 0.78 0.051 384 0.08 3.09E-06 0.060 2.41E-06 1.24E-10

5.0E-05 1.152 0.011 8264 1.66 8.30E-05 1.912 9.56E-05 4.15E-09

n sum 29884.4 6 1.202E-04 2.773 1.125E-04 4.88E-09

6 Sum/n 4980.73

mean of y w mean of x w 

0.462 2.00E-05   
 

For the weighted linear regression, substituting the appropriate values (from Table) to the equations 

we get: 

 

4 5

1
1 9 5 2

2 2

1

1.13 10 6 0.462 2 10
23024

4.9 10 6 (2 10 )

n

i i i w w

i

n

i i w

i

w x y nx y

a

w x nx

 



 



 
    

  
   

 




 

5 3

0 0.462 230242 2 10 1.52 10w wa y bx         
 

 

Thus the weighted linear equation can be write as follows: 

 

A = 23024·C + 1.5210-3 

 

For the linear regression, without taking into account weights, and considering the mean values A as 

dependent variables, we obtain: 
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A = 21650·C + 2.1410-3 

 

The results obtained from both equations are compared in Figure which also indicates the standard 

deviations of individual experimental points.  
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Substituting A = 1.1 in both equations, we get as follows: 

 

for the weighted linear regression: C
(w) = 4.77·10-5 mol/dm3 

 

for the standard linear regression: C = 5.07·10-5 mol/dm3 

 

Taking the value calculated from the weighted linear regression equation as the exact value, the 

relative error is 6.3%. 

 

In order to calculate standard deviations for the weighted regression coefficients, it is 

necessary to use Equations (2.27) and (2.28). If wi = 1 (absolute weights), these equations get 

simplified: 
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(2.35) 
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(2.36) 

 

To assess the fit of the regression function, a linear correlation coefficient (Pearson’s r) can be 

applied, defined as: 
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(2.37) 

 

which is a measure of the strength of the linear relationship between variables x and y. The linear 

correlation coefficient (r) takes values between 1, +1. If r = 1, then the points lie exactly on a straight 

line not parallel to the axis x. If there is no linear relationship between the variables, r = 0, and 

variables x and y are uncorrelated. Examples of the correlation coefficient values are presented in Fig. 

2.6. 

 

       r = 0.99    r = 0.9 r = 0.5          r ≈ 0     r = 0.5   r = 0.9 r = 0.99 

       
 

Fig. 2.6. Examples of the correlation coefficient values. 

 

A more adequate measure of a model’s goodness of fit to the observed (experimental) values 

is a squared correlation coefficient called a coefficient of determination. It sets out what proportion of 

the total variation (or what %) of variable y is explained by the linear regression model 

 

EXAMPLE 

 

Determine for the following set of data: 

 

x y 

1 2 

2 2.8 

3 4 

4 4.9 

5 6 

 

standard deviation of slope and intercept. 

 

SOLUTION 

 

The linear regression equation takes the following form: 

 

y = 0.91 + 1.01·x 

 

According to Equations (2.35) and (2.36), the average deviation from the regression line (sy) must be 

first calculated with the Equation (2.26) to determine the 
0as  and 

1as values. For this purpose it is 

necessary to determine the values of y estimated from the model ( ˆ
iy ), the corresponding sum of 

squared deviations (
2

1

ˆ( )
n

i i

i

Q y y


  ) and the sum 
2

1

( )
n

i

i

x x


 . The calculations are presented in the 

table below: 
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Substituting the appropriate values into the equations, we obtain: 

 

0.031
0.1016

5 2
ys  

  
 

and then: 

 

1

2

1

1 1
0.1016 0.0321 0.033

10
( )

a y n

i

i

s s

x x


    


 

0

2

1

2

1

55
0.1016 0.107 0.11

5 10
( )

n

i

i
a y n

i

i

x

s s

n x x





    







 

 

The calculated values of the coefficients and the standard deviations can be put as: 

 

a1 = 1.010±0.033 

a0 = 0.91±0.11 

 

The same values can be obtained by using Data analysisRegression in Excel spreadsheet. After 

selecting an input range y (1 column) and x (1 column):  

 

 
 

a summary in the form of a table is displayed: 

 

Sum 

$F$6:$F$10 

$E$6:$E$10 
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.998484

R Square 0.99697029

Adjusted R Square 0.99596039

Standard Error 0.101653

Observations 5

ANOVA

df SS MS F Significance F

Regression 1 10.201 10.201 987.1935 7.08412E-05

Residual 3 0.031 0.010333

Total 4 10.232

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95% Lower 95%

Intercept 0.91 0.106614571 8.535419 0.003379 0.570704854 1.249295 0.5707049 1.249295

X Variable 1 1.01 0.032145503 31.41964 7.08E-05 0.907698664 1.112301 0.9076987 1.112301  
 

where individual values can be read: 

 

The coefficient of determination (R Square) indicating that 99.69% of the total variation of y is 

explained by the linear regression model. 

a) mean deviation from the regression line (Standard error) sy = 0.10160.11 

b) standard deviation of the coefficient a0 (Standard Error (Intercept)) 
0as  = 0.10660.11 

c) standard deviation of the coefficient a1 (Standard Error (X1)) 
1as  = 0.03210.033 

According to the standard deviation of the coefficients, the regression equation can be put as follows: 

 

y = 0.91(±0.11) + 1.010(±0.033)·x 

r2 = 0.9969, sy = 0.11 

 

 The regression equation calculated with the least squares method can be used to predict the 

values of y (y0 = f(x0)) for any values x0 (point prediction of y). The standard error of prediction of the 

so obtained result can be calculated from Equation: 
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(2.38) 

 

In this equation, expression 
2

0( )x x  indicates that the farther the value (x0) for which we make 

prediction from the sample mean, the less accurate the prediction. 

In many cases (e.g. for large values n) the value of the root in the above equation is approximately 

equal to 1, so this formula gets simplified to: 

 

0y ys s       (2.39) 

 

EXAMPLE 

 

Calculate the standard error of prediction of the value of y for x0 = 3.5, using the regression equation 

and the data from the previous example. 

 

SOLUTION 

 

Substituting the value of x0 = 3.5 in the regression equation (y = 0.91 + 1.01·x), the result we obtain is 

y0 = 4.445. From Equation (2.38), we get: 
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0

21 (3.5 3)
0.1016 1 0.1124 0.12

5 10
ys


      

 

According to the standard error of prediction, the final result can be put as follows: 

 

y0 = 4.44±0.12 

 

Using the simplified equation (2.39), the result of calculations can be presented as: 

 

y0 = 4.44±0.11 

 

slightly different from the previous result. 

 

If the regression equation is used to predict the value x0 for any value y0 (point prediction of x), 

the standard deviation of the so designated number can be calculated from the equation:  
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(2.40) 

 

This expression, like Equation (2.38), can be simplified, when the element is approximately equal to 1, 

then: 
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1

y
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s
s
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(2.41) 

 

EXAMPLE 

 

Calculate the standard error of prediction of the value of x0 for y0 = 2.5 using the regression equation 

and the data from the previous example. 

 

SOLUTION 

 

After substituting y0 = 2.5 in the transformed regression equation (x = (y  0.91)/1.01), we get 

x0 = 1.574, and from Equation (2.40): 

 

0

2

2 2

0.1016 1 (2.5 3.94)
1 0.1191 0.12

1.01 5 (1.01) (10)
xs


      

 

According to the standard error of prediction, the final result can be write as follows: 

 

y0 = 4.44±0.12 

 

In the case of simplified equation (2.41), 
0

0.11xs  . 

 

2.2. Analysis of residuals  

 

The analysis of residuals is the primary method of detecting defects in fitting a model to 

experimental data. The residual for the ith value of yi is defined by:  

 

ˆ
i i ie y y         (2.42) 
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where yi denote the observed (experimental) value of the dependent variable, and ˆ
iy   the value 

calculated using the fitting equation. 

In a properly chosen model, residuals should exhibit a normal distribution and be randomly dispersed 

around a regression function. The distribution of residuals is normally estimated on the basis of the 

graph e with respect to an independent variable. Typical examples of correct and incorrect 

distributions of residuals are shown in Fig. 2.7. 

 

 
 

Fig. 2.7. Examples of correct (ac) and incorrect (de) distributions of residuals. 

 

The distribution of residuals shown in Figure 2.7a is correct (i.e. random) and shows no significant 

differences in the dispersion of results around the regression line. In Figure 2.7b, the increase in 

residuals with the increase of the independent variable may indicate the need to take account of these 

errors in the regression analysis and apply the weighted regression. The distribution of residuals 

shown in Figure 2.7c is correct from a theoretical point of view, however, it indicates the presence of 

an outlier, clearly deviating from the observed trend. When the model used in the calculation is 

incorrect, the distribution of residuals is inconsistent with the theoretical properties of e (Fig. 2.7d, e). 

The equation (2.42) can take an expanded form: 

 

ˆ ˆ( ) ( ) ( )i i i i ie y y y y y y           (2.43) 

 

The expression for the observed value deviation from its mean ( )iy y  can therefore be written as 

follows: 

 

ˆ ˆ( ) ( ) ( )i i i iy y y y y y    
     

(2.44) 

 

In this equation the first term ˆ( )iy y  is a part of the total deviation of the variable y which was 

explained by the linear regression of y on x, the second term ˆ( )i iy y  is a part of the total variation 

which was not explained by regression (Fig. 2.8) 
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Fig. 2.8. Partitioning of variance in the ordinary least squares method. 

 

By squaring Equation (2.44) and summing all values of i, we get: 

 
2 2 2ˆ ˆ( ) ( ) ( )i i i iy y y y y y          (2.45) 

 

The above equation can be put in a simpler form: 

 

Q1 
 

= Q2 + Q3      (2.46) 

 

where Q1 denote the total sum of squares about the mean(the total variation), Q2 – sum of squares 

explained by the regression model (the variation explained by the regression equation) and Q3  

residual (error) sum for squares (the variation in y that cannot be explained by the regression 

equation). The source variation are compared in Tab. 2.1. 

 

Tab. 2.1. The source of variation in the linear regression analysis 

 

Source of variation Degrees of freedom Sum of squares 

Total (Q1) n  1 
2( )iy y  

Due to regression (Q2) 1 
2ˆ( )iy y  

About regression (Q3) n  2 
2ˆ( )i iy y  

 

The measure of the estimated model’s goodness of fit to the empirical data is the coefficient of 

determination, calculated as the ratio of Q2 (explained variation) to Q1 (total variation) from the 

equation: 
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     (2.47)

 
 

A determination coefficient determines what fraction (or %) of overall response variability is 

explained by the model. 

The average deviation from the regression line (residual standard deviation, standard error of 

estimation) which measures the accuracy of approximation, can be determined from the equation: 

 
2

2 3
ˆ( )

2 2
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y y

y yQ
s s
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   (2.48) 
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The results of statistical calculations, such as sy and r2, should be interpreted with great 

caution, because it can lead to erroneous conclusions. An example is the following set of data [F.J. 

Anscombe, Graphs in statistical analysis, Amer. Stat., 27 (1973) 17–21] which leads to the same 

regression equation: 

 

y = 3 + 0.5·x 

 r2 = 0.67, r = 0.818 and sy = 1.24 

 

 
 

Particular sets of data together with the regression line are shown in Fig. 2.9 ad. 

 

 
 

 
 

Fig. 2.9. Scatterplots of Anscombe's quartet. 

 

For the data presented in Fig. 2.9 only in a) the linear model is adequate to the description of the 

experimental results, and the low value of r2 is caused by large dispersion of experimental points. The 

case b) represents a different character of dependencies for which for example a second-degree 

polynomial model would be more appropriate. In other examples, the false conclusion about linear 

dependencies results from a random error in determining the values of one y (Fig. 2.9c)or the 

incorrectly chosen range of the independent variable x in the analysis of regression (Fig. 2.9.d).  

 

 

a) b) 

c) d) 

http://en.wikipedia.org/wiki/Scatterplot
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2.3. Linearizing transformations 

 

Experimental sciences often use non-linear equations which, after appropriate transformation 

of variables, can be put in a linear form (Fig. 2.10).  
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-0.8

-2.5 -2 -1.5 -1 -0.5 0

y = kxn
     log y = log k + n log x 

 
 

Fig. 2.10. Example of a non-linear function (y = kxn) and its linearized form. 

 

For the exponential function, presented in Fig. 2.10, the linearization can be obtained by taking the log 

of both sides of the equation: 

 
ny k x         (2.49) 

 

obtaining, after simple modifications, the following relationship: 

 

log log logy k n x        (2.50) 

 

Denoting further: 

 
* logY y

  and  
* logX x      (2.51) 

 

we obtain, a linear equation: 

 
* *

0 1Y a a X         (2.52) 

 

where: 

 

0 loga k
 and  1a n       (2.53) 

 

With the values of a0 and a1 evaluated using the method of least squares, we can calculate the values 

of k and n from the equations (2.53). In the case of the standard deviations of coefficients, we should 

remember about their appropriate transformation. In the analyzed dependency, we can write only for 

the coefficient n, that: 

 

1n aS S        (2.54) 

 

In order to determine the standard deviation of the coefficient k, we should use the equation (1.33) 

describing error propagation in the course of mathematical operations. Therefore, we obtain: 
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 
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      (2.55) 

 

The value of the partial derivative of the function 010
a

k   is: 

 

0

0

10 ln(10)
ak

a

 
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 
      (2.56) 

 

After substituting to the equation (2.55), the final equation takes the following form: 

 
0

0
10 ln(10)

a

k aS S         (2.57) 

 

Typical nonlinear functions and the appropriate linearizing substitutions are shown in Table 

2.2. 

 

Tab. 2.2. Selected nonlinear functions and the linearizing substitutions 

 

Nonlinear functions Linearizing substitutions 

x

b
ay   

Y* = y 

X* = 1/x 

xba
y


1

 
Y* = 1/y 

X* = x 

x
bay   

Y* = log(y) 

X* = x 

b
xay   

Y* = log(y) 

X* = log(x) 

x
eay   

Y* = ln(y) 

X* = x 

n
xbay   

Y* = y 

X* = xn 

xb

xa
y




  

Y* = x/y  or  Y* = 1/y 

X* = x          X* = 1/x 

 

3. Non-linear regression – polynomial equation fitting 

 

Linear regression is the simplest case of fitting a polynomial function to data, which can be 

put in the general form as: 

 

0

( )
m

j

i j i

j

f x a x



 

    (3.1) 

 

This equation is a general expression for the polynomial m, which for m = 1 corresponds to a simple 

linear regression (f(x) = a0 + a1x). Similarly to the line fitting case, the best fit is obtained for those 

values of the coefficients aj for which the value of Q is minimal: 

 
2

j

i j i

i j

Q y a x
 

  
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       (3.2) 
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To calculate the optimal values of aj, the function (3.2) is differentiated with respect to each parameter 

(ak) and equated to zero: 

 

0j k

i j i i

i jk

Q
y a x x

a

 
   

  
       (3.3) 

 

The resulting system of m+1 equations with m+1 unknowns makes it possible to determine appropriate 

values of the coefficients aj. Limiting considerations to the seconddegree polynomial in the form: 

 
2

0 1 2( )i i if x a a x a x         (3.4) 

 

and using the equation (3.3), we get the following expression: 

 

 2

0 1 2 0k

i i i i

i

y a a x a x x   
  

k = 0, 1, 2   (3.5) 

 

After expansion, this formula can be put in the form of the following system of equations: 

 
2

0 1 2i i i

i i i

n a a x a x y          (3.6) 

 
2 3

0 1 2i i i i i

i i i i

a x a x a x x y          (3.7)

 
 

2 3 4 2

0 1 2i i i i i

i i i i

a x a x a x x y          (3.8) 

 

The equations (3.6)  (3.8) can be write in the form of matrix equation AB = C, where: 
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   
   

B A C   (3.9) 

 

In order to solve this matrix equation (evaluation of the a0, a1, a2 coefficients) we should use the 

equation:  

 

A = B-1
C = D C      (3.10) 

 

in which B-1
=D denotes the inverse matrix of B. 

The average deviation from the regression line can be calculated from the equation: 

 

2

1
y y

Q
s s

n p
 

 
     (3.11)

 

 
where p is the degree of the polynomial. 

Standard deviations of individual coefficients a can be determined from the following equations: 

 

0

2

11a ys d s
 1

2

22a ys d s
 2

2

33a ys d s    (3.12) 
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where 
2

ys  denotes the residual variance, and the d
kk

 values are the elements from the main diagonal of 

the inverse matrix D. 

 

EXAMPLE 

Determine for the following set of data: 

 
x y 

1 2 

2 2.1 

3 2 

4 1.8 

 

the values of the seconddegree polynomial coefficients and their standard deviations. 

 

SOLUTION 
 

In order to generate matrix B (Equation (3.9)), it is necessary to make calculations summarized in the 

following table: 
 

 

x y x
2

x
3

x
4

xy x
2
y

1 2 1 1 1 2 2

2 2.1 4 8 16 4.2 8.4

3 2 9 27 81 6 18

4 1.8 16 64 256 7.2 28.8

SUM 10 7.9 30 100 354 19.4 57.2  
 

According to the Equation (3.9) matrix B and matrix C can be written as: 

 

 

Matrix B C

4 10 30 7.9

10 30 100 19.4

30 100 354 57.2  
 

 

After calculating the inverse matrix of the matrix B, we get: 

 

 

Matrix B
-1

7.75 -6.75 1.25

-6.75 6.45 -1.25

1.25 -1.25 0.25  
 

Multiplying the inverse matrix by a matrix C, we obtain the regression coefficients values (matrix A): 

 

A

0.2029 a 0

1.6743 a 1

-0.3286 a 2  
 

Standard deviations of the individual coefficients a can be determined from Equation (3.12), using the 

value of sy: 

2

1
y y

Q
s s

n p
 

 
 

 

where Q is defined by the equation: 

 

 
2

3
ˆ

i iQ Q y y    
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and the elements from the main diagonal of the inverse matrix D. 

Calculations for n = 4 and p = 2, lead to the following results: 

 

sy 
= 0.02236, 2

ys
 

= 0.0005 

and: 

0
7.75 0.0005 0.063as   

 
 

1
6.45 0.0005 0.057as     

 

2
0.25 0.0005 0.012as     

 

Similar calculations can be carried out in the Excel spreadsheet using the add-in Data 

AnalysisRegression, after selecting the input range y (1 column) and x (2 columns): 

 

 
 

we can obtain a summary in the following form: 

 
SUMMARY OUTPUT

Regression Statistics

Multiple R 0.99472292

R Square 0.98947368

Adjusted R Square 0.96842105

Standard Error 0.02236068

Observations 4

ANOVA

df SS MS F Significance F

Regression 2 0.047 0.0235 47 0.102597835

Residual 1 0.0005 0.0005

Total 3 0.0475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 1.775 0.062249498 28.51429 0.022317 0.984045134 2.56595487

X Variable 1 0.305 0.056789083 5.370751 0.117193 -0.416573721 1.02657372

X Variable 2 -0.075 0.01118034 -6.7082 0.094208 -0.217059688 0.06705969  
 

The final fit equation with standard deviations of individual coefficients can be put in the form: 

 

y = 1.775(±0.063) + 0.305(±0.057)x  0.075 (±0.012)x2
 

r2 = 98.95% sy = 0.023 

 

$C$22:$C$25 

$D$22:$E$25 
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4. Multiple linear regression analysis 

 

In the more general multiple regression, n observations correspond to p independent variables 

(x1, x2, ..., xp) and n values of dependent variables (yi). In the simplest case, the model is reduced to a 

multiple linear regression and takes the form: 

 

0 1 1, 2 2, ,
ˆ ...i i i p p iy a a x a x a x         (4.1) 

 

where a1, a2, ..., ap denotes the regression coefficients, and ˆ
iy  is the predicted value of the i-th 

dependent variable. 

If the variable y depends only on two independent variables x, the regression analysis leads to plane 

fitting, as shown in Fig. 4.1. 

 

 
 

Fig. 4.1. Multiple linear regression for two independent variables x1 and x2. 

 

4.1.Regression coefficients 

 

Similarly to the method of the ordinary least squares (chapter 2), the best estimated regression 

coefficients (a) are those that lead to the minimum value of Q (
2

1

n

i

Q e


 ), and are a solution to the 

following system of equations:  

 

1,1 1 1,2 2 1, ,1

2,1 1 2,2 2 2, ,2

,1 1 ,2 2 , ,

p p y

p p y

p p p p y p

S a S a S a S

S a S a S a S

S a S a S S

  

  

  

     (4.2) 

 

the sums of Si,j can be presented using the following expression: 

 

  , , ,

1

, 1, 2
n

i j i k i j k j

k

S x x x x i j p


       (4.3) 

 

  , ,

1

1, 2
n

y i k i k i

k

S y y x x i p


   
  

 (4.4) 

where ix  and iy  are given by: 
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,

1

1 n

i i k

k

x x
n 

 
 

and 
1

1 n

i k

k

y y
n 

       (4.5)

 
 

The values of regression coefficients a can be evaluated by solving the matrix equation:  

 

a = (XT
 

X)-1 
X

T
Y = B-1

C = D C     (4.6) 

 

where: 

 

0,1 1,1 ,1 1

0,2 1,2 ,2 2

0, 1, ,

p

p

n n p n n

x x x y

x x x y

x x x y

   
   
    
   
    

  

X Y

0

1

p

a

a

a

 
 
 
 
  
 

a    (4.7) 

 

For thus calculated regression coefficients (ai) we can calculate standard deviations according to the 

equation:  

 

2

,ja y j js s d       (4.8) 

 

In this equation dj,j is the elements from the main diagonal of the inverse matrix (XT 
X)-1, called a 

dispersion matrix, while 2
ys  is a residual variance defined by:  

 

2

1
y

Q
s

n p


 
      (4.9) 

 

where n denotes the number of observations (pairs x-y), p  number of independent variables (xp), 

Q  the sum of squared residuals. 

Multiple regression, like a simple linear regression, can be analysed through the sources of 

variation, i.e. variation caused by the regression model (Q2) and the variation caused by random 

factors (error, Q3). Sums of squares for these sources of variation and for the total variation (Q1) with 

an appropriate number of degrees of freedom are summarized in Table 4.1. 

 

Tab. 4.1. The source of variation in the multiple linear regression 

 

Source of variation Degrees of freedom Sum of squares 

Total (Q1) Q1=Q2+Q3 n-1  
2

1 iQ y y   

Due to regression (Q2) p  
2

2
ˆ

iQ y y   

About regression (Q3Q) n-p-1  
2

3
ˆ

i iQ y y   

 

 

The variance for each source of variation can be estimated by dividing the sums of squares by an 

adequate number of degrees of freedom. The measure of the goodness of fit (sy) can be calculated from 

the equation: 

 

3
ˆ( )

1 1

i i

y

y y Q
s

n p n p


 

   


     (4.10) 
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The measure of the model’s goodness of fit to the experimental data (coefficient of determination) can 

be determined from the equation: 

 

 

 

2

2 3 2

2

1 1

ˆ
1

i

i

y yQ Q
r

Q Q y y


   






     (4.11) 

 

This coefficient determines what fraction of the total variation is explained by the adopted regression 

model. 

 

4.2. Selecting variables – stepwise procedures 

 

Considering the full (maximum) model in the following form:  

 

0 1 1, 2 2, ,
ˆ ...i i i p p iy a a x a x a x          (4.12) 

 

where ˆ
iy  is the value of yi estimated by the full model with p parameters, we should consider whether 

it is possible to generate as good a reduced model:  

 
* * * * *

0 1 1, 2 2, ,
ˆ ...i i i q q iy a a x a x a x         (4.13) 

 

where 
*ˆ
iy  is the value of yi estimated by the reduced model with q parameters (q < p). 

In the case of the full model which took into account all the independent variables, we may find that 

the influence of some of them is negligible. To assess what variation a single variable brings to the 

general model, we can compare adequate sums of squared deviations for the full model: 

 

 
2

ˆ
i iQ y y       (4.14)

 
 

and for the reduced model: 

 

 
2

* *ˆ
i iQ y y 

    
 (4.15)

 
 

and calculate the difference between these values referred to as an extra sum of squares. The final 

evaluation of the models (the significance of additional variables p  q) can be carried out using the 

equation: 

 

  

 

* 1Q Q n p
F

p q Q

  



     (4.16) 

 

The value of F can be calculated for the full model and subsequently reduced models. The procedure 

consisting in tabulating F with respect to q is a standard method for models testing. 

In order to find the best model, we can use the so called stepwise regression method using a 

equation (4.16). Stepwise regression includes two methods for selecting variables: progressive 

(forward) selection and backward selection. In the forward selection procedure, selected variables 

sequentially added to a model are retained or discarded, depending on an adopted criterion. In the case 

of backward selection, the analysis starts from a full model which is gradually reduced by one variable 

 

EXAMPLE 

 

Determine for the following set of data: 
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Independent variables 
Dependent 

variable 

x1 x2 x3 y 

0.071 28.79 10.72 0.425 

0.107 26.49 -10.24 0.779 

0.15 26.4 -10.7 0.937 

0.217 26.76 -10.15 0.646 

0.295 26.78 -11.27 1.01 

0.338 29.03 -11.34 0.485 

0.361 26.42 -10.69 0.853 

0.488 26.57 -11.67 1.144 

0.538 27.13 -10.24 0.41 

0.597 25.91 -11.08 1.015 

0.636 26.72 -10.6 0.637 

0.718 28.44 -11.03 0.349 

0.746 28.84 -10.24 -0.073 

0.823 26.95 -11.36 0.769 

0.838 27.47 -10.77 0.415 

0.852 26.42 -11 0.744 

0.972 26.74 -11.15 0.656 

1.052 26.46 -10.69 0.518 

1.044 27.72 -11.65 0.595 

1.133 27.76 -10.2 0.012 
 

determine the best-fit regression model. 

 

SOLUTION 

 

First of all we should check whether models with just one independent variable are sufficient to 

describe this relationship. After using the add-in Data analysisRegression, the following results of 

determination coefficients were obtained for particular equations: 

 

    x
1
 i y   r2 = 0.16 

    x
2
 i y   r2 = 0.53 

    x
3
 i y   r2 = 0.26 

 

Since a satisfactory result was obtained in none of the cases, in the next step the possibility of data 

description by means of two independent variables was examined, yielding the following results:  

 

model y = f(x
1
,x

2
):  y =  0.36·x1  0.2418·x2 + 7.4 

    r = 0.82  r2 = 0.672  sy  = 0.19  

model y = f(x
2
,x

3
):  y =  0.242·x2  0.323·x3 + 3.7 

    r = 0.88  r2 = 0.774  sy  = 0.16  

model y = f(x
1
,x

3
):  y =  0.47·x1  0.39·x3  3.3 

    r = 0.71  r2 = 0.504  sy  = 0.24  

 

Only considering all three independent variables leads to a model with the highest value of r2 and 

lowest value of sy: 
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model y = f(x
1
,x

2
,x

3
)  y =  0.451·x

1
  0.237·x

2
  0.379·x

3
 + 3.23  

r = 0.999  r2 = 0.998  sy  = 0.012  

 

Analogous results can be obtained by solving Equation (4.6). For this purpose, we need to define 

matrices X and Y: 

 

1(1) 2(1) (1)

1(2) 2(2) (2)

1( ) 2( ) ( )

1

1

1

p

p

n n p n

x x x

x x x

x x x

 
 
 
 
 
  

X

(1)

(2)

( )n

y

y

y

 
 
 
 
 
  

Y  

 

and solve the matrix equation a = (XT
 

X)-1 
X

T
Y: 

 

X
T
X X

T
Y

20.00 11.98 543.80 -216.79 12.33

11.98 9.31 325.78 -130.35 6.58

543.80 325.78 14802.53 -5894.36 331.07

-216.79 -130.35 -5894.36 2354.27 -135.06

(X
T
X)

-1
a

73.2950 0.4929 -1.6675 2.6017 3.2282 a 0

0.4929 0.4831 -0.0051 0.0594 -0.4514 a 1

-1.6675 -0.0051 0.0603 -0.0029 -0.2372 a 2

2.6017 0.0594 -0.0029 0.2361 -0.3789 a 3  
 

The sums of squared deviations can be calculated from the formulas summarized in Table 4.2, or from 

the corresponding matrix equations: 
2 2

2
ˆ( )iQ y y n y     T T

a X Y  

 
2

3
ˆ( )i iQ y y    T T T

Y Y X Ya  

 
2 2

1 ( )iQ y y n y     T
Y Y  

 

Standard deviations of individual coefficients can be calculated as the square root of the diagonal 

matrix values (XT
X)

-1
 multiplied by the residual variance (equation (4.9)): 

 

 
1 2( ) ys T

X X  

 

 

0
0.010517 0.1026as  

 
1

56.93 10 0.00832as
  

 
2

68.65 10 0.00294as
  

 
3

53.39 10 0.00582as
    

 

The calculations can also be made using the add-in Data analysisRegression, after selecting the 

input range y (1 column) and x (3 columns): 

 

0.010517 7.07E-05 -0.00024 0.000373

7.07E-05 6.93E-05 -7.3E-07 8.52E-06

-0.00024 -7.3E-07 8.65E-06 -4.1E-07

0.000373 8.52E-06 -4.1E-07 3.39E-05
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      Invependent variables Dependent variable

x1 x2 x3 y

0.071 28.79 -10.72 0.425

0.107 26.49 -10.24 0.779

0.15 26.4 -10.7 0.937

0.217 26.76 -10.15 0.646

0.295 26.78 -11.27 1.01

0.338 29.03 -11.34 0.485

0.361 26.42 -10.69 0.853

0.488 26.57 -11.67 1.144

0.538 27.13 -10.24 0.41

0.597 25.91 -11.08 1.015

0.636 26.72 -10.6 0.637

0.718 28.44 -11.03 0.349

0.746 28.84 -10.24 -0.073

0.823 26.95 -11.36 0.769

0.838 27.47 -10.77 0.415

0.852 26.42 -11 0.744

0.972 26.74 -11.15 0.656

1.052 26.46 -10.69 0.518

1.044 27.72 -11.65 0.595

1.133 27.76 -10.2 0.012  
 

they lead to the following summary: 

 
SUMMARY OUTPUT

Regression Statistics

Multiple R 0.9993889

R Square 0.99877817

Adjusted R Square 0.99854908

Standard Error 0.01197892

Observations 20

ANOVA

df SS MS F Significance F

Regression 3 1.876786289 0.625595 4359.72 1.65724E-23

Residual 16 0.002295911 0.000143

Total 19 1.8790822

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 3.22819987 0.102554517 31.47789 8.04E-16 3.010794059 3.445606

X Variable 1 -0.45139567 0.008325698 -54.2172 1.45E-19 -0.46904536 -0.43375

X Variable 2 -0.23715344 0.00294126 -80.6299 2.59E-22 -0.24338863 -0.23092

X Variable 3 -0.37885491 0.005820077 -65.0945 7.89E-21 -0.39119292 -0.36652

 
 

The established regression equation can be put in accordance with standard deviations: 

 

y =  0.4514(±0.0084)·x1  0.2372(±0.0030)·x2  0.3788(±0.0059)·x3 + 3.23(±0.11) 

r2
 

= 99.88%  sy  = 0.12 

 

or confidence intervals: 

 

y =  0.451(±0.018)·x1  0.2372(±0.0063)·x2  0.379(±0.013)·x3 + 3.23(±0.22) 

 

In regression analysis we should also remember to check the distribution of residuals. Below are 

graphs of the distribution of residuals for each variable, which show random dispersion and are 

correct. 
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$K$5:$K$24 

$H$5:$J$24 
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5. Numerical integration 

5.1. Integral and its geometric interpretation 

 

According to the definition, if y = F(x) is a function of x, whose derivative is equal to 

F’(x) = f (x), then the indefinite integral (antiderivative) of f (x) function, with respect to x, can be 

written as: 
 

( ) ( )F x dx F x C          (5.1) 

 

In Equation (5.1) C denote a constant of integration (any real number),   symbol for integration, 

F’(x) – integrand, dx – variable of integration. For instance, if 3( ) 2F x x x  , then 2( ) 3 2F x x    

and indefinite integral of 3x2  2 is: 

 
2 3(3 2) 2f x x x C          (5.2) 

 

Some examples of the indefinite integral formula are presented below: 
 

1

( 1)
1

n
n x

x dx C n
n



   


  

x xe dx e C   

ln( )

x
x a

a dx C
a

 
   

1
lndx x C

x
   

ax
ax e

e dx C
a

 
   

sin( ) cos( )x dx x C    

1
sin( ) cos( )ax dx ax C

a
  

 

tg( ) ln(cos( ))x dx x C    

 

For a function y = f(x), continuous on a  x  b interval, the area under the curve (Fig. 5.1) is equal to 

the definite integral, represented by: 
 

( ) ( ) ( )

b

a

S f x dx F b F a         (5.3) 

 

F(a) and F(b) denotes the lower and upper value of the integral, respectively. The distance between a 

and b is called also as the interval of integration.  
 

 

 
 

Fig. 5.1. Graphical interpretation of the definite integral (area under the curve). 
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In Equation (5.3), the difference between F(b) and F(a) is often denoted by the symbol  ( )
b

a
F x . 

 

EXAMPLE 

 

Solve the definite integral of the function 2( ) 3 2f x x 
 
if the lower and the upper limit are equal to 

a = 0 and b = 2. 

 

SOLUTION 

 

Using the equation for the indefinite integration of polynomial equations and the Eq. (5.4), we obtain: 

 
2

2
2 3

0
0

(3 2) 2 (8 4 ) (0 0 ) 4f x dx x x C C             

 

The exact (analytical) method is applied only when the integral function is known or can be 

created using integration rules. If the analytical form of the function F(x) is not known (or it is too 

difficult to determine), is known but not integrable or the functional relationship exist as a collection 

of discrete data points (xi, f
 (xi) values for i = 0, 1,.., n), the definite integral is calculated numerically. 

 

5.2. Rectangle method 

 

In the simplest method used for estimating the area under the curve (approximation of the 

definite integral), the interval a  x  b is divided into n equal subintervals of length x: 

 

b a
x

n


         (5.4) 

 

and separately calculated areas of the rectangles (Fig. 5.2) are added up. 

 

 
 

Fig. 5.2. Illustration of the different rectangle method: leftpoint (a) and rightpoint rule (b). 

 

The approximation of the definite integral can be calculated from the equation: 

 
1

0

( )

b n

i

ia

I f x dx x y




          (5.5) 

or: 
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1

( )

b n

i

ia

I f x dx x y


          (5.6) 

 

depending on the method (leftpoint or rightpoint rule) by which the rectangles area were calculated 

(Fig. 5.2 a or b). 

 

5.3. Trapezoidal method 

 

The area under some curve can also be estimated using the linear interpolating function for 

each of subinterval (lines between adjacent points, Fig. 5.3.). 

 

 
 

Fig. 5.3. Illustration of the trapezoidal method. 

 

In each of the subintervals, the area of the trapezoid (Pi) can be calculated exactly from the equation 

which, for any interval from xi to xi+1 is defined as: 

 

1( )

2

i i
i

y y x
P  
       (5.7) 

 

The sum of all areas of the trapezoids is equal to: 

 
1

0

1

( ) ( 2 )
2

b n

n i

ia

x
I f x dx y y y






          (5.8) 

 

Despite the fact that the area of each trapezoid can be calculated exactly, it is only a 

reasonable approximation to the real area of the interval. The difference between the real area and the 

trapezoid’s area is called the truncation error. For small values of x it can be assumed that the 

function f(x) (integrand) is almost linear and the error related with trapezoid method is equal to: 

 
2

0ε ( )
12

n

x
y y


          (5.9) 

 

in which 0y  and ny  denotes the first derivatives of f(x) function at the ends of the interval.  

Equation (5.9) indicate, that dividing the subinterval size (x) in half results in a fourfold reduction 

of the numerical integration error: 
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5.4. Simpson’s rule method 

 

 The value of an integral calculated numerically can be closer to the actual value if we use a 

piecewise parabolic interpolation when approximating the integrand. For the three points (Fig. 5.4) 

there is exactly one second-degree polynomial (parabola) whose graph passes through these points 

(see the chapter on interpolation). 

 

 
 

Fig. 5.4. Interpolation with a secondodegree polynomial. 

 

The subintervals length is equal to x and the interpolation polynomial passing through these three 

points is represented by: 

 
2

0 1 2y a a x a x         (5.10) 

 

In this case, the area under the curie between x1 and x3 can be calculated form the equation: 

 
3 2

1 2

2

0 1 2( )

x x x

p

x x x

I ydx a a x a x dx





          (5.11) 

 

Substituting the expression for y2 in the form:  

 
2

2 0 1 2 2 2y a a x a x         (5.12) 

 

into Equation (5.11) after solving the equation and algebraic transformations, we obtain:  

 

3

2 0

2
2

3
pI y x a x          (5.13) 

 

It can be show that: 

 
2

1 3 2 02 2y y y a x        (5.14) 

 

and use this formula to eliminate a0 from Equation (5.13). The final equation which can be used to 

calculate the area Ip from the values of y1, y2 and y3 as well as the length of the subinterval x, takes 

the following form: 
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 1 2 3

1
4

3
pI x y y y         (5.15) 

 

In order to calculate the area within the boundaries of any interval a, b, it is divided into n equal 

parts, according to Equation (5.4). If Equation (5.15) is applied to each pair of subintervals (n must be 

even), then the summing of all the areas leads to the general equation: 

 

 0 1 2 3 4 1( ) 4 ( ) 2 ( ) 4 ( ) 2 ( ) 4 ( ) ( )
3

n n

x
I f x f x f x f x f x f x f x


        (5.16) 

 

called the Simpson’s rule. This equation can be written in the following form: 

 

 (two outermost points) 4 (points with odd index) 2 (points with even index)
3

x
I


        

(5.17) 

 

Simpson's numerical integration method therefore involves the n + 1 – fold determination of the 

integrand values and calculation of the sum of individual values of the function f(x) multiplied by 

constant coefficients equal to 1, 4 and 2 respectively. 

The error analysis related to the Simpson's method, i.e. the difference between the actual value of an 

integral and its approximation: 

 
3

1

1 2 3( ) ( 4 )
3

x

x

x
f x dx y y y


          (5.18) 

 

can be conducted assuming that the function f(x) can be represented as a Taylor series around the point 

x2, y2:  

 
2 3 4

(4)

2 2 2 2 2( )
2! 3! 4!

x x x
f x y xy y y y           (5.19) 

 

In this case, a factor other than zero is the expression: 

 
4

(4)

2
4!

x
y

       
(5.20) 

 

which after entering the Equation (5.18) allows the derivation of a formula for the error in the form: 

 
5

4 ( ) ( )ive y x x  
     

(5.21) 

 

According to this formula, the error caused by the Simpson's method is directly proportional to the 

fourth derivative of the function multiplied by the width of the interval to the power of five. We can 

therefore expect that the integrals of the function for which the fourth derivative is small will be 

approximated with a small error. While the functions whose fourth derivative has a significant value 

(sinusoidal and exponential functions) will not lead to satisfactory results.  

If you double the number of subintervals (n), according to Equation (5.21), the error will decrease:  

 

 

5
5

5 2 32 times
0.5

n
n

   
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In all numerical algorithms for integration, after each calculation stage the difference between integral 

values is analysed before and after dividing an interval. The gradual splitting of the interval is 

automatic. Iterations are repeated as long as two successive estimates of the integral are identical 

within the assumed (e.g. relative) error: 

 

1k k

k

I I

I

        (5.22) 



 is the assumed accuracy of calculations, i.e. a criterion specified by a user.

 

EXAMPLE 

 

Determine the definite integral:  

 

2
1.2

0

xI xe dx   

 

using Simpson’s rule with n= 2, 4, 6 and 12. 

 

SOLUTION 

 

For n = 2 the integration interval is divided into two parts. To use the Equation (5.16), we need to have 

the values of x and y = f(x) (integrand 
2

( ) xf x xe ). The table below shows relevant calculations for 

x0 = 0, x1 = 0.6 and x2 = 1.2. The last column includes f(x) value multiplier for different values of the 

function (according to Equation (5.16)): 

 
i x i f(x i ) n=2

0 0 0 x1

1 0.6 0.418606 x4

2 1.2 0.284313 x1

Sum 1.958736

I=Sum*(x/3) 0.391747  
 

Proceeding by analogy, the following integrals can be obtained for n=4, 6 and 12: 

 
i x i f(x i ) n=4

0 0 0 x1

1 0.3 0.274179 x4

2 0.6 0.418606 x2

3 0.9 0.400372 x4

4 1.2 0.284313 x1

Sum 3.819731

I=Sum*(x/3) 0.381973  
 

 

i x i f(x i ) n=6

0 0 0 x1

1 0.2 0.192158 x4

2 0.4 0.340858 x2

3 0.6 0.418606 x4

4 0.8 0.421834 x2

5 1 0.367879 x4

6 1.2 0.284313 x1

Sum 5.724269

I=Sum*(x/3) 0.381618  
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i x i f(x i ) n=12

0 0 0 x1

1 0.1 0.099005 x4

2 0.2 0.192158 x2

3 0.3 0.274179 x4

4 0.4 0.340858 x2

5 0.5 0.3894 x4

6 0.6 0.418606 x2

7 0.7 0.428838 x4

8 0.8 0.421834 x2

9 0.9 0.400372 x4

10 1 0.367879 x2

11 1.1 0.328017 x4

12 1.2 0.284313 x1

Sum 11.44623

I=Sum*(x/3) 0.381541  
 

In this example, the calculated values of integrals can be compared with the exact value calculated 

analytically (I=0.381536). The relative errors are: 2.68, 0.11, 0.021 and 0.0013 % for n = 2, 4, 6 i 12, 

respectively. 

 

EXAMPLE 

 

Approximate the definite integral:  

 

2
1.2

0

xI xe dx   

 

using rectangle, trapezoid and Simpson’s rule with n= 4. 

 

SOLUTION 

 

Using the results calculated in the previous example: 

 
i x i f(x i )

0 0 0

1 0.3 0.274179

2 0.6 0.418606

3 0.9 0.400372

4 1.2 0.284313  
 

and substituting the values into the appropriate equations, we obtain: 

 

for the rectangle method: 

I = 0.3·(0.2742+0.4186+0.4004+0.2843) 

I = 0.41325 

Relative error = 8.3 % 

 

for the trapezoid method: 

I = (0.3/2)·(0+0.2843+2(0.2742+0.4186+0.4004)) 

I = 0.3706 

Relative error = 2.9 % 

 

for the Simpson’s method: 

I = (0.3/3)·(0 + 0.2843 + 4·0.2742 + 2·0.4186 + 4·0.4004)) 

I = 0.38197 

Relative error = 0.11 % 
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5.5. Gauss–Legendre method 

 

 The methods presented so far relate to the integration of function in which values of xi are 

equidistant (intervals x of identical size). In Gaussian quadratures these points are selected so as to 

achieve the greatest possible accuracy for a given interpolation formula. Therefore, they are not 

equidistant. The general formula for these integration methods can be as follows: 

 

1

( ) ( ) ( )

b n

k k

ka

w x f x dx A f x


      (5.23) 

 

In this equation, the integrand is the product of w(x) (of the weighting function) and the general 

function f(x). The values Ak are called weighting coefficients (factors), n is the number of elements 

subject to summation, (the number of internal boundaries between the intervals), while xk stands for 

values of the independent variable with which the value f(x) is to be estimated. 

Of the many methods used to calculate integrals of various kinds, the Gauss-Legendre method 

is the simplest. In the case of this method, a = –1, b = 1 and w(x) = 1, so the equation (5.23) gets 

simplified to the form: 

 
1

11

( ) ( )
n

k k

k

f x dx A f x


      (5.24) 

 

This equation can be applied to the integration of any function f(x) with a prior transformation of the 

integration limits a and b to –1 and +1. This requires a linear transformation of x to t, which can be 

carried out using the following formulas: 

 

2 ( )x a b
t

b a

 



      (5.25) 

 

1 1
( ) ( )

2 2
x b a t b a         (5.26) 

 

According to these equations, the integration of x ranging from a to b is equivalent to the integration 

of t ranging from –1 to +1: 

 
1

1

( ) ( )

b

a

f x dx g t dt


       (5.27) 

 

1 1
( ) ( ) ( )

2 2
g t f b a t b a

 
     

 
    (5.28) 

 

Thus, the final equation takes the following form:  

 

1

( ) ( )
2

b n

k

ka

b a
f x dx f x




      (5.29) 

 

Appropriate values of the coefficients Ak used in the Gauss-Legendre method can be found in many 

textbooks on mathematics and numerical methods [P.J. Davis, I. Polonsky, Numerical Interpolation, 

Differentiation and Integration in Handbook of Mathematical Functions with Formulas, Graphs, and 

Mathematical Tables, M. Abramovitz, I.A. Stegun (Ed.), National Bureau of Standards Applied 

Mathematics Series, No 55, Washington, DC, 1964, sect. 25, pp. 875–924, T. E. Shoup, Applied 

numerical methods for the microcomputer, Prentice-Hall, Inc. 1984, etc.]. Values of weight 
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coordinates Ak and values xk  are also included in advanced computer programmes or libraries of 

numerical procedures. 

 

EXAMPLE 

 

Approximate the definite integral:  
 

2
1.2

0

xI xe dx   

 

using GaussLegendre method with n= 4 (fourpoint summation). 
 

SOLUTION 

 

Tabulated values for the four roots( tk) are equal to:  
 

t1 = –t4 = 0.861136116, t
2
 = –t3 = 0.3399810436 

 

and the four values of the coefficients (Ak) are:  
 

A1 = A4 = 0.3478548451, A2 = A3 = 0.3478548451 
 

Transforming the integration variable from x to t we obtain: 

 

0.6 (1 )x t    

 

After inserting values for four nodes tk to the formula for x, we get: 

 

1 0.6 (1 0.861136116) 1.116681787x      

2 0.803988626,x   3 0.396011374,x  4 0.083318213x   

 

In the next step we calculate the 
2

( ) kx

k kf x x e


 for four values xk, i.e.: 

 
2(1.116681787)

1( ) 1.116681787 0.320902925f x e  

 2( ) 0.421233542f x  3( ) 0.338531764f x  4( ) 0.082741827f x 

  

In the last step we calculate the integral (I) from the equation:  

 
4

1

1.2 0
( ) 0.381532227

2
k k

k

I A f x



   

 

where Ak denote tabulated values of the coefficients mentioned above. The exact value of this integral 

is 0.381536, so the relative error is 0.000989 % and is smaller in comparison to the Simpson’s method 

for 12 intervals 

 

6. Fundamentals of numerical solving of differential equations 

 

A differential equation is an equation that contains derivatives. A firstorder ordinary 

differential equation can be put in the following form: 
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' ( ) ( , )
dy

y x f x y
dx

        (6.1) 

 

the solution is a function y(x) (or a family of functions) which fulfils this equation and one of the 

initial conditions, usually y(x0)=y0. For example, the differential equation: 

 

23
dy

x
dx

        (6.2) 

 

has a solution: 

 
3y x c         (6.3) 

 

where c is some constant. The equations of this type are solved after separation of variables: 

 
23dy x dx        (6.4) 

 

by integrating both sides of the equation: 

 
23dy x dx         (6.5) 

 

The general solution of the equation (6.2) thus takes the form defined by the equation (6.3). 

If an analytic solution to a differential equation is not possible, we should use numerical 

methods, based on the stepwise procedure during which the solution of the equation is tracked. These 

methods can be divided into singlestep and multistep methods depending on whether for the next 

step of calculations we use function values and the solution from a previous step (singlestep method), 

or a number of the immediately preceding steps (multistep method). 

In contrast to the analytical solution of a differential equation, in the case of numerical methods it is 

necessary to specify the initial conditions (x0, y0). 

 Most of the numerical methods for solving differential equations involves expanding a 

function into a Taylor series. Given the value y(x0) = y0 of the function y(x) at point x = x0, the value of 

this function at neighbouring points x0 +x can be presented in the following formula: 

 
2 3

' " '''

1 0 0 0 0 0

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2! 3!

x x
y x y x x y x xy x y x y x

 
            (6.6) 

 

6.1. Euler method 

 

 The Euler method, considered as the simplest, uses function expansion into a Taylor series 

(6.6) with only two first terms: 

 
'

1 0 0 0( ) ( ) ( ) ( )y x y x x y x xy x         (6.7) 

 

Since the value of f(x0, y0) equals the slope of the function representing a solution at a given point 

( '

0( )y x ), approximate value of y1 can be calculated from the equation:  

 

1 0 0 0 0( ) ( , )y y y y x f x y          (6.8) 

 

The value of the function at x+x is therefore estimated by extrapolation as shown in Figure 6.1. 
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Fig. 6.1. Geometric interpretation of Euler method. 

 

After calculating y1(x1), the next value (y2) is calculated from:  

 

2 1 1 1 1( ) ( , )y y y y x f x y     
    

(6.9) 

 

etc.  

The general formula for the Euler method can be put in the following form: 

 

1 ( ) ( , )n n n n ny y y y x f x y            (6.10) 

 

After repeated application fo the recursive Equation (6.10), the results obtained take the form of a set 

of values from (x0, y0) to the last value (xk, yk) of the calculations  

Since this method involves a stepwise transition from one interval x to another, real and 

numerical solutions show an increasing divergence. Errors committed in individual steps are 

accumulated, which leads to a difference characteristic of the iterative method for solving differential 

equations (Fig. 6.2). 

 

 
 

Fig. 6.2. Accumulation of errors in the Euler method. 

 

The Euler method is considered to be among the first–order methods, as in a Taylor series all 

expressions with powers x higher than the first one have been omitted. Therefore, an error per a 

single step is on the order of (x)2, while the method error per all steps is on the order of x. The 

solution quality obviously depends on the size of x – reduction of a step by half the length reduces by 

four times an error per a single step. 
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Scheme of algorithm for Euler method is presented in Fig. 6.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3. Scheme of algorithm for Euler method. 

 

EXAMPLE 

 

For the following differential equation: 

 

y’(x) = y + 1, 

 

and the initial condition: 

 

y(0) = 1 (x0 = 0, y(x0) = 1) 

 

calculate the approximate value of y(1), using the Euler method with steps x = 0.2 and x = 0.12. 

 

SOLUTION 

 

Using the Equations (6.8) and (6.9), we obtain: 

 

1 0 0 0 0( ) ( , )y y y y x f x y      = 1 + 0.2·(1+1) = 1.4 

 

2 1 1 1 1( ) ( , )y y y y x f x y      = 1.4 + 0.2·(1.4+1) = 1.88  

 

etc. 

 

Continuing the calculations for other values of xn and performing similar calculations for x = 0.1, the 

results can be put in the following table which also shows the exact values (Ex) and the relative error 

(Err). 

 

START 

Input: 

a, b, y0, x 

x:=a 

y:=y0 

Output x, y 

y:=y+x·f(x,y) 

x < b 
Y N 

    END 

x:= x + x 
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x n x n y n Ex Err x n x n y n Ex Error

0.2 0 0.0 1.0000 1.0000 0.00 0.1 0 0.0 1.0000 1.0000 0.00

1 0.1 1.2000 1.2103 0.85

1 0.2 1.4000 1.4428 2.97 2 0.2 1.4200 1.4428 1.58

3 0.3 1.6620 1.6997 2.22

2 0.4 1.8800 1.9836 5.22 4 0.4 1.9282 1.9836 2.79

5 0.5 2.2210 2.2974 3.32

3 0.6 2.4560 2.6442 7.12 6 0.6 2.5431 2.6442 3.82

7 0.7 2.8974 3.0275 4.30

4 0.8 3.1472 3.4511 8.81 8 0.8 3.2872 3.4511 4.75

9 0.9 3.7159 3.9192 5.19

5 1.0 3.9766 4.4366 10.37 10 1.0 4.1875 4.4366 5.61  
 

The above example shows that the quality of the solution of a differential equation with the 

numerical method depends on x. As x is reduced, the differences between the numerical and 

analytical (exact) solutions decrease. Theoretically there is nothing to prevent a reduction of x, but 

then the amount of calculations also increases (calculation time increases). In practice, preliminary 

tests are carried out to determine a quantity x necessary to achieve sufficiently accurate results 

 

6.2. Runge–Kutta method 

 

Runge and Kutta developed a number of methods for stepwise transition through the interval 

from x0 to x0 + x of an increasing accuracy of calculations. The first–order R–K method is the same 

as Euler method. In the R–K methods, some especially selected intermediate points lying close to a 

solution f(x, y) were calculated. 

The second–order R–K method uses an approximate value of a slope (c2) in the middle of a 

point–connecting interval (xn, yn) and (xn+1, yn+1): 

 

2 1

1 1
( , )

2 2
n nc f x x y xc    

     
(6.11) 

 

where c1: 

1 ( , )n nc f x y
       

(6.12) 

 

denotes the value of the slope at the starting point of the interval (xn, yn). 

Geometric interpretation of the second–order Runge–Kutta method is presented in Fig. 6.4. 

 

 
 

Fig. 6.4. Geometric interpretation of the second–order Runge–Kutta method. 

 

The widely used fourth–order Runge–Kutta method, is defined by the equations: 
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 1 1 2 3 4

1
2 2

6
n ny y x c c c c      

    
(6.13) 

 

1 ( , )i ic f x y
       

(6.14) 

 

2 1

1 1
( , )

2 2
n nc f x x y xc    

     
(6.15) 

 

3 2

1 1
( , )

2 2
n nc f x x y xc    

     
(6.16) 

 

4 3( , )n nc f x x y x c  
     

(6.17) 

 

where c1 denote the value of the slope of the solution function at the starting point of the interval x=x0; 

c2 and c3 – the values of the slope at the midpoint of the interval: 

 

0

1

2
x x x  

      
(6.18) 

 

c4 the value of the slope at the end of the interval: 

 

0x x x 
      

(6.19) 

 

The equations (6.13)–(6.17) show that every step of calculations requires designating four function 

values in points c1, c2, c3 and c4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5. Scheme of algorithm for fourth–order Runge–Kutta method. 

START 

Input: 

a, b, y0, x 

x:=a 

y:=y0 

Output x, y 

x < b 
Y N 

   END 

x:= x + x 

),(1 ii yxfc 

)
2

1
,

2

1
( 12 xcyxxfc ii 

)
2

1
,

2

1
( 23 xcyxxfc ii 

),( 34 cxyxxfc ii 

 43211 22
6

1
ccccxyy ii 
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The fourth–order Runge–Kutta method is the most commonly used numerical method to solve the 

system of ordinary differential equations with initial conditions.This method is simple to implement 

and provides a high accuracy solution. Professional programmes using the fourth–order R–K method 

have a mechanism for automatic selection of the length of an integration step, which speeds up the 

computation time while maintaining the assumed accuracy. 

The R–K method takes into account the factor (x)4 which occurs in a Taylor series (Eq. 

(6.6)). The first factor omitted is (x)5, which indicates that the error made in estimating y is 

inversely proportional to the fifth power of x, and at the same time a small decrease in x causes an 

enormous increase in the accuracy of calculations. 

Like the Euler method, the R–K methods are self–starting methods in which a single starting point (x0, 

y0) is sufficient to start calculations. 

 

EXAMPLE 

 

Find an approximate value of y(1) for the equation y’(x) = y + 1 and the initial condition y(0) = 1, 

using the fourth–order R–K method. 

 

SOLUTION 

 

For x0, y(x0) = 1, using Equations (6.13)  (6.17) we get: 

 

 

1 1 1 1 2c y      

 

2 1

1 1
1 2 0.2 2 2.2

2 2
c y xc          

 

3

1
1 0.2 2.2 2.22

2
c y       

 

4 1 0.2 2.22 2.444c y    
 

 

 1 0 1 2 3 4

1 1
2 2 1 0.2 (2 2 2.2 2 2.22 2.444)

6 2
y y x c c c c               ) 

etc. 

The calculated values are summarized in the following table: 

 

x n x n y n Ex Err c 1 c 2 c 3 c 4

0.2 0 0 1 1.0000 0.0000

1 0.2 1.4428 1.4428 0.0000 2 2.2 2.22 2.444

2 0.4 1.98364 1.9836 0.0018 2.443 2.687 2.711508 2.9851

3 0.6 2.64421 2.6442 0.0005 2.984 3.282 3.311836 3.646

4 0.8 3.45104 3.4511 0.0017 3.644 4.009 4.045076 4.45323

5 1 4.4365 4.4366 0.0022 4.451 4.896 4.940656 5.43917  
 

The results indicate that the fourth–order Runge–Kutta method with the step x=0.2 gives a much 

better accuracy than the Euler method with x=0.1. 

The fourth–order R–K method can be used to solve a system of coupled first–order differential 

equations which take the following form: 
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1
1 1 2

2
1 1 2

1 1 2

( , , )

( , , )

( , , )

n

n

n
n

dy
f x y y y

dx

dy
f x y y y

dx

dy
f x y y y

dx







      (6.20) 

 

The initial values are determined by point x = x0, which means that the values 
1 0 2 0 0( ), ( ), , ( )ny x y x y x    

are known. A typical example of a system of coupled first-order differential equations are equations 

describing the kinetics of a consecutive reaction: 

 
31

2 4

kk

k k
A B C    

 

in the following form: 

 

1 2

3 2 1 4

4 3

[ ]
[ ] [ ]

[ ]
( )[ ] [ ] [ ]

[ ]
[ ] [ ]

d A
k A k B

dt

d B
k k B k A k C

dt

d C
k C k B

dt

  

    

  

    (6.21) 

 

where [A], [B] i [C] de notes the concentration [mol/dm3], k – reaction rate constant [s-1]. The 

equations are coupled, as the products of one reaction are the substrates of the next one. 

The solution involves determining the concentration changes [A], [B] and [C] depending on time 

([A]=f(t), [B]=f(t) and [C]=f(t)) for specific reaction rate constants. The initial conditions for the 

reaction are assumed to be the initial values of the integration procedure (eg. [A]0 = 1, [B]0 = 0 i 

[C]0 = 0). 

Below is a sample solution of this system of equations in Mathcad. After entering the vector 

containing the initial concentration values (C), reaction rate constants k1–k4, the vector of the first 

derivatives of the functions sought (P(t,C)) and the function (rkfixed) which solves the system of 

differential equations (6.21), we can obtain a graph of the functions that are the solution. 
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A numerical solution of differential equations in Mathcad allows for tracking changes in the course of 

individual curves (concentration changes) depending on the reaction rate constants and initial 

concentration of substance A. 

 

6.3. Milne method (predictor-corrector) 

 

An alternative method for a singlestep transition through the interval x while solving 

differential equations involves the use of more than one starting point in calculations. These methods, 

called multistep methods, use approximate values calculated in several consecutive, immediately 

preceding steps to perform one step of computations. Due to the fact that the initial condition is given 

only at one point, calculations begin with any selfstarting (onestep) method. After generating a 

necessary number of initial values, the calculations can be continued with any multistep method. 

Overall, multistep methods use extrapolation from point y0 = y(x0) to a new point y1 = y(x1) 

using a prediction step and then a correction step. The prediction step is performed by fitting a 

polynomial to point 
0y  and the two previous points,

1y  and 
2y  (Fig. 6.6). 

 

 
 

Fig. 6.6. The principle of the Milne method. 

 

A parabola fitted to these points is extrapolated through the interval x and allows for the calculation 

of the area under the parabola based on the previous points ky . The calculated surface area is added to 

the value of y to calculate the predicted value of y1 (called 1py ): 

 

 1, 3 2 1 0

4
2 2

3
py y x y y y  

            (6.22) 

 

The differential equation is then used to correct the first calculated value of y1p by substituting this 

value and x1 to the equation: 

 

1 1 1( , )py f x y        (6.23) 

 

and calculating a derivative at point x1. 

The estimated value 1y  along with the two previous points ( 0y  i 1y ) are used to calculate a new, 

better parabola applied to calculate a new, corrected 1cy : 

 

 1 1 1 0 14
3

c

x
y y y y y 


           (6.24) 

and a corrected derivative: 
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1 1 1( , )cy f x y        (6.25) 

 

The application of the method can be traced on the example presented below. 

 

EXAMPLE  

 

Find an approximate value of y(1) for the equation y’(x) = y + 1 and the initial condition y(0) = 1, 

using the Milne method. 

 

SOLUTION 

 

To perform calculations with this method, we need to have the following values: 

 

0 1 2 3

0 1 2 3

, , ,

, , ,

y y y y

y y y y

  

  
   

 

 

which can be calculated using the fourthorder RungeKutta method (see previous example). Further 

calculations are carried out according to the equations (6.22)(6.25), i.e.: 

 

   1, 3 2 1 0

4 4
2 2 1 0.2 2 2.4428 2.9836 2 3.6442 3.450771

3 3
py y x y y y  

               
 

 

1 1 1 1( , ) 1 3.450771 1 4.450771p py f x y y        

 

 1 1 1 0 1

0.2
4 1.98364 (2.9836 4 3.6442 4.450771) 3.45105

3 3
c

x
y y y y y 


             

 

1 1 1 1( , ) 1 3.45105 1 4.45105c cy f x y y        

 

etc. 

The results of the calculations are shown in the table below: 

 

x n x n y n y' n y 1p y' 1 y 1c y' 1 Ex Err

0.2 -3 0 1 2.0000 1.0000 0.0000

-2 0.2 1.4428 2.4428 1.4428 0.0000

-1 0.4 1.98364 2.9836 1.9836 0.0018

0 0.6 2.64421 3.6442 2.6442 0.0005

1 0.8 3.45105 4.4511 3.450771 4.450771 3.45105 4.45105 3.4511 0.0014

2 1 4.43652 5.4365 4.436177 5.436177 4.43652 5.43652 4.4366 0.0018  
 

In this example, after the twostep calculations, the error obtained is by over 12% smaller than the one 

obtained with the RK method. 

 An undeniable advantage of such methods is the ability to track the accuracy of numerical 

solutions, because the difference between values 1py and 1cy  provides information whether the 

adopted interval is appropriate. The Milne method, like the RK method, has an error proportional to 

the fifth power of x. 

 

7. Methods for solving algebraic equations 

 

An algebraic equation (not containing derivatives or integrals) with one unknown can be written as: 

 

f(x) = 0      (7.1) 
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Solutions of this equation are values of x for which the above equality is fulfilled (roots of function 

f(x)). 

Among the different numerical rootfinding methods this chapter will discuss: 

- bisection method 

- secant method (regula falsi) 

- tangent method (NewtonRaphson) 

 

7.1. Bisection method 

 

 If the function is continuous at intervals x1,x2 and change the sign, i.e. f(x1)·f(x2)<0, this 

indicate, that there is at least a one root between x1 and x2. 

According to the definition of a function’s continuity, if f(x1)·f(x2)<0, then the interval x1,x2 contains 

at least one such point at which f(x)=0. In the bisection method, to determine the approximate zero of a 

function, the interval x1,x2 gradually decreases so as to contain the element sought. The starting point 

in this method is two argument values for which the function f(x) changes its sign (Fig. 7.1). 

 

 
 

Fig. 7.1. Graph illustrating the bisection method. 

 

In the first step we calculate f(x3) at the midpoint of the interval: 

 

x3 = ½·(x1+x2)      (7.2) 

 

As a result, we get two intervals twice smaller than the initial interval. If f(x3)>0, then the solution is 

between points x1 and x3: 

 

x4 = ½·(x1+x3)      (7.3) 

 

Otherwise (for f(x3)<0) the zero of the function is between points x2 and x3: 

 

x4 = ½·(x2+x3)      (7.4) 

 

The calculations are repeated several times until a sufficiently good estimate of zero is obtained. In 

practice, the iterative calculations end after fulfilling any of the following conditions: 

 

1 εn nx x         (7.5) 

 

which means that the difference between successive approximations is small enough, or: 
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( ) εnf x        (7.6) 



i.e. the value of the function at the designated point is close to 0 (lower than . In these equations, is 

the assumed accuracy of calculations (criterion specified by a user). These equations ((7.5) and (7.6)) 

are also used in the secant and tangent methods. 

Simplicity is an important advantage of the bisection method. The fundamental disadvantages include 

a slow convergence of the iterative process, and problems if many zeros of a function are concentrated 

in a very narrow interval (Fig. 7.2). 

 

 
 

Fig. 7.2. The location of many zeros within a narrow interval x1,x2. 

 

EXAMPLE 

 

Find the root for the function: 

 

f(x) = 0.1·x3 – x2 + 1 

 

between x1 = 9 and x2 = 10 using bisection method. 

 

SOLUTION 

 

The values of the function at the points x1 = 9 and x2 = 10 are respectively: 

 

f(x1) =  – 7.1 and f(x2) =  1 

 

Using Equation (7.2), we can determine the x3 value and the value of the function (f(x3)): 

 

x3 = 9.5 and f(x3) = – 3.51 

 

Analysing the results, it can be stated that the zero of the function is between x3 = 9.5 and x2 = 10. 

Repeating the calculations for these two points, we obtain:  

 

x4 = 9.75 and f(x4) = – 1.376 

 

Therefore the roots of the function is located between x4 = 9.75 and x2 = 10. Further calculations lead 

to the following results: 

 

x5 = 9.875 and f(x5) = – 0.219 
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indicating the presence of the zero in the interval x5 = 9.875, x2 = 10. In the next step the following 

values are obtained: 

 

x6 = 9.9375 and f(x6) = 0.3828 

 

that lead to the next reduction of the interval (x5 = 9.875, x6 = 9.9375). In the step last analysed in the 

example, the calculated values are: 

 

x7 = 9.90625 and f(x7) = 0.07999 

 

The final result (x7) can be compared with the exact value of the zero of the function (f(x) = 0 for x = 

9.89793) by calculating the relative error which is 0.084%. 

The algorithm diagram for this method is presented in Fig. 7.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3. The algorithm diagram for bisection method. 

 

 

7.2. Secant method (regula falsi) 

 

In this method, also called the false position method, a chord is drawn through points x1 and 

x2, for which the function f(x) changes its sign, with the following equation:  

 

2 1
1 1

2 1

( ) ( )
( ) ( )

f x f x
y f x x x

x x


  


    (7.7) 

 

The abscissa x3 of the point at which the fixed chord AB intersects the axis OX (Fig. 7.4), is assumed 

as the first approximation of the desired zero location. 

 

START 

Input: 

f(x), a, b,  

x:=(a+b)/2 

f(a)·f(b)<0 

b:=x 

Y 

:=(b-a)/2 

 >  

N 

N Y 

Output 

x,  

a:=x 

   END 
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Fig. 7.4. Graph illustrating the secant method. 

 

The value of the point x3 can be calculated from the equation: 

 

2 1
3 2 2

2 1

( )
( ) ( )

x x
x x f x

f x f x


 


      (7.8) 

 

As in the bisection method, the calculations are continued until a sufficiently good estimate of the 

roots is obtained. The general recursive equation for this method can be as follows: 

 

( 1)

( 2) ( 1) ( 1)

( 1)

( )
( ) ( )

k k

k k k

k k

x x
x x f x

f x f x



  




 


   (7.9) 

 

where k = 1, 2, ... 

 

EXAMPLE 

 

Find the root for the function: 

 

f(x) = 0.1·x3 – x2 + 1 

 

between x1 = 9 and x2 = 10 using secant method. 

 

SOLUTION 

 

Just as in the example analyzed previously, the values of the function at points x1 = 9 and x2 = 10 are 

respectively:  

 

f(x1) =  – 7.1 and f(x2) =  1 

 

Substituting the numerical values in Equation (7.8), we can calculate the value of the argument at 

point x3 and the corresponding value of the function (f(x3)): 

 

x3 = 9.87653 and f(x3) = –0.20427 

 

In the next step, using Equation (7.9) in the form: 

 

3 2
4 3 3

3 2

( )
( ) ( )

x x
x x f x

f x f x


 


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the following results are obtained: 

 

x4 = 9.89748 and f(x4) = –0.00425 

 

Comparing the final result (x4) with the exact value of the root (f(x) = 0 for x = 9.89793), we obtain a 

relative error equal to 0.0045%. In comparison to the bisection method discussed earlier, after two 

approximations made with the secant method, the error of estimation is almost 20 times smaller 

 The algorithm diagram for this method is presented in Fig. 7.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.5. The algorithm diagram for secant method. 

 

 

7.3. Tangent method (Newton-Raphson)  

 

In this method, which is the most common method for determining zeros of functions, it is 

necessary to know the function f(x) and its derivative f’(x). According to this method (Fig. 7.6), the 

slope of the tangent to the graph at point x2 can be calculated from the expression: 

 

2
2

2 3

( )
( )

f x
f x

x x
 


      (7.10) 

 

START 

Input: 

f(x), a, b,  

xa:=f(a) 

xa·xb<0 

b:=x 

Y 

:=(b-a)/2 

 >  

N 

N Y 

Output 

x,  

a:=x 
   END 

x:=a-xa·(b-a)/(f(b)-xa) 

xb:=f(x) 
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Fig. 7.6. The NewtonRaphson method. 

 

Therefore, the first approximation of the root (x3) can be calculated from the equation: 

 

2
3 2

2

( )

( )

f x
x x

f x
 


      (7.11) 

 

The general recursive equation can be written as: 

 

1

( )

( )

n
n n

n

f x
x x

f x
  


      (7.12) 

 

 

EXAMPLE 

 

Find the root for the function: 

 

f(x) = 0.1·x3 – x2 + 1 

 

between x1 = 9 and x2 = 10 using tangent method. 

 

SOLUTION 

 

To apply Equation (7.11) in calculations, we need to have the value of the function at point x2 

(f(x2) = 1) and its derivative at point x2. The derivative of the function is: 

 

f’(x) = 0.3·x2 – 2·x 

 

Thus the derivative at the point is f’(x2) = 10. Substituting appropriate values in the Equation (7.11) 

gives the following results:  

 

x3 = 9.9, f(x3) = 0.0199 and f’(x3) = 9.603 

 

In the second step of the calculations, using the Equation (7.12) in the form: 

 

3
4 3

3

( )

( )

f x
x x

f x
 


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we get the following results: 

 

x4 = 9.897928 and f(x4) = 8.46·10-6 

 

The relative error for this method, after two steps of calculations, is only 7.4·10-6 % and is over 600 

times smaller than the relative error calculated with the secant method.  

The algorithm diagram for the NewtonRaphson method is presented in Fig. 7.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.7. The NewtonRaphson algorithm. 

 

8. Methods for solving systems of linear equations 

 

8.1. Matrix calculus - fundamentals 

 

Systems of linear equations are often used to describe numerous chemical phenomena such as 

a multiple correlation analysis, a study of equilibria in multicomponent systems or a 

spectrophotometric analysis of mixtures. A linear equation can be presented in the general form: 

 

0 1 1 2 2 n ny a a x a x a x         (8.1) 

 

As methods for solving systems of linear equations usually use the matrix calculus, the basic concepts 

in this field are presented below. 

 A matrix is an object that consists of mn elements located in an array built of parenthesized  

m rows and n columns (dimension of matrix is mn). 

Any matrix A (indicated in bold letter) consisting of mn elements can be written as follows: 

 

11 12 13 1

21 22 23 2

1 2 3

n

n

ij

m m m mn

a a a a

a a a a
a

a a a a

 
 
  
 
 
 

A     (8.2) 

 

START 

Input: 

f(x), f’(x), x
o
,  

x:=x
o
 

p:=f(x)/f’(x) 

x:=x-p 

 > abs(p) 

N Y 

Output 

x,  

   END 
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Each element of a matrix (aij) is in an adequate i-th row (i = 1, 2, …, m) and j-th column (j = 1, 2, …, 

n). The matrix calculus is used to perform many elementary algebraic operations. If we add a matrix A 

to B, a matrix C is obtained: 

 

A + B = C       (8.3) 

 

The sum of matrices can be calculated only if the matrices have the same dimensions and it consists in 

adding together the elements of matrices A and B with identical indices: 

 

cij = aij+bij      (8.4) 

 

for all i = 1, 2, …, m and j = 1, 2, …, n. 

In adding matrices, as in the case of simple addition, the principle of alternation prevails, namely:  

 

A + B = B + A       (8.5) 

 

and   (A + B) + C = A + (B + C)    (8.6) 

 

The product of a matrix A and a scalar (number) c is obtained by multiplying each element of the 

matrix A by the constant c.  

 

c 
A = (caij)      (8.7) 

 

The product of a matrix A and a matrix B to obtain a matrix C: 

 

A
 
B = C       (8.8) 

 

can be obtained only when the number of columns in A equals the number of rows in B. In this case, 

i,jth element in the matrix C is the sum of the products of element pairs in the i-th row of the matrix 

A and the j-th column of the matrix B: 

 

1 1 2 2 3 3

1

n

ij i j i j i j in nj ik kj

k

c a b a b a b a b a b


     
   

(8.9) 

 

If A is a matrix of mn size, and B is a matrix of np size, the matrix C has the same number of rows 

as A and the same number of columns as B, i.e. its dimension is mp: 

 

A (matrix mn) B (matrix np) = C (matrix mp)   (8.10) 

 

At the same time, the alternation principle does not apply in matrix multiplication, that is, not for all 

cases: 

 

A
 
B = B 

A or A(B 
C) = A 

B(C)    (8.11) 

 

A matrix A is the inverse matrix of B (and vice versa) and it is a square matrix (number of rows equals 

the number of columns )which fulfils the equation: 

 

A
 
B = I = B A       (8.12) 

 

where I is an identity matrix whose diagonal elements are equal to 1 (aii = 1), while the rest are equal 

to 0. For a square matrix A, the inverse is written as A-1, therefore: 

 

A
 
A

-1 
 

= A-1
A = I      (8.13) 
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A matrix A has an inverse if and only if its determinant is not zero. In this case, the matrix A is called 

a nonsingular matrix  

Calculating an invertible matrix is one of the main operations of matrix algebra, applied in solving a 

system of linear equations.  

The system of linear equations can be written in the following way: 

 

11 1 12 1 1

21 1 22 2 2

1 1 2

n n

n n

m m mn n n

a x a a x b

a x a a x b

a x a a x b

   

   

   

    (8.14) 

 

According to the principles of matrix algebra, this system of linear equations can be written as:  

  

A
 
X = B     (8.15) 

 

In this equation A is a matrix of coefficients a with dimensions mn (Equation (8.2)), X is a vector 

(column matrix, dimension n1) containing unknowns or the solutions of the system of equations (xn). 

The matrix B is a constant (bn) column matrix of size n1. 

When we start to solve the above system of equations (determine the matrix elements X), we need to 

have a square matrix of coefficients (A), i.e. as many equations as unknowns occurring in them (fulfil 

the condition m = n). If the matrix A is nonsingular, then the system of equations described by the 

formula (8.15) has exactly one solution. 

 

8.2. Cramer method 

 

Systems of linear equations of the general form defined by the equations (8.14) can be solved 

using Cramer’s formulas. The solution of the system of equations where m=n (dimension nn) is 

defined by the ratio of two determinants. In this quotient, the denominator is the determinant of the 

coefficient matrix (a), while the numerator is the same determinant where the i-th column has been 

replaced with the column of constants appearing in the equations (i.e. b). Using the Cramer method to 

solve the system of two linear equations of the form: 

 

11 1 12 2 1

21 1 22 2 2

a x a x b

a x a x b

 

 
     (8.16) 

 

we obtain the following equations:  

 

1 2
1 2

D D
x x

D D
        (8.17) 

 

where: 

 

11 12 1 12 11 1

1 2

21 22 2 22 21 2

a a b a a b
D D D

a a b a a b
     (8.18) 

 

The 22 determinant of the coefficient matrix (D) can be solved as follows:  

 

11 12

11 22 21 12

21 22

a a
D a a a a

a a
       (8.19) 
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The above formulas provide a solution to the system of two linear equations by performing two 

multiplications and one subtraction. 

With an increase in the size of the determinant, the number of necessary calculations also increases. 

For a 33 determinant it is necessary to perform the following operations: 

 

11 12 13

21 22 23 11 22 33 12 23 31 13 21 32 31 22 13 32 23 11 33 21 12

31 32 33

a a a

a a a a a a a a a a a a a a a a a a a a a

a a a

       (8.20) 

 

On the right side of this equation there are n!=6 factors which are the product of n numbers, and thus 

the calculations require (n)(n!)=18 unit operations. Determinants of higher dimensions are reduced to 

the size of 33 using appropriate coefficients. It is possible to develop an algorithm that calculates nxn 

determinants and makes 2n! multiplications. For large values of n, however, this method becomes 

impractical, because, for example, calculating a 2020 determinant requires approximately 1018 

mathematical unit operations. 

 

EXAMPLE 

 

Solve the following system of linear equations: 

 

6

2 3 14

4 9 36

x y z

x y z

x y z

  

  

  

 

by Cramer method. 

 

ROZWIAZANIE 

 

Using Equation (8.20) calculate the determinant of the coefficient matrix (D): 

 

1 1 1

1 2 3 1 2 9 1 3 1 1 1 4 1 2 1 4 3 1 9 1 1 2

1 4 9

D                    

 

Thus, for D = 2, the subsequent determinants are: 
 

6 1 1
1

14 2 3 6 2 9 1 3 36 1 14 4 36 2 1 4 3 6 9 14 1 1
2

36 4 9

x                      

1 6 1
1

1 14 3 1 14 9 6 3 1 1 1 36 1 14 1 36 3 1 9 1 6 2
2

1 36 9

y                      

1 1 6
1

1 2 14 1 2 36 1 14 1 6 1 4 1 2 6 4 14 1 36 1 1 3
2

1 4 36

z                      

 

Solution of this system of equations are the values of" x = 1, y = 2 and z = 3. 
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8.3. GaussSeidel method 

 

A system of linear equations can be solved using an iterative method which in each step of 

calculations gets progressively closer to the value of solution. One of the methods based on this 

algorithm is the GaussSeidel method which can be used for any system of equations (including 

nonlinear) given as follows: 

 

 1 2, , 0 1, 2i nP x x x i n 
   

 (8.21) 

 

which can be rearranged to the form:  

 

 1 2, , 0 1, 2i i nx f x x x i n  
   

 (8.22) 

 

In this method, it is necessary to know the initial approximate solution for all unknowns, i.e. the 

values: 

 
(0) (0) (0)

1 2, , nx x x        (8.23) 

 

According to this method, the first approximation of xi is obtained from: 

 

 (1) (0) (0) (0)

1 2, , 0 1,2i i nx f x x x i n       (8.24) 

 

Similarly, successive approximations are obtained using the following recursive equation: 

 

 ( 1) ( ) ( ) ( )

1 2, , 0 1,2

1,2,

k k k k

i i nx f x x x i n

k

   


    (8.25) 

 

If iteration convergence conditions are met, a group of numbers: 

 
( ) 1,2i

jx j n       (8.26) 

 

from sequences:  

 
(1) (2) (3) ( ) 1,2i

j j j jx x x x j n       (8.27) 

 

with a sufficiently large i is arbitrarily accurate approximation of the solution of the system. 

For instance, according to the general equation (8.14), the system of equations (dimension 33) can be 

written as:  

 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

     (8.28) 

 

and further rearranged to the form: 
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1 1 12 2 13 3

11

2 2 21 1 23 3

22

3 3 31 1 32 2

33

1
( )

1
( )

1
( )

x b a x a x
a

x b a x a x
a

x b a x a x
a

  

  

  

     (8.29) 

 

It is generally assumed that (0)

i ix b . Using the estimated initial values (0)

2x  and (0)

3x , we can calculate 

(inserting them into the equation for x1) the first approximate value of (1)

1x . In the next step, the 

evaluated values of (1)

1x  and (0)

3x   are substituted in the equation for x to calculate the first approximate 

value of (1)

2x . Then (1)

1x  and (1)

2x  calculated in this manner are used to calculate (1)

3x  from the third 

equation. This procedure is repeated as long as a satisfactory accuracy of solutions is achieved. In this 

method, each cycle of calculations requires only n2 multiplications. 

The general equation for k+1 approximation of the i-th variable which allows solving any nn system 

of equations can be put as follows: 

 

1
( 1) 1

1

1 i n
k k k

i i ij j ij j

j j iii

x b a x a x
a


 

 

 
   

 
 

   

 (8.30) 

 

EXAMPLE 

 

Solve the following system of linear equations: 

 

6

2 3 14

4 9 36

x y z

x y z

x y z

  

  

  

 

by GaussSeidel method. 

 

SOLUTION 

 

According to the algorithm for the calculations discussed above, appropriate absolute terms are taken 

as the initial approximate solutions of equations, i.e.: 

 
(0)

1 6x b  , (0)

2 7y b   (because 2y = 14) and (0)

3 4z b   (because 9z = 36), 

 

Substituting the values (0)y  and (0)z  into the rearranged first equation, the first approximate value of x 

is obtained: 

 
(1) (0) (0)6 6 7 4 5x y z         

 

So determined values of (1)x  and (0)z are inserted into the transformed second equation to calculate the 

first approximation of (1)y : 

 
(1) (0)

(1) (14 3 ) (14 5 3 4)
3.5

2 2

x z
y

    
    

 

then the values for (1)x  and (1)y  are substituted into the rearranged third equation to obtain the first 

approximation of z: 
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(1) (1)

(1) (36 4 ) (36 5 4 3.5)
3

9 9

x y
y

    
    

 

etc. The results are summarized below in the table. 

 

      cont. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The calculations indicate that only after 50 steps of iterative calculations a satisfactory result was 

obtained which was the solution of the above system of linear equations. 

In practice, the number of iterations is chosen so that the difference between successive estimates was 

lower than the assumed error (: 

 
( ) ( 1) εm m

i ix x         (8.31) 

 

A very important disadvantage of this method is a very common lack of convergence which makes it 

impossible to achieve a correct solution . 

 

8.4. GaussJordan elimination method  

 

Another way to solve systems of linear equations is the use of the GaussJordan elimination 

method. It involves a gradual transformation of a augmented ("double") matrix of coefficients and an 

identity matrix (AI) to IA-1 (identity matrixinverse matrix) by means of operations on rows which 

include: 

- replacement of any two rows, 

- multiplying elements of a row by a constant different from zero, 

- adding results of any row multiplication to another row. 

 

Operations on rows of a coefficient matrix A (to transform A into I) are made parallel to the 

operations on a matrix I. As a result, the matrix A is transformed to I and I is transformed to A
-1, 

according to the expression:  

 

Przybl. x y z

0 6 7 4

1 -5 3.5 3

2 -0.5 2.75 2.833

3 0.417 2.542 2.824

4 0.634 2.447 2.842

5 0.711 2.381 2.863

6 0.756 2.328 2.881

7 0.791 2.283 2.898

8 0.82 2.244 2.912

9 0.845 2.21 2.924

10 0.866 2.181 2.934

11 0.884 2.156 2.943

12 0.9 2.135 2.951

13 0.914 2.116 2.958

14 0.926 2.1 2.964

15 0.936 2.086 2.969

16 0.945 2.074 2.973

17 0.953 2.064 2.977

18 0.959 2.055 2.98

19 0.965 2.048 2.983

20 0.97 2.041 2.985

21 0.974 2.036 2.987

22 0.977 2.031 2.989

23 0.98 2.026 2.99

24 0.983 2.023 2.992

25 0.985 2.02 2.993

26 0.987 2.017 2.994

27 0.989 2.015 2.995

28 0.991 2.013 2.995

29 0.992 2.011 2.996

30 0.993 2.009 2.997

31 0.994 2.008 2.997

32 0.995 2.007 2.997

33 0.996 2.006 2.998

34 0.996 2.005 2.998

35 0.997 2.004 2.998

36 0.997 2.004 2.999

37 0.998 2.003 2.999

38 0.998 2.003 2.999

39 0.998 2.002 2.999

40 0.998 2.002 2.999

41 0.999 2.002 2.999

42 0.999 2.002 2.999

43 0.999 2.001 3

44 0.999 2.001 3

45 0.999 2.001 3

46 0.999 2.001 3

47 0.999 2.001 3

48 1 2.001 3

49 1 2.001 3

50 1 2 3
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A
 
I  I

 
A

-1
       (8.32) 

 

After determining A
-1 with the given method, the values of x can now be calculated simply by 

multiplying the matrix:  

 

X = A-1
B      (8.33) 

 

It is not necessary to calculate the invertible matrix and the solution of the matrix equation (8.33), if 

the matrix A expands to include the column matrix B and a matrix with the following structure is 

formed: 

 

11 12 1 1

21 22 2 2

1 2

n

n

n n nn n

a a a b

a a a b

a a a b

 
 
 
 
 
 

A B     (8.34) 

 

Then after transforming the matrix A to the identity matrix I, we get the following matrix (IX): 

 

1

2

1 0 0

0 1 0

0 0 1 n

x

x

x

 
 
 
 
 
 

      (8.35) 

 

where the last column includes the required values of xi. 

 

EXAMPLE 

 

Solve the following system of linear equations: 

 

6

2 3 14

4 9 36

x y z

x y z

x y z

  

  

  

 

 

by GaussJordan elimination method. 

 

SOLUTION 

 

In order to transform the matrix AB into IX: 

 

1 1 1 6 1 0 0

1 2 3 14 0 1 0

1 4 9 36 0 0 1

x

y

z

 A B  

 

the following elementary row operations on the augmented matrix can be perform: 

 

1) Subtracting elements of row 1 from row 2: 

1 1 1 6

0 1 2 8

1 4 9 36
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2) Subtracting elements of row 1 from row 3: 

1 1 1 6

0 1 2 8

0 3 8 30

 

3) Subtracting elements of row 2, multiplied by 3, from row 3: 

1 1 1 6

0 1 2 8

0 0 2 6

 

4) Dividing row 3 by 2: 

1 1 1 6

0 1 2 8

0 0 1 3

 

5) Subtracting elements of row 2 from row 1: 

1 0 1 2

0 1 2 8

0 0 1 3

 

 

6) Adding elements of row 1 to row 3: 

1 0 0 1

0 1 2 8

0 0 1 3

 

7) Subtracting elements of row 2 from elements of row 3 multiplied by 2: 

1 0 0 1

0 1 0 2

0 0 1 3

 

The final results are therefore x = 1, y = 2 and z = 3 and are the solution of the above system of linear 

equations.  

 

8.5. NewtonRaphson metod for nonlinear algebraic equations 

 

The NewtonRaphson method can be used to seek approximate solutions of nonlinear 

algebraic equations. The general algorithm of this method is shown below. 

In the NewtonRaphson method, for a system of n nonlinear algebraic equations of the form:  

 

 1 2, 1,2i n ix x x b i n       (8.36) 

 

the initial approximations of unknowns values (x) are required:  

 
 0(0) (0)

1 2, nx x x        (8.37) 

 

Assuming that:  

 

1 2, nx x x          (8.38) 

 

are necessary corrections for the calculation of the first approximations, i.e.:  

 
(1) (0)

i i ix x x        (8.39) 
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system of equations (8.36) can be written as follows: 

 

 (0) (0) (0)

1 1 2 2,i n n ix x x x x x b         (8.40) 

 

Expanding a function 
i
 into a Taylor series we obtain: 

 

 (0) (0) (0) 1 2
1 2 0 1 0 2 0

1 2

, n
i n n

n

x x x x x x
x x x

 


  
     

 

 (8.41) 

 

Taking into account only the first two terms in the Taylor series, the following system of n equations 

can be obtained: 

 

 (0) (0) (0)

1 2 0

1

,
n

i
i n i i

i i

x x x x b
x






       (8.42) 

 

In matrix notation equation (8.42) can be expressed as: 

  

 

 

 

(0) (0) (0)1 2
1 1 1 2

1
1 20 0 0

(0) (0) (0)2 2 2

2 2 2 1 2

1 20 0 0

(0) (0) (0)

3 3 1 2
1 20 0 0

,

,

,

n
n

n

n

n

n n n
n

n
n

b x x xx
x x x

x b x x x
x x x

x b x x x
x x x

 


  

  


  

  


  

 
                        

   
   
     
  
 








 
 
 
 

  

(8.43) 

 

The above equations in matrix form can be written in the form: 

 

AX = B       (8.44) 

 

The solution of this matrix equation with respect to x enables to find the successive approximations 

of the solution to a nonlinear system of equations (8.36). 

 

EXAMPLE 

 

Solve the following system of equations by NewtonRaphson method: 

 
2 8 16 0

2 4 0

f y x

g y x

   

     
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0

1

2

3

4

5

6

-2 -1 0 1 2 3 4

y

 
 

Fig. 8.1. Graph of the system of equations. 

 

SOLUTION 

 

According to the presented figure, as the initial approximations the values: 

 
 0(0) 2, 2x y   

were applied. 

In the first step of calculations it is necessary to calculate the values of the functions and their 

derivatives (with respect to each variable) at the starting point: 

 

 

 

(0) (0) 2

(0) (0)

(0) (0)

(0) (0)

, 8 16 4 16 16 4

, 2 4 4 2 4 2

8 2 4

1 2

x y

x y

f x y y x

g x y y x

f f
y

x y

g g

x y

 

 

 

 

      

      

  

 

 

 

According to the general equation (8.43), the matrix equation for the analysed case can be given in the 

form: 

 

8 4 4

1 2 2

x

y

      
     

      
 

 

Solving this equation with the Cramer’s method allows the calculation of desired corrections: 

 

16 4 12

4 41
0

2 212

8 41
1

1 212

D

x

y

  


  




   



 

The calculated corrections (x = 0, y = 1) are used to determine the first approximations of the 

desired variables x: 
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(1) (0)

(1) (0)

2

1

x x x

y y y

   

   
 

 

In the second step, similar calculations lead to:  

 

 

 

(1) (1)

(1) (1)

(1) (1)

(1) (1)

, 1 16 16 1

, 2 2 4 0

8 2

1 2

x y

x y

f x y

g x y

f f

x y

g g

x y

 

 

 

 

   

   

 

 

 

 

while the matrix equation can be expressed as: 

 

8 2 1

1 2 0

x

y

      
     

       
 

The second corrections calculated with the Cramer's method (x = 0.1428, y = 0.0714) are used to 

determine the second approximations of the desired variables x: 

 
(2) (1)

(2) (1)

1.8572

1.0714

x x x

y y y

   

   
 

 

In the third step, the similar calculation algorithm leads to:  

 

 

 

(1) (1)

(1) (1)

(1) (1)

(1) (1)

, 1 16 16 0.051

, 2 2 4 0

8 2.143

1 2

x y

x y

f x y

g x y

f f

x y

g g

x y

 

 

 

 

   

   

 

 

 

 

the matrix equation in the form:  

 

8 2.143 0.051

1 2 0

x

y

      
     

     
 

 

the third corrections: 

 

x = 0.00074, y = 0.000368 

 

the third approximations of the desired variables x: 

 
(3) (2)

(3) (2)

1.8564

1.0717

x x x

y y y

   

   
 



83 
 
 
 
 

This procedure is repeated until a required approximation is achieved, i.e. the condition described by 

the equation (8.31) is fulfilled. 

 

9. Interpolation 

 

Interpolation is a process of determining values of a function f(x) anywhere in an interval (x0, 

xn), when values of the function at points x0, x1, x2,... xn are known. The overall objective of 

interpolation is therefore to find a function which allows approximate determination of intermediate 

points between (x0, y0) and (xn, yn). The interpolation equations can also be used for numerical 

calculation of integrals and differential equations. 

Polynomial interpolation is one of the simplest and most commonly used methods. If we know 

(n+1) the values of the function yi at (n+1) the nodes of interpolation (x0, x1, x2,... xn), we can construct 

(by analogy to the problem of approximation) an adequate interpolation polynomial in the form: 

 
2

0 1 2( ) n

nf x a a x a x a x  
    

 (9.1) 

 

The polynomial described by the equation (9.1) at the nodes of interpolation takes values equal to the 

precisely known values of yi, unlike the approximating function for which the estimated value of ŷi is 

subject to an error arising from the method of least squares applied. At the same time, for the given 

(n+1) points there is exactly one at most n-th degree polynomial whose graph passes through these 

points. For example, exactly one straight line (n=1) passes through every two points, etc. 

 

 
 

Fig. 9.1. Difference between interpolation and approximation. 

 

9.1. Lagrange interpolation formula 

 

Assuming that we know n+1 values of the function y = f(x) (f(x0), f(x1),..., f(xn)), we can develop n + 1 

algebraic equations in the following way: 

 
2

0 0 1 0 2 0 0

2

1 0 1 1 2 1 1

2

0 1 2

( )

( )

( )

n

n

n

n

n

n n n n n

f x a a x a x a x

f x a a x a x a x

f x a a x a x a x

   

   

   

     (9.2) 

 

In the above system of equations, there are n+1 unknowns (a0, a1,…, an coefficients of the 

interpolating polynomial), while relations between the coefficients ai and the values of x and y always 

satisfy the general relation resulting from the formula for interpolation polynomial. This system can be 

put in the form of determinant (equal zero), which allows derivation of any interpolation polynomial: 

interpolation approximation 
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2

2

0 0 0 0

2

1 1 1 1

2

( ) 1

( ) 1

( ) 1
0

( ) 1

n

n

n

n

n n n n

f x x x x

f x x x x

f x x x x

f x x x x

      (9.3) 

 

Any interpolation polynomial can be determined using the following Lagrange interpolation formula  

 

 

 

0

0

0

( ) ( )

n

i

in
i j

j n
j

j i

i
i j

x x

f x f x

x x




















      (9.4) 

 

For the simplest case (first-degree polynomial), that is a straight line strictly passing through two 

interpolation nodes (points (x0, y0) and (x1, y1) Fig. 9.2), a corresponding linear interpolation 

polynomial is given by: 

 

01
0 1

0 1 1 0

( ) ( ) ( )
x xx x

f x f x f x
x x x x


 

 
    (9.5) 

 

 
 

Fig. 9.2. Linear interpolation. 

 

For the second-degree polynomial interpolation, from Equation (9.4) we get: 

 

0 2 0 11 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

x x x x x x x xx x x x
f x f x f x f x

x x x x x x x x x x x x

    
  

     
  (9.6) 

 

that is, the expression for the parabolic interpolation (Fig. 9.3). 
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Fig. 9.3. Parabolic interpolation. 

 

The calculations are significantly simplified for equidistant interpolation nodes on the interval:  

 

1j jx x h           (9.7) 

 

for which, a new variable defined by the formula: 

 

0 ( 1,2, )mx x x hm m n         (9.8) 

can be introduced. 

In this case: 
 

0

1

2

( 1)

( 2)

.

x x hm

x x h m

x x h m

etc

 

  

  
       (9.9) 

 

The corresponding interpolation equations (Equation (9.5) and (9.6)) takes the following form: 

for n = 1: 

 

0 1 0 1

( 1)
( ) ( ) ( ) ( ) (1 ) ( ) ( )

h m hm
f x hm f m f x f x m f x mf x

h h


      


   (9.10) 

 

and for n = 2: 

 
2 2 2

0 1 2

0 1 2

( 1)( 2) ( )( 2) ( )( 1)
( ) ( ) ( ) ( )

( )( 2 ) ( ) (2 )( )

1 1
( 1)( 2) ( ) ( 2) ( ) ( 1) ( )

2 2

h m m h m m h m m
f m f x f x f x

h h h h h h

m m f x m m f x m m f x

   
   

  

     

  (9.11) 

 

EXAMPLE 

 

Calculate the interpolation polynomial (using the Lagrange interpolation formula) for the data 

presented in the table: 

 

x y 

1 1 

2 3 

3 7 
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SOLUTION 

 

Substituting the numerical values of x and y into Equation (9.6) we get: 

 

( 2) ( 3) ( 1) ( 3) ( 1) ( 2)
( ) 1 3 7

(1 2) (1 3) (2 1) (2 3) (3 1) (3 2)

x x x x x x
f x

        
     

        
 

 

After multiplication: 

 

 2 2 27 21 1 5
( ) 7 3 12 9 3

2 2 2 2
f x x x x x x x           

 

Which leads to a interpolation polynomial in the form: 

 
2( ) 1f x x x    

 

This task can be calculated using the simplified equation (9.11) which after inserting the numerialc 

values takes the following form: 

 

1 1
( ) ( 1)( 2) 1 ( 2) 3 ( 1) 7

2 2
f m m m m m m m           

 

After performing the appropriate mathematical operations: 

 

2 2 21 3 7 7
( ) 1 3 6

2 2 2 2
f m m m m m m m        

 

leads to the equation in the form: 

 
2( ) 1f m m m    

 

In view of the fact that for the presented example, 0x x hm   and h = 1, the relationship between x 

and m is as follows: 

 
1x m   

 

Substituting this equation into the final equation for f(m), we obtain: 

 
2( ) 1f x x x    

 

which is identical with the equation derived from Equation (9.6). 

 

9.2. Differences and divided differences 

 

 Another method for creating interpolation polynomials uses the concept of progressive 

(forward) differences or divided differences. 

In the case of equidistant interpolation nodes, corresponding differences ( y ) between function 

values f(x):  

 

           0 1 0 1 2 1 1 1,  , = n n ny f x f x y f x f x y f x f x           (9.12) 
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are called first order progressive (forward) differences of a function f(x). Similarly, higherorder 

progressive differences are defined as: 

 
1( )n ny y         (9.13) 

 

Ways of building the progressive differences and relationships between them are shown in Table 9.1. 

The relationship between differences of a certain degree can be presented by the equations:  

 

0 1 0

2

0 1 0 2 1 0

3 2 2

0 1 0 3 2 1 0

4 3 3

0 1 0 4 3 2 1 0

( ) ( )

( ) 2 ( ) ( )

( ) 3 ( ) 3 ( ) ( )

( ) 4 ( ) 6 ( ) 4 ( ) ( )

y f x f x

y y y f x f x f x

y y y f x f x f x f x

y y y f x f x f x f x f x

 

    

     

      



  

  

  

  (9.14) 

 

Tab. 9.1. Progressive differences and relationships between them 
 

x f(x) 

First 

forward 

difference 

Second 

forward 

difference 

Third 

forward 

difference 

Fourth 

forward 

difference 

x0  f(x0)      

  
0y     

x1  f(x1)   2

0y    

  
1y   3

0y   

x2  f(x2)   2

1y   4

0y  

  
2y   3

1y   

x3  f(x3)   2

2y    

  
3y     

x4  f(x4)      

 

In the general case, when x takes on any value, or the differences defined by Equation (9.12) are not 

fixed, we should use divided differences.  

Firstorder divided differences of a function f(x) are the expressions defined as follows: 
 

     1 0 3 22 1
0 1 1 2 2 3

1 0 2 1 3 2

( ) ( ) ( ) ( )( ) ( )
, , , , ,

f x f x f x f xf x f x
f x x f x x f x x

x x x x x x

 
  

  
  (9.15) 

 

Secondorder divided differences are defined by analogy: 
 

       1 2 0 1 2 3 1 2

0, 1 2 1, 2 3

2 0 3 1

, , , ,
, , ,

f x x f x x f x x f x x
f x x x f x x x

x x x x

 
        

  (9.16) 

 

Overall, a norder divided difference is created from an n1 order divided difference using the 

following recursive formula: 
 

   1 2 0 1 1

0, 1 1

0

, , , , , ,
, , ,

n n

n n

n

f x x x f x x x
f x x x x

x x





  
    

  

 (9.17) 
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Comparing Equations (9.12) for firstorder progressive differences with firstorder divided 

differences for equidistant interpolation nodes (Equations (9.15)), we obtain the following relations:  

 

     0 11
0 1 1 2 1, , , , , , n

n n

y yy
f x x f x x f x x

h h h


  

 
    (9.18) 

 

where h is the distance between the x points, defined by Equation (9.7). 
 

9.3. Newton’s interpolation formula  
 

The interpolation polynomial (Equation (9.5)) can be written in the form: 
 

1 0
0 0

1 0

( ) ( ) ( )
y y

f x f x x x
x x

 
    

 
     (9.20) 

 

Substituting into this formula the expression for the firstorder divided difference (Equation (9.15)) 

we get: 
 

0 0 0 1( ) ( ) ( ) [ , ]f x f x x x f x x        (9.21) 

 

A similar transformation of Equation (9.16) for the secondorder divided difference, leads to the 

relationship: 

 

0 0 0 1 0 1 0 1 2( ) ( ) ( ) [ , ] ( )( ) [ , , ]f x f x x x f x x x x x x f x x x         (9.22) 

 

In general, the expression: 
 

0 0 0 1

0 1 0 1 2

0 1 2 0 1 2 3

0 1 1 0 1

( ) ( ) ( ) [ , ]

( )( ) [ , , ]

( )( )( ) [ , , , ]

( )( ) ( ) [ , , , ]

n

n n

f x f x x x f x x

x x x x f x x x

x x x x x x f x x x x

x x x x x x f x x x

  

  

   

   

    (9.23) 

 

is a interpolation polynomial f(x) for n + 1 interpolation nodes.This formula is called the Newton’s 

interpolation formula for unequal intervals or Newton’s divided difference interpolation formula. 

 

EXAMPLE 
 

Calculate the interpolation polynomial (using the Newton’s divided difference interpolation formula) 

for the data presented in the table: 
 

x y 

1 1 

2 3 

3 7 
 

SOLUTION 
 

In order to use Equation (9.22), two of the firstorder divided differences should be calculated: 
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 

 

1 0
0 1

1 0

2 1
1 2

2 1

( ) ( ) 3 1
, 2

2 1

( ) ( ) 7 3
, 4

3 2

f x f x
f x x

x x

f x f x
f x x

x x

 
  

 

 
  

 

 

 

and secondorder divided difference: 
 

   1 2 0 1

0, 1 2

2 0

, , 4 2
, 1

3 1

f x x f x x
f x x x

x x

 
       

 

 

Substituting the calculated values into Equation (9.22), we obtain: 
 

( ) 1 ( 1) 2 ( 1)( 2) 1f x x x x         

 

and after multiplication: 
 

2( ) 1f x x x    

 

EXAMPLE 

 

Given the values of x0 = 0, y0 = 4 and x1 = 2, y1 = 6 (Fig. 9.4), calculate the interpolated value for x = 1, 

using the Newton's interpolation formula. 

 

 
 

Fig. 9.4. Linear interpolation for presented example. 

 

SOLUTION 

 

The firstorder divided difference is equal to: 

 

  1 0
0 1

1 0

( ) ( ) 6 4
, 1

2 0

f x f x
f x x

x x

 
  

 
 

 

Substituting the values in the Newton’s interpolation formula (Equation (9.22)), we obtain:  

 

( ) 4 (1 0) 1 5f x       

 

The interpolated value for x = 1 is equal to 5. 

 

EXAMPLE 

 



90 
 
 
 
 

Given the values of (x0 = 0, y0 = 4), (x1 = 2, y1 = 6) and (x2 = 4, y2 = 6.5) (Fig. 9.5), calculate the 

interpolated value for x = 1, using the Newton's interpolation formula. 

 

 
 

Fig. 9.5. Parabolic interpolation for presented example. 

 

SOLUTION 

 

In this example, the first-order divided differences: 

 

 

 

1 0
0 1

1 0

2 1
1 2

2 1

( ) ( ) 6 4
, 1

2 0

( ) ( ) 6.5 6
, 0.25

4 2

f x f x
f x x

x x

f x f x
f x x

x x

 
  

 

 
  

 

 

 

and second-order divided difference: 

 

   1 2 0 1

0, 1 2

2 0

, , 4 2
, 1

3 1

f x x f x x
f x x x

x x

 
       

 

should be calculated. 

Substituting the appropriate values in the Newton’s interpolation formula (Equation (9.22)), we obtain:  

 

( ) 4 (1 0) 1 (1 0)(1 2) ( 0.1875) 5.1875f x            

 

Therefore the interpolated value for x = 1 is equal to 5.1875. 

 

9.4. Numerical differentiation 

 

Interpolation functions can be used for numerical differentiation. This is especially useful 

when the function is given in the form of a table for a set of certain values of an independent variable, 

or if the analytical solution function is too complex. 

Differentiating the Lagrange interpolation formula with respect to m in the form:  

 

0 1 2

1 1
( ) ( 1)( 2) ( ) ( )( 2) ( ) ( 1) ( )

2 2
f m m m f x m m f x m m f x          (9.24) 

 

the following equation is obtaining: 

 

0 1 2

1 1
(2 3) ( ) 2( 1) ( ) (2 1) ( )

2 2

df
m f x m f x m f x

dm
         (9.25) 
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Because for equidistant interpolation nodes can be written that:  

 

0 ( 1,2, )mx x x hm m n         (9.26) 

therefore: 

 

1df df dm df

dx dm dx h dm
         (9.27) 

 

Substituting Equation (9.25) into Equation (9.27), the final expression for the numerical differentiation 

is obtained:  

 

0 1 2

1 1 1
(2 3) ( ) 2( 1) ( ) (2 1) ( )

2 2

df
m f x m f x m f x

dx h

 
      

 
   (9.28) 

EXAMPLE 

 

Given the values of (x0 = 0, y0 = 4), (x1 = 2, y1 = 6) and (x2 = 4, y2 = 6.5) (Fig. 9.6), calculate the 

derivatives at the points x0, x1 i x2.  

 
 

Fig. 9.6. Geometric interpretation of the differentiation of a parabola. 

 

SOLUTION 

 

In order to calculate the derivatives at the interpolation nodes, Equation (9.28) can be used. The 

performed calculation for the appropriate points are as follows: 

a) x0
 
= 0, y0

 
= 4, m = 0, h = 2 

 

0

0 1 2

1 1 1 1
( 3) ( ) 2 ( ) ( ) ( 6 12 3.25) 1.375

2 2 2x

df
f x f x f x

dx h

   
           

   
 

 

b) x1
 
= 2, y1

 
= 6, m =1, h = 2 

 

1

0 2

1 1 1 1
( ) ( ) ( 2 3.25) 0.625

2 2 2x

df
f x f x

dx h

   
         

   
 

 

c) x2
 
= 4, y2=6.5, m = 2, h = 2 

 

2

0 1 2

1 1 3 1
( ) 2 ( ) ( ) (2 12 9.375) 0.125

2 2 2x

df
f x f x f x

dx h

   
          

   
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A similar values can be obtained using Newton's formula for equidistant interpolation nodes in 

the form:  

 

2

0 0 0

1
( ) ( ) ( 1)

2
f m f x m y m m y         (9.29) 

 

which leads to the following equation: 

 

2

0 0

1 1 1
(2 1) )

2

df df
y m y

dx h dm h
 
 

    
 

    (9.30) 

 

In practical applications, the presented numerical differentiation methods can be used only if the 

function values at the interpolation nodes are absolutely precise, i.e. an approximate polynomial must 

take a definite value for a given x. Therefore, the degree of the interpolation polynomial must be no 

less and no greater than the number of the nodes minus 1. Interpolation is usually used for a small 

number of measurement points. For the analysis of many experimental results, a simpler method is to 

determine a regression equation (e.g. polynomial) which then can be easily differentiated. 

 

10. Optimization methods 
 

Among many numerical methods used in optimization, this chapter briefly characterizes the 

methods of changing a single parameter and random walk. Because of the most common practical 

application, special attention is devoted to the grid search method (factorial designs) and the simplex 

method. 
 

10.1. Method of changing a single parameter  
 

One of the simplest optimization methods is to study changes in experimental response to the 

studied phenomenon, involving a change of a single parameter when the other variables are constant. 

After the extremum of a function in a given direction is found (e.g. for variable x1), a constant value 

for this variable is taken, and the study continues in the direction of another variable (e.g. x2). Once 

these steps are taken for all variables, we return to the first, optimized parameter (variable) and the 

whole procedure is carried out again. This method can give good results if variables are not correlated 

 

10.2. Random walk method 
 

In this method, every parameter is chosen at random, so the response surface is sampled 

extensively. This creates an opportunity to find the area of the extremum, however, it is also 

considered costly and time consuming due to the need for a large number of experiments. 

 

10.3. Grid search method (factorial design) 
 

The method consists in constructing a grid (design) that uses many different sets of values 

chosen for the optimization of variables. The grid covers a large part of the response surface and is 

used for grid testing. After the relevant experiments are done, close to the optimum values, we can 

make another design to clarify the optimal parameter values. Multiple repetition of this procedure 

leads to gradually better estimates of optimal values. 

Factorial designs can also be used to determine a regression equation (regression model) 

describing the optimum area and allowing analytical calculation of the extreme point. Despite the need 

to conduct many experiments the number of which grows rapidly with increasing number of the 

variables under consideration, this method leads to good results. 
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10.3.1. Rules for creating a regression model 
 

In order to find an equation describing a phenomenon, various kinds of empirical regression 

models may be used. In contrast to models fully specified for which the mathematical form of a 

function resulting for example from physical chemistry is known, in the case of an empirical model 

the functional dependence is not known. In the simplest case a multiple linear regression model can be 

used to describe a phenomenon: 
 

0 1 1 2 2 p py a a x a x a x             (10.1) 

 

where y is a variable which is the experimental response of the studied phenomenon, xi – independent 

(or explanatory) variable, ai – coefficients that must be evaluated, while p is the number of 

independent variables. 

If the linear model is insufficient to describe a response of an object, it is necessary to use 

more complex models such as a linear model with interaction terms between the factors, i.e. the 

products of various independent variables. For the two independent variables, this model takes the 

form: 

 

0 1 1 2 2 12 1 2y a a x a x a x x             (10.2) 

 

For the three independent variables, this model can be written as: 
 

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3y a a x a x a x a x x a x x a x x                   (10.3) 

 

and in the general case as: 
 

0

1 1

p p

i i ij i j

i i j n

y a a x a x x
  

            (10.4) 

 

The equation (10.4) contains 
( 1)

1
2

p p
p


   coefficients, so we should have a number at least equal 

to this value in order to estimate the coefficients a. For the linear model (Equation (10.1)), the number 

of measurements sufficient to determine the coefficients is just p + 1. 

The linear model can be expanded by including square terms. In this case, a simplified square 

model can be put in the form: 

 

2

0

1 1

p p

i i ii i

i i

y a a x a x
 

          (10.5) 

 

and determination of 2p + 1 coefficients in this equation requires at least the same number of 

measurements, i.e. n ≥ 2p + 1. 

An extension of the simplified square model (Equation (10.5)) is a full square model which 

covers all possible interaction terms. Its use is limited due to a very large number of coefficients 

(2p + p). 

An interactive square model which is a combination of models (10.4) with (10.5) and contains 

only 
( 1)

2 1
2

p p
p


   coefficients is much more often used: 

 

2

0

1 1 1

p p p

i i ij i j ii i

i i j n i

y a a x a x x a x
   

            (10.6) 
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To identify the model, i.e. determine the coefficients, the minimum number of measurements 

to be performed is equal to the number of coefficients. Table 10.1 lists the minimum number of 

measurements necessary to identify the model. 
 

Tab. 10.1. Minimum number of measurements necessary to identify the model 
 

Model 
Linear 

Linear with 

interaction terms 
Square 

Interactive 

square 
Full square 

p+1 1+p+p(p-1)/2 2p+1 1+2p+p(p-1)/2 2
p

+p 

p = 1 2 2 3 3 3 

2 3 4 5 6 6 

3 4 7 7 10 11 

4 5 11 9 15 20 

5 6 16 11 21 37 

6 7 22 13 28 70 

7 8 29 15 36 135 

 

In practical calculations, the number of measurements should be much larger (at least 45 times) than 

the minimum values. A simple linear model with four independent variables requires at least 2025 

measurements. By careful selection of measurement points, in accordance with the principles of 

chemometrics, it is possible to obtain sufficiently good estimates of model coefficients for a much 

smaller number of measurements. A careful planning of these points is therefore required in this case. 

 

10.3.2. Experimental design 

 

 A development of a model describing a mathematical correlation between results and the 

values of various parameters (i.e. close to the optimum) requires a proper planning. To do this, we can 

use a variety of experimental designs. Due to the fact that in experiments we usually deal with a 

variety of variables falling within various ranges, the socalled coded variables (ui) rather than real 

variables (xi) are used. Coded variables can be converted to real variables (and vice versa) using the 

following formulas: 

 

 
 

,max ,min

,max ,min

2 i i i

i
i i

x x x
u

x x

 




     (10.7) 

 

   ,max ,min ,max ,min

2

i i i i i

i

u x x x x
x

  


    (10.8) 

 

where xi,min and xi,max denote the minimum and maximum values of the independent variable (xi). These 

are also preestablished, acceptable ranges of variables. For most experimental designs, coded 

variables range from 1 to +1. 

 The so called optimality is one of the most important properties that an experimental design 

should have. The optimality criterion adopted in chemometrics is the possibility of predicting values 

of a dependent variable at different points in a design space. Therefore, an optimal design is a design 

which at a given number of experiments n guarantees the best prediction of a dependent variable in a 

design space. To obtain an optimal design, it is necessary to create such a design matrix U (containing 

coded variables uij) so that the elements of the main diagonal of a dispersion matrix (D):  
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 D = (U
T
U)

-1
 

      (10.9) 

 

were as small as possible. The design matrix U contains a set of design coordinates presented by the 

coded variables. The lower elements of the main diagonal of the dispersion matrix, the greater the 

determinant of the socalled information matrix (UT
U): 

 

det(UT
U) = UT

U      (10.10) 

 

The determinant of an information matrix is large when we use orthogonal design variables, i.e. 

variables that are not correlated. At the same time, the use of orthogonal variables causes that a 

product of any two variables is also orthogonal to all other independent variables. Additionally, the 

estimated in this case coefficients of the model are independent of each other and thus removing any, 

statistically insignificant term of the model does not result in the need to recalculate all the 

coefficients of the model. 

The so called full factorial designs 2m are among the simplest designs that meet the optimality 

criterion. The design includes m coded (explanatory) variables, each of which takes only two different 

values, i.e. two levels (e.g. 1, +1). These types of designs are used to describe relations (regression 

coefficients evaluation) for linear models and linear models with interaction terms. Examples of 

measurement point distribution for the full factorial design 22 and 23 are shown in Figure 10.1. 

 

     
 

Fig. 10.1. Examples of measurement point distribution for the full factorial design 22 (2 levels and 2 

number of factors) and 23 (2 levels and 3 number of factors). 
 

 In order to generate a full factorial design, we can use a very simple iterative method. In the 

first step, starting from the rightmost column, which corresponds to the pth variable, two values are 

entered (1 and +1), because it is a twolevel design: 

 
up 

1 

1 
 

In this way, the 21 design has been generated. In the second step, to include another variable, the 

generated design is copied in the bottom lines of the column up, and in the preceding column (up-1) the 

values of 1 are placed in the first half of the rows, while  1 in the second: 

 
up-1 up 

1 1 

1 1 

1 1 

1 1 



96 
 
 
 
 

 

If p> 2, then the above procedure shall be applied as long as m1 has the value of 1. For 23 design, this 

leads to the following form: 

 
up-2 up-1 up 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 
 

To complete the process of creating a design (for p = 3), we should add to the left of the design a 

column of coefficients u0 corresponding to the absolute term (intercept) in the linear equation: 
 

u0 u1 u2 u3 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 
 

The generated full factorial design (23) allows for identification of the coefficients ai in the following 

linear model:  
 

0 1 1 2 2y a a x a x           (10.11) 

 

To create a full factorial design, allowing determination of coefficients in the following square model: 
 

2 2

0 1 1 2 2 3 1 4 2y a a x a x a x a x              (10.12) 

 

it is necessary to use a 3level design (3 levels for each factor: 1, 0, +1 for two variables). The way 

of creating a design, analogous to the above-discussed case, results in the matrix presented below.  

Factorial designs 3m for p4 require a large number of experiments. For instance, for p = 4 the number 

of points (experiments) in the full factorial design is equal to 81. A possible solution to this problem is 

to reduce a number of measurement points by using fractional factorial designs (e.g. 3m-k),, widely 

described in the book [14]. 
 

u0 u1 u2 u1
2 u2

2 

1 1 1 1 1 

1 1 0 1 0 

1 1 1 1 1 

1 0 1 0 1 

1 0 0 0 0 

1 0 1 0 1 

1 1 1 1 1 

1 1 0 1 0 

1 1 1 1 1 
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EXAMPLE 
 

Determine the maximum efficiency of a reaction (W [%])  dependent on temperature (T [oC]) and 

substrate concentration (c [mol/m3]). Minimum and maximum values of T and c are equal to:10 and 

40 oC as well as 4 and 14 mol/m3. From preliminary studies we know that the desired relationship is 

not linear. 
 

SOLUTION 
 

The general model can be put as follows: 

W = a0+a1·c+a2·T+a3·c
2+a4·T

2 

In the first step, as in the procedure described in this chapter, we need to create an accurate factorial 

design, expressed in design variables 3
2
 (2 variables at 3 levels) and real variables:  

 

u0  u1 u2  

1  1  1  

1  1  0  

1  1  1  

1  0  1  

1  0  0  

1  0  1  

1  1  1  

1  1  0  

1  1  1  

 

In order to convert the coded variables to real variables, Equation (10.8) can be applied. 

 The next step is to determine reaction efficiency for 9 experiments, in accordance with the 

generated full factorial design: 

 

Experiment 
c  

mol/m3 

T 
oC 

W 

%  

1 14  40  42  

2 14  25  94  

3 14  10  84  

4 9  40  45  

5 9  25  96  

6 9  10  86  

7 4  40  40  

8 4  25  91  

9 4  10  81  

 

To perform a regression analysis using an Excel spreadsheet, data must be adequately prepared. For 

this purpose, it is best to present experimental results in the form: 
 

a0 c  T  c2  T2  W 

1  14  40  196  1600  42  

1  14  25  196  625  94  

1  14  10  196  100  84  

1  9  40  81  1600  45  

1  9  25  81  625  96  

1  9  10  81  100  86  

1  4  40  16  1600  40  

1  4  25  16  625  91  

1  4  10  16  100  81  
 

a0  c  T  

1  14  40  

1  14  25  

1  14  10  

1  9  40  

1  9  25  

1  9  10  

1  4  40  

1  4  25  

1  4  10  
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The first column (a0) is used to determine an absolute term in a model (intercept), however, it is not 

necessary to select this column, if we use Data analysis (Regression). This column should be selected 

in calculations that use a matrix equation (Equation (4.6)). After calling Data analysisRegression 

and selecting four columns (c, T, c2, T2) as the input range X and choosing appropriate analysis 

options, coefficients of a regression model are obtained. After taking into account standard deviations, 

the regression equation can be put as follows: 
 

W = 31.09(±0.86) + 2.91(±0.18)·c + 5.437(±0.054)·T  0.1467(±0.0095)·c2  0.1363(±0.0011)·T2 

r2 = 0.9999, sy = 0.34, n = 9, F = 10082 
 

Calculating partial derivatives with respect to c and T and comparing them to 0, we get: 
 

 W/c = 2.91  0.293·c
  

= 0 and c = 9.93 mol/m3 

 W/T = 5.437  0.273·T
  

= 0 and T = 19.93 oC  
 

Better determination of the maximum efficiency requires generating the next full factorial design close 

to the estimated maximum, and repeating some or all of the experiments for a new set of variables.  

 
 

10.4. The simplex method 

 

In contrast to the random walk method, random variations in parameter values in the simplex 

method have been replaced by an appropriate sequential algorithm. The optimization process begins 

with the creation of p+1 dimensional polyhedron (simplex) with p+1 vertices which correspond to a 

particular set of parameter values. An example can be a onedimensional simplex which corresponds 

to a line segment, twodimensional triangle and threedimensional one, i.e. tetrahedron (Fig. 10.2). 

 

 

 
 

Fig. 10.2. Examples of simplexes in the of one, twoand threedimensional space. 

 

After determining the value of a system response (after proper experiments) at various points a 

point is rejected for which the value of the object response is the smallest (if we search for the 

maximum). 
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Fig. 10.3. The principle of the simplex method. 

 

After rejecting this point, we determine a new set of parameters through the mirror image of 

the point rejected with respect to the segment joining the remaining points and we re-set the system 

response. The principle of the simplex method for two parameters is shown in Figure 10.3, where the 

dotted lines indicate schematically the response surface. Such a procedure is repeated several times 

until we reach the area of optimum (extremum) and the simplex moves in a zigzag line (Fig. 10.4). 

 

 
 

Fig. 10.4. Movements of a simplex in two dimensional space. 

 

General rules of conduct in the simplex method are thus as follows: 

 

Rule 1  

The simplex moves after each p + 2 observation. 

 

Rule 2  

By rejecting the vertex (a set of parameters), characterized by the worst result (worst object 

response), followed by its mirror image with respect to the opposite edge of the simplex, we get a new 

simplex. Figure 10.5 shows the generated, new simplex adjacent to the existing one; it has been 

created by removing the point (D1) and adding the vertex (D4). 

 

extremum 
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Fig. 10.5. Determining parameters for a new experiment in the simplex method. 

 

In order to determine parameter values at the next simplex point (D4), we can use the general formula: 

 

D4 = C+ (C D1) = 2C D1       (10.13) 

 

which for individual parameters (variables x1 and x2) can be put as follows: 

 

1 1 1 1 1 1(D4) (C) ( (C) (D1)) 2 (C) (D1)x x x x x x       (10.14) 

 

2 2 2 2 2 2(D4) (C) ( (C) (D1)) 2 (C) (D1)x x x x x x       (10.15) 

 

In these equations C is the point lying in the middle of the segment joining the remaining points, the 

coordinates of which can be calculated from the formulas: 

 

D2 + D3
C =

2
      (10.16) 

 

1 1
1

(D2) (D3)
(C)

2

x x
x


     (10.17) 

 

2 2
2

(D2) (D3)
(C)

2

x x
x


     (10.18) 

 

The new vertex of the simplex is therefore at the same distance from point C as D1 from C.  

 The object response for the new parameter values (point D4) should be better than at points 

D2 and D3. In this case, the point rejection procedure is repeated for the new simplex D2D3D4. 

If the object response (result) is no better, it is recommended to reduce the distance between 

the vertices (reduce the size of the simplex) so as to determine more accurate optimal parameter 

values. If the modifications do not give better results, this means that the simplex circles around the 

optimal value (or it covers it). The procedure stops then and the mean values of the last simplex are 

taken as optimum. 

 If the simplex method is applied to the optimization of many parameters, it is often necessary 

to repeat the whole process with a new initial simplex due to the fact that the response surface can 

show local extrema. 

 If rule 2 fails, then rule 3 is applied. 

 

extremum 
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Fig. 10.6. An example of rule 3 with respect to simplex 101213. 

 

Rule 3 

If the results obtained for the new parameter values are as bad or worse, the experiment should 

be repeated again to check if there is a random error. If the result is the same, it means that rule 2 

cannot be applied. In this case, the next and worst point is discarded. An example of this rule is 

simplex 101213 (Fig. 10.6) were a better result is obtained by discarding point 10 rather than 13 

 

Rule 4  

If after several simplex modifications one of the vertices remains among the new simplexes 

(e.g. point 12, Fig. 10.6), this means that the result of the experiment may be overestimated due to an 

experimental error. If the repeated result is true, then the procedure stops and the parameter values for 

that point are taken as optimal. Otherwise, the whole optimization procedure should start again, taking 

a new, improved initial simplex. 

 

Rule 5  

If the new vertex parameters go beyond acceptable limits in their physical meaning, or cannot 

be generated in the course of the conducted experiment, then:  

a) a parameter value is established on a physically justifiable level and the procedure 

continues with a reduced simplex, or 

b) we return to the previous simplex and repeat the procedure so as not to exceed the imposed 

limit for the optimized parameters.  

The simplex method has also several limitations which include: 

a) a possibility of determining the optimum area only in so far as permitted by the desired size 

of the simplex (simplex design scale) 

b) problems with the way of verifying the optimum area achieved, 

c) problems with choosing the size of the initial simplex, and 

d) achieving a local maximum in the place of a global maximum.  
In the case of the simplex method we should also remember not to draw conclusions regarding the 

conduct of a given process based on a simplex movement. In order to determine the relationships 

between a result and parameters, we can apply regression models, generated from the corresponding 

full factorial designs. 

 

10.4.1. Variable-size simplex 

 

A modified simplex method developed by Nelder and Mead [J.A. Nelder, R.Mead, A simplex 

method for function minimization, Comput. J., 7 (1965) 308313] introduces a simplex expansion in 
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the direction of a growth of the response function or contraction in the direction opposite to a clear 

decrease of this quantity. 

 

10.4.1.1. Expansion 

 

Simplex expansion (Fig. 10.7) can be carried out if the value of system response (the result of 

experiment) for point DR is better than for the discarded (D1) and remaining points. The distance 

between points C and DE is generally 2 times greater than that between points C and DR. In this case, 

to determine the parameter values at the expanded point, we can apply the general formula: 

 

D2 + D3 D2 + D3
DE = + 2 D1 =1.5 (D2 D3) 2D1

2 2
+

 
    
 

  (10.19) 

 

This equation for individual parameters can be put as: 

 

1 1 1 1(DE) 1.5 [ (D2) (D3)] 2 (D1)x x x x        (10.20) 

 

2 2 2 2(DE) 1.5 [ (D2) (D3)] 2 (D1)x x x x        (10.21) 

 

 

 
 

Fig. 10.7. Expansion of the D1D2D3 simplex. 

 

If the result of the experiment that used the parameter values of point DE is better than that at the 

rejected point, the procedure is continued using a new, expanded simplex (D2D3DE). Otherwise, 

we go back to the unexpanded simplex and continue the procedure according to the simple simplex 

metod. 

 

10.4.1.2. Contraction 

 

If the value of the system response at point DR is worse than the results obtained for the 

remaining points, and at the same time it is better than the value obtained at the remaining point, 

simplex can be contracted. Taking into account the value of the result obtained at point DR, 

contractions can be carried out in two ways: 

 

Positive contraction 

 

If the value of the response function (f) of an object decreases in a range 

f(D3) > f(DR) > f(D1) (Fig.10.8), then the parameters of a new point (DK+) can be calculated from the 

general formula:  

extremum 
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+ D2 D3 D2 D3
DK 0.5 D1 0.75 (D2 D3) 0.5 D1

2 2

  
         

 
 (10.22) 

 

which for each variable can be given as follows: 

 

1 1 1 1(DK ) 0.75 [ (D2) (D3)] 0.5 (D1)x x x x          (10.23)

  

2 2 2 2(DK ) 0.75 [ (D2) (D3)] 0.5 (D1)x x x x         (10.24)

  

 
 

Fig. 10.8. Positive contraction of the D2D3DR simplex. 

 

Negative contraction 

 

When: f(DR)<f(D1), then a negative contraction (Fig. 10.9) is applied according to the formulas:  

 

D2 D3 D2 D3
DK 0.5 D1 0.25 (D2 D3) 0.5 D1

2 2

   
         

 
   (10.25) 

 

1 1 1 1(DK ) 0.25 [ (D2) (D3)] 0.5 (D1)x x x x          (10.26) 

 

2 2 2 2(DK ) 0.25 [ (D2) (D3)] 0.5 (D1)x x x x         (10.27) 

 

   
 

Fig. 10.9. Negative contraction of the D2D3DR simplex. 

extremum 

extremum 
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When a modified simplex method is used, a simplex ceases to be a regular figure and in the course of 

its movement it changes its size (Fig. 10.10). 

 

 
 

Fig. 10.10. Movements of a variable-size simplex. 

 

10.4.2. Optimization criteria 

 

In order to complete the optimization in a proper moment, it is necessary to predetermine an 

adequately defined criterion. At the same time it is not possible to formulate a general criterion, 

adequate for all the analysed cases due to various, often conflicting criteria, such as yield and purity of 

a product. Therefore, in accordance with the general rules of conduct, a properly formulated criterion 

should include: 

1) The analysis of the obtained results to estimate whether the changes observed are below the 

threshold value, which indicates the achievement of a response surface area with the 

extremum of the desired size. 

2) The analysis of parameter values by testing for their changes during optimization, allowing 

completion of the procedure on the basis of the size of the simplex. 

3) The analysis of gradients to evaluate the effectiveness of the procedure which unfortunately 

fails when the response surface includes saddle points. 

4) The analysis of the results to generate a mathematical model describing the response surface to 

obtain an image or cross-sections of the surface. 

 

In experimental studies it is necessary to use many of these criteria simultaneously and to evaluate a 

result during optimization, which is rarely carried out automatically. 

 Literature presents many examples of practical use of the simplex method, among others, to 

determine the optimum operating conditions of an atomic absorption spectrophotometer, to optimize 

the magnetic field homogeneity in NMR, to optimize separation of an isomeric mixture in 

chromatography and to optimize various reaction yields, etc. 

 

11. Monte Carlo methods - integration and simulation 

 

11.1. Pseudorandom number generators 

 

Random numbers are used in many iterative computations. The Monte Carlo method is one of 

the methods requiring generation of random numbers with uniform distribution. 

The NeumanMetropolis method is among the basic methods of generating random numbers. In order 

to obtain pseudorandom numbers with uniform distribution in an interval 0,1, this method uses any 

mdigit number from this interval which can be put in m binary positions: 
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1 2

1 1 22 2 2 m

mx             (11.1) 

 

In this formula, 
i
 is a figure at the ith position in the mdigit number. By squaring the number, we 

get: 

 
2 1 2

1 1 22 2 2 m

mx       
     (11.2)

 

 

The middle of this number, i.e.:  

 
1 2

2 3
1 2

2 2 2

2 2 2 m

m m mx     

 
        (11.3) 

 

is another pseudorandom number. 

Continuing the calculations, i.e. squaring and setting the next middle number, we obtain a sequence of 

numbers x1, x2 ... xn uniformly distributed in the interval 0,1. 

 

EXAMPLE 

 

Calculate two pseudorandom numbers (x2 and x3) from the interval from 0 to 1, using the 

NeumanMetropolis method. The initial value to be assumed in the calculations is: x1 = 0.1107 

 

SOLUTION 

 

By taking it as the initial value x1 = 0.1107 and squaring, we get: 

 
2

1x   (0.1107)2 = 0.01225449 

 

The middle four digits of the number are another pseudorandom number: 

 

x2 = 0.2254 

 

Proceeding analogously with the value of x2, we obtain: 

 
2

2x   (0.2254)
2
 = 0.05080516 

and: 

 

x3 = 0.0805 

 

 There are many computer programs, called pseudorandom number generators for creating 

subsequent numbers by operations on a preceding number. As the computer is 100% deterministic, a 

sequence of pseudorandom numbers initiated with the same value is always the same. 

 The most commonly used pseudorandom number generation algorithm is the recursive method 

developed by Lehmer, called a Linear Congruential Generator (LCG): 

 

 1 modi ix a x c m         (11.4) 

 

where a is the multiplier, and c – gain, mod – integer remainder. 

Because, according to the equation (11.4),  another pseudorandom number is obtained from a previous 

one, it is necessary to specify the initial value x0 from which an algorithm starts. Depending on the 

value c, we can distinguish two basic types of generators LCG. Where c0, the generator is called 

additive (mixed), when c=0 – multiplicative. 
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 The formula (11.4) has been applied in many pseudorandom number generators, however, 

different values of coefficients are used depending on a program (or programming language). Some 

typical examples are shown in Table 11.1. 

 

Tab. 11.1. Some examples of pseudorandom number generators, and coefficients 

 

Name m a c 

RANDU 231 65539 0 

DERIVE 232 3141592653 1 

RNB 231 22237+1 0 

RAND 232 or 231 1103515245 12356 

MINSTD 2311 16807 0 
 

Correct operation of a pseudorandom number generator (uniform distribution and no 

correlation between the values) can be determined by calculating appropriate statistical tests. A 

chisquare test (2) is among the most popular distribution compliance tests 

In order to check whether 10 000 selected numbers (cardinality in each interval: 971, 1015, 

974, 1014, 1012, 1015, 981, 1005 1006 and 1007) is characterized by a uniform distribution, we can 

calculate statistics 2 from the formula:  

 

 
2

2

1χ
l

i

l

i

n n

n



       (11.5) 

 

where ni is cardinality in the ith interval, n is the expected value ni equal to 1000, and l is the number 

of subintervals. The calculated value of 2 = 2.78 is compared with critical values, for example, from a 

distribution table 2 which for the number of degrees of freedom l  1 = 9 are: 2.088, 2.532 and 3.325 

for respectively 99%, 98% and 95% confidence levels. Based on these values, it can be stated that with 

95–98% probability, the sequence of 10 000 pseudorandom numbers is characterized by a uniform 

distribution. 

The uniform distribution obtained in most pseudorandom number generators can be 

transformed into the Gaussian distribution, in accordance with the statement: 

"If a population of variables has finite variance 2, and mean x, then, with increasing n, the sample 

mean distribution aims at the normal distribution with mean and variance 2/n." 

called the central limit Theorem. 

An adequate formula can be applied for the transformation: 

 

,

1

2
N

k G k

i

x x N


 
     

 (11.6) 

 

where xk is numbers with uniform distribution, while xk,G – numbers with normal distribution. A 

correct normal distribution can be obtained for values N ranging from 10 to 12. 

 The BoxMüller transform is a much more common method for generating normally 

distributed numbers. In this method, independent random variables x1 and x2 with uniform 

distributions in an interval 0,1 are transformed into random variables y1 and y2 with the Gaussian 

distribution, according to the following formulas: 

 

1 1 22 ln( ) cos(2 )y x x            (11.7) 

 

1 1 22 ln( ) sin(2 )y x x            (11.8) 

 

Such transformation results in normally distributed variables with mean equal to zero and standard 

deviation equal to one. 
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11.2. Monte Carlo integration 

 

Numerical integration methods are used to estimate integrals of the general form:  

 

( )

b

a

I f x dx 
      

 (11.9) 

 

For this purpose, we can use the rectangle, trapezoid, Simpson, and Gaussian methods presented in 

Chapter 5, or apply pseudorandom numbers and calculate the integral defined with the Monte Carlo 

method.  

The simplest variant of the MC method is a variant called "success–failure" , "Hit-or-Miss" or 

"Acceptance — Rejection " where an integrand (f(x)) in an interval a, b is limited to a rectangle P = 

a, b×0, M  where M is the maximum value of the integrand (M = max f(x) for xa,b). Then we 

randomize N points of the rectangle P, each of which can be placed above or below the graph of the 

f(x) function. The approximate value of the integral can be calculated from the equation: 

 

( ) ( )

b

a

k
f x dx b a M

N
  

    

 (11.10) 

 

where k is the number of points located below the graph of the f(x) function. 

 

EXAMPLE 

 

Calculate the approximate value of number  using the Monte Carlo method. 

 

SOLUTION 

 

The surface area of the circle described by the function y2+ x2 = 1 is equal to . The graph of the 

function 21y x   is shown in the figure: 

0 0.5 1
0

0.5

1
1

0

f x( )

10 x  
 

In order to calculate the value  using the Monte Carlo method, we need to: 

a) randomize N points of a square with coordinates [0,0], [0,1], [1,1] i [1,0] 

b) check after each randomization whether the coordinates satisfy inequality: 

 

y2+ x2  1 (belong to ¼ of the circle) 

 

c) calculate the area of the circle which is: 

 

PI = 4p/N 
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 p – number of samples satisfying the inequality, N – number of randomized points. 

 

Below is a sample algorithm for solving this problem in Mathcad for N = 800 and N = 8000: 

 

N:=800              N:=8000 

f N( ) p 0

x rnd 1( )

y rnd 1( )

p p 1 x( )
2

y( )
2

 1if

i 1 N..for

PI
4 p

N




f N( ) 3.18

f N( ) p 0

x rnd 1( )

y rnd 1( )

p p 1 x( )
2

y( )
2

 1if

i 1 N..for

PI
4 p

N




f N( ) 3.13
 

 

Computations show that with increasing N, the error between the calculated and theoretical values 

(3.14159…) is reduced. 

 The approximate value of an integral can be obtained by applying the basic Monte Carlo 

(Crude Monte Carlo) method which counts only the points lying below the graph of the f(x) function. 

For the example presented above, the surface of the circle’s part lying in the first quadrant can be 

calculated from the formula 

 
1

2

0

1I x dx 
 

 

The corresponding solution algorithm in Mathcad for N= 8000 is as follows: 

 

f N( ) S 0

x
i

rnd 1( )

S S 1 x
i 

2


i 1 N..for

PI
4 S

N




f N( ) 3.147
 

 

The basic Monte Carlo method has a much higher accuracy compared to the "successfailure” metod. 

 

11.3. Monte Carlo simulation 

 

Computers with ever-increasing computational power and software designed for chemists, 

enable the study of various processes without their physical conduct by using an appropriate 

mathematical model. At the same time more and more realistic models lead to results confirmed by 

results of experiments. One example of simulation methods used for a modelling of chemical and 

physico-chemical processes is the MC method applied, among others, for simulation: 

1) molecular dynamics (e.g. modeling of liquid water), 
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2) reaction dynamics (collision theory), 

3) chromatographic processes, 

4) quadrupole mass analyzer, 

5) adsorption processes. 

The Monte Carlo method is considered to be a stochastic method which does not model the movement 

of molecules but only transitions from one configuration to another. Applications of the Monte Carlo 

method are widely described in literature. One interesting example is modelling activated carbon 

adsorption [P. A. Gauden, A. P. Terzyk, S. Furmaniak, Modele budowy węgla aktywnego wczoraj, 

dzisiaj, jutro, Wiadomości Chemiczne 62 (5-6) (2008) 403-447]. For this purpose, an appropriate 

simulation cells are used where a number of adsorbate configurations are generated as components of 

a specific statistical unit. In studies on adsorption in heterogeneous systems with the Monte Carlo 

method, they use a grand canonical ensemble which is an open system (can exchange mass and energy 

with the surrounding), while chemical potential, volume and temperature are constant. 

Simulation methods enable the evaluation of a model validity by comparing experimental 

results with simulation results, as well as verifying a theory by comparing theoretical results with 

simulations on the same system. They are also much cheaper than experimental studies, and allow for 

conducting simulations in conditions inaccessible to experiments (high pressure, temperature). They 

also provide information not only about the macroscopic properties of a system, but also a structure at 

the molecular level 
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II. LABORATORY 
 

 

EXCERSISE No. 1 

STATISTICAL ANALYSIS OF EXPERIMENTAL DATA 
1. The mean, standard deviation, dispersion measures. 

 

EXCERSISE No. 2 

STATISTICAL ANALYSIS OF EXPERIMENTAL DATA 
2. Dependence of the mean and measures of statistical dispersion on the number of samles. 

 

EXCERSISE No. 3 

REGRESSION ANALYSIS 
Application of the linear regression to calculate the first-order reaction rate constant 

 

EXCERSISE No. 4 

CALCULATION OF THE pH OF THE TWO ACIDS MIXTURE 

 

EXCERSISE No. 5 

MULTIPLE LINEAR REGRESSION 

 

EXCERSISE No. 6 

LINEAR REGRRESION –LINEARIZING TRANSFORMATION 

 

EXCERSISE No. 7 

NUMERICAL INTEGRATION 

THE RECTANGULAR, TRAPEZOIDAL AND SIMPSON’S RULE METHOD 

 

EXCERSISE No. 8 

NUMERICAL SOLVING OF DIFFERENTIAL EQUATIONS  

EULER, RUNGE – KUTTA, MILNE METHODS 

 

EXCERSISE No. 9 

SIMPLEX OPTIMIZATION 
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INTRODUCTION 

 

Laboratory exercises are closely related to the topics presented in the lectures, but they require 

a basic knowledge about the use of a spreadsheet (Microsoft Office Excel). A brief introduction to a 

spreadsheet, the basic features of the spreadsheet and sample functions are described below. 

The spreadsheet is a computer program used to calculate arrays. In the spreadsheet, it is 

possible to present figures and other data in arrays consisting of rows and columns. Columns are 

denoted with letters, rows – with numbers. At the intersection of each column and row is a cell, 

uniquely defined by its address. The address of a cell consists of a letter (or letters) defining a column, 

and a number indicating a row in which it is located (e.g. B2). 

We can enter three kinds of data to each cell: label, number, or formula (equation). Labels are 

adequate names such as Data, Sum, Product, etc., used to identify (describe) calculations made in the 

spreadsheet. The number is a combination of figures from 09, while the formula is a specific 

relationship between cells. Formulas used for arithmetic calculations, for example the formula 

=B2*B3 multiplies the content of the cell with the address B2 by the value of the cell with the address 

B3. A sign = is a mandatory operator when performing arithmetic calculations. The program also 

features standard formulas, available by selecting the formula creator (icon fx – insert function) or, if 

we know the name of the function – by typing it in a spreadsheet cell. Below are examples of standard 

spreadsheet functions which can be used in solving specific laboratory tasks. Due to differences 

between the names of individual features in the latest version of MS Excel 2010 and earlier versions, 

names are provided according to the version. 
 

Selected spreadsheet functions related to the descriptive statistics: 
 

 =sum(number1,number2,…) 

 =sqrt(number) 

 =average(number1,number2,…) 

 =median(zakres_komórek) 

 =var(number1,number2,…) 

 =stdev(number1,number2,…) 

 =tinv(probability;degrees_freedom) 

 =chiinv(probability;degrees_freedom) 

 =frequency(data_array,bins_array) 
 

FREQUENCY is an example of an array function which is introduced in a strictly defined 

manner. After selecting a function and selecting data (array_data) and intervals (array_intervals), we 

select a range of cells where relevant results shall appear (the same size as array_intervals). Then we 

press the F2 key on the function keyboard and end the computations by pressing Ctrl+Shift+Enter. 

TINV and CHIINV functions calculate the value t (from the student’s t-distribution) and 2 

(from the chi-square distribution), necessary to define a confidence interval for a mean value and 

standard deviation (or variance), respectively 

Statistical calculations can be carried out using the Excel add-in – Data analysis. As we enable 

this option (toolbar Quick AccessExcel OptionsExtrasGo and choose the option Analysis 

ToolPak) the Data analysis button is available in the Data tab. 

When we choose the Descriptive statistics tool from the available list, and select appropriate 

data (Input range) and options (Summary statistics and Confidence level for the mean), we get an 

analysis summary in the form of an appropriate array. 
 

Selected spreadsheet functions related to the regerssion analysis: 

 

 =slope(known_ys; known_xs) 

 =intercept(known_ys; known_xs) 

 =r.kwadrat(known_ys; known_xs) 

 =steyx(known_ys; known_xs) 

 =rsq(array1;array2) 

 =minverse(array) 
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The last two functions, just as the FREQUENCY function, are table functions and need to be entered 

in the manner described above. 

A complete regression analysis can be obtained by choosing the Regression tool from a list of 

available tools (Data analysis). After selecting the input data (Input Y range, Input X range) and the 

options (Confidence level and Residuals) in the same, or a new spreadsheet (Output options) a 

summary of the calculations is generated. 

 The spreadsheet also provides a graphical representation of figures in the form of charts. In 

order to generate a chart, we select a block of data, we can use a chart creator (in older versions) or the 

corresponding menu (InsertCharts...). 

 

Solver is another Excel add-in used during classes. Solver can be used for calculations where 

it is necessary to change values in certain cells (changing cells) in order to obtain a result which is 

defined by a user as an adequate formula in a target cell (target cell). 

After calling Solver, a window is displayed in which we must enter: target cell (that contains a 

formula) which can take a specified, maximum or minimum value. The target cell is directly or 

indirectly related to the changing cells. The program will change numeric values in these cells as long 

as the formula in the cell shown in the Target cell takes a certain value. Additionally, we can enter 

appropriate restrictions (Constraints) affecting the numeric values changed. The Options button loads 

or saves models, or changes standard calculation parameters. The Solve button starts computations. 

 
Literature: 

M. Pilch, Ćwiczenia z Excel dla chemików, Mikom, 2001 

K. Mądry, W. Ufnalski, Excel dla chemików i nie tylko, W. N.-T., 2000 

E. Joseph Billo, Excel for Chemists: A Comprehensive Guide. John Wiley & Sons, Inc., 2001 

R. de Levie, How to use Excel in analytical chemistry and in general scientific data analysis, 

Cambridge University Press, 2004 

Z. Smogur, Excel w zastosowaniach inżynieryjnych, Wydawnictwo Helion, 2008 

V. Gupta, Statistical analysis with Excel, VJ Books Inc, 2002 
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EXERCISE No. 1 

 
STATISTICAL ANALYSIS OF EXPERIMENTAL DATA 

1. The mean, standard deviation, dispersion measures. 

 
 The water content in the samples (10 g) of fertilizer was investigated according to the rules 

described in Polish Norm PN/C-04500. The results are as follows: 

 

No. 1  2  3  4  5  6  7  8  9  10  

mass 0.182 0.088 0.095 0.170 0.176 0.075 0.159 0.150 0.155 0.141 

No. 11 12 13 14 15 16 178 18 19 20 

mass 0.101 0.121 0.111 0.140 0.118 0.132 0.108 0.127 0.115 0.138 

No. 21 22 23 24       

mass 0.125 0.129 0.126 0.131       

 

 Calculate the statistical parameters using the formulas given below, and compare the 

results with values calculated using standard spreadsheet functions. Calculate the following quantities 

using the standard spreadsheet functions. A detailed instruction on the calculation and presentation of 

the results is presented below (see COMMENTS). 

 

I. STATISTICAL CALCULATIONS 

 

Calculate: 

 

(a) The arithmetic mean of the water content in the samples: 

 

1

1 n

i

i

x x
n 

        (1) 

 

 

(b) The median: 

 

 

( 1)/2

/2 ( /2) 1

2

n

n n

x

x x x








  



     (2) 

 

(c) The variance: 

 

2 2

1

1
( )

1

n

x i

i

s x x
n 

 

       (3) 

 

where n-1 denote the number of degree of freedom (d.f.), i.e. the number of independent  

observations, which are used in calculating of s. 

 

(d) Standard deviation, sx: 

 

 2

x xs s       (4) 

 

 

 

for even values of n 

 

for odd values of n 
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(e) Relative standard deviation: 

 

 100 x
x

s
v

x
       (5) 

 

(f) Standard uncertainty (standard error of the mean): 

 

( )= x
x

s
u x s

n


      (6) 

 

(g) Expanded uncertainty: 

 

= ( )= x
x

s
U k u x k s k

n
   

     (7) 

k – coverage factor (k = 2 or 3) 

 

(h) Confidence interval: 

 

, 1 , 1c.i.= x
n x n

s
t s t

n
    

     (8) 

t – value from Student’s distribution (function TINV()). 

 

 
II. ESTIMATION OF VARIANCE AND STANDARD DEVIATION 

 

 Based on the calculations determine the confidence interval for the variance 
2

xs
 
containing the 

"true" value 
2

x  with 95% probability. Assume that the sample comes from a normally distributed 

population, and the random variable: 

 
2

2

x

x

rs


       (6) 

 

has a normal distribution 
2χ  of r degrees of freedom , i.e.: 

 

2 2
2

x2 2

, /2 ,1 /2

σ 1x x

r α r α

r s r s
P

χ χ




  
    

  
    (7) 

 

 assume a confidence coefficient of 1- =0.95, and find the values of 2 in the relevant 

statistical tables (e.g. Metody statystyczne dla chemików, J.B. Czermiński, A. Iwasiewicz, Z. Paszek, A. 

Sikorski). 

 

COMMENTS: 

 

1. Create a new spreadsheet and save it to a network drive in the directory S:\PinfAABB\EXERCISE\ 

EXERCISE1\Exe01.xls, where AA denote the number of class, BB – user number. 

 

2. Create a table with data set used for the calculations along with any scheduled frames. Pay 

attention to the careful planning of tables, descriptions, and frames. 
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3. Calculate the statistical parameters using the equations and compare the results with values 

calculated using standard spreadsheet functions and data analysis (descriptive statistics). 
 

4. Arrange the measurement results by increasing the water content in the samples and determine the 

number of results in the intervals (function FREQUENCY): 

 

 

0.06  xi    0.08 

0.08  xi    0.10 

0.10  xi    0.12 

0.12  xi    0.14 

0.14  xi    0.16 

0.16  xi    0.18 

0.18  xi    0.20 

 

 

5. Calculate the relative multiplicity of the water content in each interval, i.e.: 

i

i

x

x

n
l

n



 

where  
ixn -  "number of results in a given interval      

  
ixn  -  total number of results       

and make a histogram of the water content denoting the corresponding interval as: I, II, III, IV, V, 

VI, VII. 

6. Make a distribution curve of the water content in the samples by plotting l in the function 
przedział

ix , 

where 
przedział

ix  corresponds to the mean value of xi in the above intervals, i.e. 0.07, 0.09, 0.11 etc. 

Does the plot corresponds to the normal distribution curve? 

 

7. Using a recursive method calculate the mean and the standard deviation. 

 

8. The result quote according to the i) standard uncertainty, ii) expanded uncertainty (k=2), and 

iii) confidence interval for the mean. 

 

9. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the performer should be placed in the footer or header (optional). 

 

APPENDIX I 

RECURSIVE METHOD 

The mean and the standard deviation can be calculated using the recursive method. In this 

method the first trial value of the mean (m1) is equal to the first measured value (x1), i.e.: 

 

m1=x1       (11) 

 

and the first trial value of the sum-squared deviation (q1) is equal to zero: 

 

q1=0       (12) 

 

Subsequent values of the mean (mi) and the sum-squared deviations (qi) can be evaluated from the 

following equations: 

 

 1( 1) i i
i

i m x
m

i

 
      (13) 
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2

1
1

( 1)( )i i
i i

i x m
q q

i




 
      (14) 

 

After completing the calculations for all values of i (i = 1, 2, ..n), the final mi value is the mean of the 

entire data set (mn) whereas the standard deviation (s) is computed using the equation: 

 

 
1

nq
s

n



      (15) 

 

where qn denote the final value of sum-squared deviations (qi). 
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EXERCISE No. 2 
 

STATISTICAL ANALYSIS OF EXPERIMENTAL DATA 
2. Dependence of the mean and measures of statistical dispersion on the number of samles. 

 
 The water content in the samples (10 g) of fertilizer was investigated according to the rules 

described in Polish Norm PN/C-04500. The results are as follows: 

 

No. 1  2  3  4  5  6  7  8  9  10  

mass 0.182 0.088 0.095 0.170 0.176 0.075 0.159 0.150 0.155 0.141 

No.. 11 12 13 14 15 16 178 18 19 20 

mass 0.101 0.121 0.111 0.140 0.118 0.132 0.108 0.127 0.115 0.138 

No.. 21 22 23 24       

mass 0.125 0.129 0.126 0.131       

 

It was found that a 24hour production cycle always gives results analogous to those given in 

the table above. In order to reduce the cost of laboratory tests, it was decided to limit the number of 

analyses and samples were taken every 2 hours. 

The purpose of this task is to examine the relationship between the average water content and 

other statistical quantities, and the frequency of sampling for the analysis. 

Calculate the following quantities using the standard spreadsheet functions. A detailed 

instruction on the calculation and presentation of the results is presented below (see COMMENTS). 

 

I. STATISTICAL CALCULATIONS 

 

Calculate: 

 

(a) The arithmetic mean of the water content in the samples: 

 

1

1 n

i

i

x x
n 

        (1) 

 

 

(b) The median: 

 

 

( 1)/2

/2 ( /2) 1

2

n

n n

x

x x x








  



     (2) 

 

(c) The variance: 

 

2 2

1

1
( )

1

n

x i

i

s x x
n 

 

       (3) 

 

where n-1 denote the number of degree of freedom (d.f.), i.e. the number of independent  

observations, which are used in calculating of s. 

 

(d) Standard deviation, sx: 

 

 2

x xs s       (4) 

 

for even values of n 

 

for odd values of n 
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(e) Relative standard deviation: 

 

 100 x
x

s
v

x
       (5) 

 

(f) Standard uncertainty (standard error of the mean): 

 

( )= x
x

s
u x s

n


      (6) 

 

(g) Expanded uncertainty: 

 

= ( )= x
x

s
U k u x k s k

n
   

     (7) 

k – coverage factor (k = 2 or 3) 

 

(h) Confidence interval: 

 

, 1 , 1c.i.= x
n x n

s
t s t

n
    

     (8) 

t – value from Student’s distribution (function TINV()). 

 
 

 

II. ESTIMATION OF VARIANCE AND STANDARD DEVIATION 

 

 Based on the calculations determine the confidence interval for the variance 
2

xs
 
containing the 

"true" value 
2

x  with 95% probability. Assume that the sample comes from a normally distributed 

population, and the random variable: 

 
2

2

x

x

rs


       (6) 

 

has a normal distribution 
2χ  of r degrees of freedom , i.e.: 

 

2 2
2

x2 2

, /2 ,1 /2

σ 1x x

r α r α

r s r s
P

χ χ




  
    

  
    (7) 

 

 assume a confidence coefficient of 1- =0.95, and find the values of 2 in the relevant 

statistical tables (e.g. Metody statystyczne dla chemików, J.B. Czermiński, A. Iwasiewicz, Z. Paszek, A. 

Sikorski). 

 

COMMENTS: 

 

1. Create a new spreadsheet and save it to a network drive in the directory S:\PinfAABB\EXERCISE\ 

EXERCISE2\Exe02.xls, where AA denote the number of class, BB – user number.Prepare a table 

containing the results of the water content determinations in the samples corresponding to each of 

the 6 series. 
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2. Make calculations and put the results in a separate array. 
3. Pay attention to the careful planning of tables, descriptions, and frames. 

 

4. Present the calculation results graphically in the form of curves: 

 

x

x f n

x f n

s f n

v f n





 

 

Pay attention to the careful description of curves by placing relevant comments in the figure. 

 

5. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the user should be placed in a footer or header (optional).  
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EXERCISE No. 3 
 

REGRESSION ANALYSIS 
Application of the linear regression to calculate the first-order reaction rate constant 

 

 Ester hydrolysis reactions were conducted in the presence of hydrochloric acid as a catalyst. 

Samples of the reaction mixture were taken during the reaction and the concentration of the resulting 

carboxylic acid [C]t was determined: 

 

REACTION 

time (min) 15 30 47 67 80 95 115 127 142 

[C]A,t (mol/dm3) 0.035 0.059 0.072 0.096 0.123 0.139 0.168 0.171 0.174 

 

 In order to complete the task, use the spreadsheet and: 

 

1. Calculate the hydrolysis reaction rate constant as a first-order reaction, 

2. Verify the assumption of the first-order reaction based on linear correlation analysis, 

3. Calculate statistical values to assess regression coefficients (
1aS  and 

0aS ) and confidence interval 

for the constant k  a1 at a significance level = 0.05. 

 

I. CALCULATION OF THE REGRESSION COEFFICIENTS 
 

 The integral form of the kinetic equation of the first-order reaction is given by: 
 

  kt
CC

CC

tt

tt 








0][][

][][
ln      (1) 

 

where k - reaction rate constant (s-1), t – reaction time in s ([C]t = 0.5) 

 

 Using the linear regression equation in the form: 

 

  Y = a0 + a1X       (2) 

 

where  Y ln f([C]R,t)  X t  a1k   (3) 
 

calculate regression coefficients (and thus k) using the method of least squares. 

 

 Make the calculations using the linear regression subroutine of the spreadsheet and 

independently using the formulas given below. 

  





 







 











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

n

i

n

i

i

i

n

i

n

i

n

i

ii
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n

x

x

n

yx

yx

a

1

2

12

1

1 1

1      (4) 

  0 1a y a x        (5) 

 

where y  and x  denotes the arithmetic mean of yi and xi: 
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1

1
i

n

i

i

y y
n 

   
1

1
i

n

i

i

x x
n 

       (6) 

 
II. EVALUATION OF THE LINEAR MODEL 

 
 To assess an error made while trying to describe the phenomenon of ester hydrolysis using the 

linear first-order reaction model, calculate: 

 

(a) residual variance: 

 

  
2 2 2 2

1

1
( ) ( )

2

n n

y i i

i 1 i 1

s y y a x x
n  

 
      

      (7) 

 

 n2 corresponds to the number of degrees of freedom. 

 

(b) residual standard deviation (mean deviation from the regression): 

 

  2

y ys s       (8) 

 

(c) coefficient of linear correlation: 

 

  1

1/2

2 2

1 1

( )( )

( ) ( )

i i

i

n n

i i

i i

x x y y

r

x x y y



 

 


 

  
 



 

    (9) 

 

(d)  coefficient of determination (squared correlation coefficient) 

 

  det.coeff. = r2
      (10) 

 

III. STANDARD DEVIATION AND CONFIDENCE INTERVALS  

FOR THE REGRESSION COEFFICIENTS.  

 

The kinetic constant k should be reported according to the standard deviation and confidence 

interval at a significance level  = 0.05 

 The standard deviation of the a1 regression coefficient (equivalent to a reaction rate constant k) 

calculate from the equation: 

 

1

2

1

( )
a y n

i

i 1

s s

x x





      (11) 

 

In order to calculate the confidence interval, we assume that the error: 

 

  iii AxBy        (12) 

 

is normally distributed (A and B are the regression coefficients in the general population). In this case, 

the variable 
1at : 
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1

1

1
a

a

a A
t

s


        (13) 

 

has a Student’s distribution with n-2 degrees of freedom. This means that the confidence interval for k 

at the given confidence level =1- is as follows: 

 

  
1 11 , 2 1 , 2( ) 1n a n aP a t s A k a t s               (14) 

 

Accordingly, calculate the confidence interval for k (=0.05) expressed by the formula: 

 

c.i. =  t,n-2·
1as
     

 (15) 

 

where t,n-2 is the tabulated value of the Student’s distribution (e.g. Metody statystyczne dla chemików, 

J.B. Czermiński, A. Iwasiewicz, Z. Paszek, A. Sikorski). 

The kc.i. means that the constant k is in the given interval with probability 100 (1-), i.e. for  = 

0.05 equal to 95%. 

The standard deviation of the regression coefficient calculated using the equation: 

 

0

2

2( )

n

i

i 1
a y n

i

i 1

x

s s

n x x












     (16) 

 

The confidence interval for a0 expressed by the formula can be calculated from: 

 

c.i. =  t,n-2·
0as
     

 (17) 

 
COMMENTS: 

 

1. Create a new spreadsheet and save it to a network drive in the directory 

S:\PinfAABB\EXERCISE\ EXERCISE3\Exe03.xls, where AA denote the number of class, BB – 

user number. 

 

2. Create a table with data set used for the calculations along with any scheduled frames. Pay 

attention to the careful planning of tables, descriptions, and frames 

 

3. Calculate the statistical parameters using the formulas described and compare the results 

with values calculated using standard spreadsheet functions and data analysis (regression).  

Present in a separate table the results of the constant value calculations according to the 

confidence interval and place a conclusion drawn from the size of the correlation coefficient 

and the determination coefficient. 

 

4. Make a graph illustrating the relationship between the experimentally measured concentrations 

and time i.e. C]t=(t), in the form of points and a trend line calculated from the equation (18) 

(transformed equation (1)): 

 

[ ] [ ] [ ] kt

t t tC C C e   
     

 (18) 

 

 where 0[ ]
a

tC e   and k = a1. 
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5. Create a graph of the logarithmic dependence: 

 

  )(][][ln tfCCY tt        (19) 

 

calculated from the experimental data. In the same figure present the relationship calculated from 

the linear regression analysis ˆ ( )Y f t as a continuous line without exposing the estimated values, 

in the form of points. 

 

6. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the user should be placed in a footer or header (optional).  
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EXERCISE No. 4 
 

CALCULATION OF THE pH OF THE TWO ACIDS MIXTURE  
 

 A mixture of two acids HM and HP has been prepared with total concentration [C] = [HM] + 

[HP]. The mole fraction of HM acid in the subsequent mixtures was as follows: 
 

X1=0.9 X2=0.8 X3=0.7 X4=0.6 X5=0.5 X6=0.4 X7=0.3 X8=0.2 X9=0.1 
 

 pK for acids – see tab. 1, a teacher gives the concentration value [C]. 

 In order to complete the task, derive a polynomial binding total concentration of hydrogen 

ions [H] with acid dissociation constants, their molar fraction (X) and the total concentration[C]. Use 

the SOLVER add-in to calculate [H] satisfying the derived equation for each value of XHM. Then, 

using the estimated values of [H], calculate: 
 

pH= log[H]     (1) 

1. Anion M- and P- concentration. 

     [M]=KHM[C]X/([H]+KHM)    (2) 

      [P]=KHP[C](1-X)/([H]+KHP)    (3) 

2. Concentration of undissociated acid HM and HP 

[HM]=[C]X-[M]     (4) 

[HP]=[C](1-X)-[P]     (5) 

3. Dissociation degree 

     HM=[M]/[C]X      

     HP=[P]/([C](1-X))     (6) 

 
COMMENTS: 

 
1. Create a new spreadsheet and save it to a network drive in the directory S:\PinfAABB\EXERCISE\ 

EXERCISE4\Exe04.xls, where AA denote the number of class, BB – user number. 
 

2. Prepare a reference calculation block for X=0.1. 
 

3. Perform calculations by making successive corrections of the result to get the maximum 

compatibility between the left and right sides of the equation. 
 

4. Perform calculations for other values of X after you copy and modify the reference block.  
 

5. Make dependency graphs:        

 pH=f(X)  [M]=f(X) [P]=f(X)  HM=f(X) HP=f(X) 

 

6. For X=0.1 find the root using: 

a) bisection method between [H]1=0 and [H]2=1, 

b) secant method between[H]1= -2 and [H]2=1, 

c) tangent method (Newton-Raphson method) between [H]1=0 and [H]2=1. 
 

7. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the user should be placed in a footer or header (optional).  

 

APPENDIX I 

Derive the equation 

   PHHP          (1) 

   MHHM          (2) 

 
]HM[

]M][H[
KHM           (3) 
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]HP[

]P][H[
KHP            (4) 

 [HM] = [C]X – [M]         (5) 

 [HP] = [C](1 –X) – [P]         (6) 

 
]M[

])M[X]C([K
]H[ HM 
         (7) 

 [H] = [M] + [P]          (8) 

 [M] = [H] – [P]          (9) 

 
]P[]H[

])P[]H[X]C([K
]H[ HM




         (10) 

 [H]
2
 – [H][P] = KHM[C]X – KHM[H] + KHM[P]      (11) 

 KHM[P] +[H][P] = [H]2 + KHM[H] – KHM[C]X      (12) 

 
]P[

])P[)X1](C([K
]H[ HP 
         (13) 

 
]H[K

X]C[K]H[K]H[
]P[

HM

HMHM

2




        (14) 

 

]H[K

X]C[K]H[K]H[

]H[K

X]C[K]H[K]H[
)X1](C[K

]H[

HM

HMHM

2

HM

HMHM

2

HP


















     (15) 

 
X]C[K]H[K]H[

}X]C[K]H[K]H[])H[K)(X1](C{[K
]H[

HMHM

2

HMHM

2

HMHP




    (16) 

 [H]3 + (KHM + KHP)[H]2 + {KHPKHM – KHM[C]X – KHP[C](1-X)}[H] = KHMKHP[C] (17) 

 

EQUATION FOR CALCULATION: 

 

1c[H]b[H]a[H] 23   

where 

 

[C]KK

1
a

HMHP

  
[C]KK

KK
b

HPHM

HPHM 
  

HMHP K

X1

K

X

[C]

1
c


  

 

 

APPENDIX II 

TAB.1 

 

Acid dissociation constant values: 

 

ACID pK K 

formic 3.75 1.78  10- 4 

lactic 3.86 1.38  10- 4 

acetic 4.75 1.75  10- 5 

propionic 4.87 1.33  10- 5 
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APPENDIX III (REMINDER) 

 
Bisection method 

 

In the bisection method, to determine the approximate zero of a function, the interval x1,x2 

gradually decreases so as to contain the element sought. The starting point in this method is two 

argument values for which the function f(x) changes its sign. 

In the first step we calculate f(x3) at the midpoint of the interval: 

 

x3 = ½·(x1+x2) 

 

If f(x3)>0, then the solution is between points x1 and x3: 

 

x4 = ½·(x1+x3) 

 

The calculations are repeated several times until a sufficiently good estimate of zero is obtained. In 

practice, the iterative calculations end after fulfilling any of the following conditions: 

 

1 εn nx x  
 

 

which means that the difference between successive approximations is small enough, or: 

 

( ) εnf x  



i.e. the value of the function at the designated point is close to 0 (lower than ). In these equations, is 

the assumed accuracy of calculations (criterion specified by a user). These equations are also used in 

the secant and tangent methods. 
 

Secant method (regula falsi) 

 

In this method, also called the false position method, a chord is drawn through points x1 and 

x2, for which the function f(x) changes its sign, with the following equation: 

 

2 1
1 1

2 1

( ) ( )
( ) ( )

f x f x
y f x x x

x x


  


 

 

The abscissa x3 of the point at which the fixed chord AB intersects the axis OX (Fig. 7.4), is assumed 

as the first approximation of the desired zero location. 

 

2 1
3 2 2

2 1

( )
( ) ( )

x x
x x f x

f x f x


 


 

 

etc. 

The general recursive equation can be written as: 

 

( 1)

( 2) ( 1) ( 1)

( 1)

( )
( ) ( )

k k

k k k

k k

x x
x x f x

f x f x



  




 


 

 

where k = 1,2, ... 
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Tangent method (Newton-Raphson) 

 

In this method it is necessary to know the function f(x) and its derivative f’(x). The slope of the 

tangent to the plot at point x2 can be evaluated from: 

 

2
2

2 3

( )
( )

f x
f x

x x
 


 

 

The first approximation of the root (x3) can be calculated from the equation: 

 

2
3 2

2

( )

( )

f x
x x

f x
 


 

 

The general recursive formula is as follows: 

 

1

( )

( )

n
n n

n

f x
x x

f x
  


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EXERCISE No. 5 
 

MULTIPLE LINEAR REGRESSION 

 

 The general linear multiple regression equation for p independent variables takes the form: 

 

pp xaxaxaay  ...22110     (1) 

 

Linear dependence coefficients can be determined in a simple way using the method of least squares 

from which the following dependence is obtained for a vector of regression coefficients (a): 

 

a = (x
T
x)

-1
x

T
y      (2) 

 

where x is the matrix of value x, y – the matrix of value y: 

 


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
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














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ny

y

y


y    (3) 

 

x
T transposition of the matrix x, and (xT

x)
-1 inverse of the matrix product. 

The next stage of regression analysis is the assessment of a model’s goodness of fit. Adequate 

sums of squared deviations resulting from the regression function (Q2), experimental errors (Q3) and 

the total variability (Q1) can be calculated from the following formulas: 

 

Q2 = 
2ˆ( )iy y  = aT

x
T
y - n 2y      (4) 

 

Q3 = 
2ˆ( )i iy y  = yT

y - a
T
x

T
y       (5) 

 

Q1 = 
2( )iy y = yT

y - n 2y        (6) 

 

where n de notes the number of of data points, y   the mean value the dependent variable.  

The coefficient of determination (r2) can be calculated from: 

 

r2= Q2/ Q1       (7) 

 

In analytical chemistry, linear models are widely used in calibration. At the same time, an 

explained (response) variable relatively rarely depends only on one explanatory variable. 

In the case of atomic absorption spectrometry, the analytical signal value, measured with a 

solution of fixed concentration of a determined element, is affected by many factors. These factors 

may be spectral (frequency of emitted or absorbed radiation, atomic energy transition probability, 

statistical weights of energy states, and others), or related to the transport of a solution to the flame 

(determined by the socalled nebulization efficiency), conditions in the flame (composition, shape and 

temperature of the flame) and reactions occurring in it (e.g. ionization of atoms of the determined 

element, dissociation of its salt particles, formation of chemical compounds with particles of flame 

gases). The presence of other substances in the test solution (in addition to the determined metal 

cation) can be a source of spectral interferences (involving mainly the coincidence of the spectral lines 

of these components), or changes in physical properties of the solution (viscosity, surface tension) and, 

consequently, changes in nebulization efficiency. 
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Components accompanying the determined element may affect the analytical signal in various 

ways. Using the modified data presented below [P.C. Jurs, Computer Software Applications in 

Chemistry, J. Wiley, New York 1996], determine the coefficients of linear dependence between the 

analytical signal R (dependent variable) and the concentrations c1, c2, c3  of accompanying components 

(independent variables). 

c1 [mol dm-3] c2 [mol dm-3] c3 [mol dm-3] R 

0.071 0.288 0.107 0.425 

0.107 0.265 0.102 0.779 

0.150 0.264 0.107 0.937 

0.217 0.268 0.101 0.646 

0.295 0.268 0.113 1.010 

0.338 0.290 0.113 0.485 

0.361 0.264 0.107 0.853 

0.488 0.266 0.117 1.144 

0.538 0.271 0.102 0.410 

0.597 0.259 0.111 1.015 

0.636 0.267 0.106 0.637 

0.718 0.284 0.110 0.349 

0.746 0.288 0.102 0.073 

0.823 0.269 0.114 0.769 

0.838 0.275 0.108 0.415 

0.852 0.264 0.110 0.744 

0.972 0.267 0.111 0.656 

1.052 0.265 0.107 0.518 

1.044 0.277 0.116 0.595 

1.133 0.277 0.102 0.012 

 

COMMENTS: 

 

1. Create a new spreadsheet and save it to a network drive in the directory 

S:\PinfAABB\EXERCISE\ EXERCISE5\Exe05.xls, where AA denote the number of class, BB – 

user number. 

 

2. Create a table with data set used for the calculations along with any scheduled frames. Pay 

attention to the careful planning of tables, descriptions, and frames. 

 
3. Calculations: 

a) Calculate the coefficients of the equation and the linear correlation for each pair of variables 

separately (using any method).  

R=a0(1)+a1(1) ·c1 

R=a0(2)+a1(2) ·c2 

R=a0(3)+a1(3) ·c3 

b) Calculate the coefficients of the equation and the linear correlation for the following 

relations (using any method): 

R=a0(12)+a1(12) ·c1+a2(12) ·c2 

R=a0(13)+a1(13) ·c1+a2(13) ·c3 

R=a0(23)+a1(23) ·c2+a2(23) ·c3 

c) Perform statistical calculations using the equations((2)-(7)) given in the description. 

Compare the results (Q1, Q2, Q3, r
2
) with the values calculated using the standard procedure 

of the spreadsheet (Regression) and the SOLVER add-in (only regression coefficients). If 

differences occur, put an explaining comment. Present the results of the calculations 

(regression coefficients) with the corresponding confidence intervals in a separate table. 

4. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the user should be placed in a footer or header (optional).  



130 
 
 
 
 

EXERCISE No. 6 
 

LINEAR REGRRESION –LINEARIZING TRANSFORMATION 

 

Equations used to describe experimental data in chemistry are often nonlinear. At the same 

time, in many cases a non-linear model, through a simple transformation (substitution of variables) can 

be reduced to a linear dependence. Typical non-linear functions and appropriate linearizing 

substitutions are shown below: 

 

Nonlinear function Linearizing substitutions 

x

b
ay   

Y = y 

X = 1/x 

xba
y


1

 
Y = 1/y 

X = x 

x
bay   

Y = log(y) 

X = x 

b
xay   

Y = log(y) 

X = log(x) 

x
eay   

Y = ln(y) 

X = x 

n
xbay   

Y = y 

X = xn 

xb

xa
y




  

Y = x/y  or  Y = 1/y 

X = x          X = 1/x 

 

Exercise a) 

According to the Arrhenius-Guzman equation, viscosity dependence on temperature takes the 

form: 

RT

E

eA



        (1) 

 

where E denote the activation energy [Jmol-1], T – temperature [K], R – is the gas constant [JK-

1
mol

-1
]. 

Based on the experimental results (Tab.1.) [J. Demichowicz-Pigoniowa, Obliczenia fizykochemiczne, 

PWN, Warszawa, 1984] determine the values of constants A and E. 

 

Tab.1. The measured values of viscosity as a function of temperature 

T [K] 103 [N s m-2] 

288.16 2.1858 

291.16 2.0211 

298.16 1.7017 

308.16 1.3428 

318.16 1.0960 

328.16 0.9095 

 

 Make a chart (Fig.1.) showing the dependence of the experimentally measured values of 

viscosity as a function of temperature ( = f(T)), 

 Present on a chart (Fig.2.) the linear dependence obtained from the transformation with the 

corresponding trend line, the equation and the value of r2, 
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 Determine the regression coefficients in the linear equation from the corresponding formulas, 

data analysis, and using the SOLVER add-in, 

 In a separate table (Tab.2.) present the results of the calculations (coefficients of the model), 

confidence intervals and the corresponding dimension of the determined coefficients. 

 

Exercise b) 

The Arrhenius equation describes the dependence of reaction rate on temperature: 

 

RT

Ea

eAk


       (2) 

 

where k – denote the reaction rate constant [s-1], Ea – the activation energy [Jmol-1], R – is the gas 

constant [JK-1mol-1], T – temperature[K]. 

Based on the experimental results (Tab.3.)[J. Demichowicz-Pigoniowa, Obliczenia fizyko-chemiczne, 

PWN, Warszawa, 1984] determine the values of activation energy and A. 

 

Tab.3. The measured values of reaction rate constant as a function of temperature 

T [K] k [s-1] 

273 7.810-7 

298 3.310-5 

318 5.010-4 

338 5.010-3 

 

 Make a chart (Fig.1.) showing the dependence of the experimentally measured values of 

reaction rate constant as a function of temperature (k = f(T)), 

 Present on a chart (Fig.2.) the linear dependence obtained from the transformation with the 

corresponding trend line, the equation and the value of r2, 

 Determine the regression coefficients in the linear equation from the corresponding formulas, 

data analysis, and using the SOLVER add-in, 

 In a separate table (Tab.2.) present the results of the calculations (coefficients of the model), 

confidence intervals and the corresponding dimension of the determined coefficients. 

 

Exercise c) 

Carboxylic acid adsorption isotherm on activated carbon can be described by equations: 

nck
m

x
1

       (3) 

cb

cba

m

x





1

      (4) 

 

where x/m denote the weight of the acid adsorbed per unit weight of adsorbent [g/g], c – equilibrium 

concentration of the acid [mol dm-3], k, n, a, b – isotherm equations constants. 

Based on the experimental results (Tab.5.) determine the values of isotherm equations constants. 

 

Tab.5. The measured values of the weight of the acid adsorbed per unit weight of adsorbent 

as a function of concentration 

x/m [g/g] c [mol dm-3] 

0.1043 0.2103 

0.07638 0.09373 

0.05835 0.04038 

0.04761 0.01847 

0.02814 0.007074 
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 Make a chart (Fig.1.) showing the dependence of the experimentally measured values of the 

weight of the acid adsorbed per unit weight of adsorbent as a function of concentration (x/m = 

f(c)), 

 Present on a chart (Fig.2.) the linear dependence obtained from the transformation with the 

corresponding trend line, the equation and the value of r2, 

 Determine the regression coefficients in the linear equation from the corresponding formulas, 

data analysis, and using the SOLVER add-in, 

 In a separate table (Tab.2.) present the results of the calculations (coefficients of the model), 

confidence intervals and the corresponding dimension of the determined coefficients. 

 

Exercise d) 

The rate of enzymatic reactions, can be described by the Michaelis-Menten equation: 

 

MM
KS

Sr
r






][

][
max      (5) 

 

where KMM denote the Michaelis-Menten constant [moldm-3], [S] – concentration of a substrate 

[moldm-3], rmax – the maximum reaction rate [moldm-3s-1]. 

Based on the experimental results (Tab.7.) [J. Demichowicz-Pigoniowa, Obliczenia fizyko-

chemiczne, PWN, Warszawa, 1984] determine the values of KMM and rmax 

 

Tab.7. The measured values of the reaction rate as a function of concentration [S] 

[S] [moldm-3] r103 [moldm-3s-1] 

0.0052 0.256 

0.0104 0.403 

0.0208 0.616 

0.0416 0.823 

0.0833 0.985 

0.1670 1.082 

0.3330 1.087 

 

 

 Make a chart (Fig.1.) showing the dependence of the experimentally measured values of the of 

the reaction rate as a function of concentration (r = f([S])), 

 Present on a chart (Fig.2.) the linear dependence obtained from the transformation with the 

corresponding trend line, the equation and the value of r2, 

 Determine the regression coefficients in the linear equation from the corresponding formulas, 

data analysis, and using the SOLVER add-in, 

 In a separate table (Tab.2.) present the results of the calculations (coefficients of the model), 

confidence intervals and the corresponding dimension of the determined coefficients. 

 

COMMENTS: 

 

1. Create a new spreadsheet and save it to a network drive in the directory 

S:\PinfAABB\EXERCISE\ EXERCISE6\Exe06.xls, where AA denote the number of class, BB – 

user number. 

 

2. Create a table with data set used for the calculations along with any scheduled frames. Pay 

attention to the careful planning of tables, descriptions, and frames. 

 
3. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the user should be placed in a footer or header (optional).  
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EXERCISE No. 7 
 

NUMERICAL INTEGRATION 

THE RECTANGULAR, TRAPEZOIDAL AND SIMPSON’S RULE METHOD. 
 

I. INTRODUCTION 

To approximate the definite integral 
b

a

dxxf )(  using a numerical methods, ), the interval a, b is 

divided into n equal subintervals 
n

ab
x


 .  

For designated points from the interval x1, x2, …, xn-1 the values of the integrand y = f(x) (y0 = f(a), y1 = 

f(x1), …, yn-1 = f(xn-1), yn = f(b)) were calculated. 

In the final calculation, the following equations can be used: 

 

1. Rectangle method 

 

b

a

nyyyxdxxf )()( 110   

 

2. Trapezoidal method 

 

 










 

b

a

n
n yy
yy

xdxxf 11
0

2
)(   

 

3. Simpson method (n must be even) 

 

   




b

a

nnn yyyyyyyy
x

dxxf )(2)(4
3

)( 2421310   

 

II. CALCULATIONS 

1. Estimate the definite integral: 

 

a) B = 


7

1 31 t

tdt
  b) V = 

6.2

1 c

dc
 

 

using the rectangular, trapezoidal and Simpson’s rule method with n = 6, 8, 10 steps. 

The results compare in the table: 

 

n Rectangular rule Trapezoidal rule Simpson’s rule 

6    

8    

10    

 

2. Determine the definite integral: 

 


15

3

)( dttfD  

c = f(t) 
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for a given results, using the rectangle, trapezoid and Simpson methods. 

 

t c 

3 5.531 

4 6.302 

5 6.625 

6 6.578 

7 6.239 

8 5.686 

9 4.997 

10 4.25 

11 3.523 

12 2.894 

13 2.441 

14 2.242 

15 2.375 

 

Determine a regression equation (3-degree polynomial) describing the presented dependence and 

calculate the analytical value of the integral. Knowing the analytical value of the integral D, 

determine a relative error for different methods of integration. 

 

3. Determine the respective definite integrals using the rectangle, trapezoid and 

Simpson methods. 
The standard heat of iodine hydrogen from iodine and hydrogen formation at 1000 K can be 

calculated from the following equation [J. Demichowicz-Pigoniowa, Obliczenia fizykochemiczne, 

PWN, Warszawa, 1984]: 

 

 

1000

438

,

438

298

..2
1

,298,1000, dTHdTHH o

ipi

o

kfp

o

ipi

o

r

o

r CC   

 

where 
o

rH 298,  is the standard enthalpy of formation of hydrogen iodide in temperature 298 K 

(25.94 kJmol-1), 
o

kfpH ..  the heat of sublimation of iodine (59.8kJ mol-1). 

The sum of the molar heat capacity for the temperature range 298,438 is:: 

 

 o

ipi ,C  – 6.12 – 22.9410-3 T +1.0010-6 T 
2  [JK-1] 

 

For the temperature range 438,1000: 

 

 o

ipi ,C  – 4.76 – 1.6610-3 T +1.0010-6 T 
2 +0.36105 T 

-2   [JK-1] 

 

The respective definite integrals calculate using the rectangle, trapezoid and Simpson methods 

(n=10). 

 

COMMENTS: 

 

1. Create a new spreadsheet and save it to a network drive in the directory 

S:\PinfAABB\EXERCISE\ EXERCISE7\Exe07.xls, where AA denote the number of class, BB – 

user number. 

 

2. Create a table with data set used for the calculations along with any scheduled frames. Pay 

attention to the careful planning of tables, descriptions, and frames 
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. 

3. Calculate the definite integrals using the appropriate equations. 
 

4. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the user should be placed in a footer or header (optional).  
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EXERCISE No. 8 
 

NUMERICAL SOLVING OF DIFFERENTIAL EQUATIONS  

EULER, RUNGE – KUTTA, MILNE METHODS 
 

An ordinary first order differential equation can be presented as follows: 

 

)()(' xf
dx

dy
xy       (1) 

 

The solution is function y(x) satisfying this equation and one of the initial conditions y(x0) = y0. 

A typical example of a differential equation application is a description of changes in substrate 

concentration during a reaction. For example, the kinetic equation for an irreversible first-order 

reaction is as follows: 

 

ck
dt

dc
       (2) 

 

where k denote reaction rate constant [s-1], c – concentration of substrate [mol/dm3], t –time [s]. 

 

This equation, after solving, leads to dependence of substrate concentration on time: 

 
tkecc  0       (3) 

 

where c0 is the initial concentration of substrate [mol/dm3] 

 

The concentration-time dependence can also be calculated using an appropriate numerical 

method for solving differential equations. For this purpose, we can use e.g. the Euler method, Runge-

Kutta and predictor-corrector methods. In the case of numerical methods for solving differential 

equations, it is necessary to define the starting point (x0, y0) and the slope of the function which is the 

solution of the equation at that point (y’). 

 

1. Euler method 

 

In the Euler method, the value of the function at point x0+x (y1) is calculated from the 

equation:  

 

1 0 0 0 0( ) ( , )y y y y x f x y          (4) 

 

where f(x0, y0) is equal to the slope of the function being the solution at that point. The general 

equation can be given as follows: 

 

),()(1 nnnnn yxfxyyyy      (5) 

 

2. Runge-Kutta method 

 

In the fourth-order Runge-Kutta method, adequate calculations can be performed using the 

following formulas: 

 43211 22
6

1
ccccxyy ii 

    (6) 
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)(1 ii yxfc 
       (7) 

 

)
2

1
,

2

1
( 12 xcyxxfc ii 

    (8) 

 

)
2

1
,

2

1
( 23 xcyxxfc ii 

    (9) 

 

),( 34 cxyxxfc ii 
     (10) 

 

where c1 denote the value of the slope of the solution function at the starting point of the interval 

(x=x0) c2 and c3 – the values of the slope at the midpoint, c4 the value of the slope at the end of the 

interval. 

 

3. Milne method (predictor-corrector) 

 

An alternative method for solving differential equations is the multi-step Milne method 

(predictor-corrector). In this method, we need to have the values: 

 

,

3

,

2

,

1

,

0

3210

,

,





yyyy

yyyy
      (11) 

 

and the function: 

),( yxf
dx

dy
       (12) 

 

Calculations are performed according to the following equations: 

 , , ,

1, 3 2 1 0

4
2 2

3
p

x
y y y y y  


        (13) 

,

1 1 1( , )p py f x y       (14) 

 , , ,

1 1 1 0 14
3

c

x
y y y y y 


        (15) 

,

1 1 1( , )c cy f x y       (16) 

 

where y1,p denote the predicted value of y1, 
,

1py  the estimated value of a derivative at point x1, y1c a 

corrected value of y1, 
,

1cy  a corrected derivative of the estimated value at point x1. 

 

I. CALCULATIONS 

 

Using the equation (3), and assuming that k = 0.18 s-1, c0 = 0.1 mol/dm3 and t = 1 s, calculate 

the substrate concentration changes over time (tmax=18 s). 

Calculate the dependence of the substrate concentration on time, applying the Euler (Equation 

(5), Milne (Equations (13)-(16)) and Runge-Kutta (Equations (6)-(10)) methods. 

Knowing the actual values of the concentration (Equation (2)) and the results obtained for each 

method, calculate the relative error [%]. In the Milne method, use the initial values calculated with the 

Runge-Kutta method as the starting points. 
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COMMENTS: 

 
1. Create a new spreadsheet and save it to a network drive in the directory 

S:\PinfAABB\EXERCISE\ EXERCISE8\Exe08.xls, where AA denote the number of class, BB – 

user number. 

 

2. Create a table with data set used for the calculations along with any scheduled frames. Pay 

attention to the careful planning of tables, descriptions, and frames 

 

3. Make graph 1 illustrating the concentration-time dependence c = f(t) calculated from the equation 

(3) in the form of points. Present the dependencies calculated with the Euler and Runge-Kutta 

methods on the same graph as a continuous line without exposing the estimated values c in the 

form of points 

 

4. Make a graph 2 illustrating the dependence ln(c/c0) = f(t) calculated from equation (3) in the form 

of points. Present the dependencies calculated with the Euler and Runge-Kutta methods (ln(c/c0)) 

on the same graph as a continuous line without exposing the estimated values c in the form of 

points 

 

5. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the user should be placed in a footer or header (optional).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



139 
 
 
 
 

EXERCISE No. 9 
 

SIMPLEX OPTIMIZATION 

 

A simplex is a geometric shape with regular edges and n + 1 vertices (n is the number of 

optimized parameters). Below examples of simplexes in the one-, two-and three-dimensional space [1] 

are presented.  

 

 

 

 

 

 

 

 

 

 

Fig.1. The simplexes in the one-, two-and three-dimensional space. 

 

The simplex method is based on a systematic analysis of the response surface to locate the 

optimum response function. Optimization begins with generating an initial simplex (n+1 experiments). 

Gorsky and Brodsky [2] proposed a method with the coordinate origin in the simplex centre. A 

corresponding initial matrix (3) can be generated from the following formulas: 
 

2

1

)1(2

1












ii
ki

     (1) 

 

2

1

)1(2 











i

i
Ri

      (2) 

 

The general form of the matrix is as follows: 
 













































n

nn

nn

nn

nn

R

kR

kkR

kkkR

kkkk

A

000

00

0

1

12

121

121













    (3) 

 

For n = 3, the matrix A can be written in the form: 
 


























612.000

204.0578.00

204.0289.0500.0

204.0289.0500.0

A
     (4) 

 

The matrix A (initial simplex) is expressed in dimensionless units and shows n+1 parameter 

values of individual experiments. Designated coordinates can be obtained from a simple calculation 

using the following formula:  
 

xmi = x0,i + zi Ai      (5) 
 

P1(x) P2(x) P2(x1,x2) 

P1(x1,x2) 
P3(x1,x2) 

x1 

x2 

x1 

x2 

x3 

P1(x1, x2, 

x3) 

P2 

P3 
P4 
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xmi is a designated value of the i-th parameter, x0,i  – designated output value of the i-th parameter, zi – 

designated value of a unit on the axis of the variable, A – dimensionless value of the i-th parameter 

corresponding to the value from the matrix A 

After a series of experiments (initial simplex), the results are assessed in terms of a feature that 

best characterizes the outcome (quality criterion). Then we select an experiment whose quality 

criterion is the lowest (point C, Fig.2). This point is replaced by a new one (point D), symmetrical to 

the point with the lowest quality criterion, formed by symmetrical reflection with respect to the 

opposite edge of the simplex. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Reflection (D) and expansion (E) in the simplex method. 

 

The coordinates of the new point, symmetrical to the rejected point (for each parameter 

separately) can be calculated from the formula: 
 

D = P + (P – C)      (6) 
 

where P is the mean of all parameter values without the dismissed result, C – values of the rejected 

point parameters. 

In the case of significant growth of the response functions at the new point, it is possible to expand the 

simplex in that direction (point E). The coordinates of the expanded point can be calculated from the 

formula 
 

E = D + (P – C)      (7) 
 

If the criterion of quality at point D is not worse than the result at the rejected point and is not better 

than the remaining ones, simplex contraction can be applied. Positive (point K+, Fig. 3.) or negative 

contractions (point K-, Fig. 3.) can be used. 

 

 

 

 

 

 
 

 

 

 

Fig. 3. Positive contraction (K+) and negative contraction (K-) in the simplex method 

 

The coordinates of the corresponding points can be calculated with the formulas: 

 

K+ = P + (P – C)/2     (8) 

 

K- = P – (P – C)/2     (9) 

 

A 

C 

B 

D 

P 

E 

A 

C 

B 

D 

P 

K- 

K+ 
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The response surface analysis ends as soon as it reaches the optimum area of a selected optimization 

criterion. 

 

EXCERCISE: 

 

A chemical yield (WR) depends on concentration (c) and temperature (T) and is described by 

the following equation: 

 

WR = (725 - (10 - c)2 - (20 - T)2)/7.25 

 

Locate the maximum yield with the simplex method. Generate the initial simplex for the following 

values the of parameters (x) and step (z): 

 

x0,c = 3.5 mol/dm3, zc = 2 mol/dm3 

x0,T = 10 oC, zT = 2 oC 

 

COMMENTS: 

 
1. Create a new spreadsheet and save it to a network drive in the directory 

S:\PinfAABB\EXERCISE\ EXERCISE9\Exe09.xls, where AA denote the number of class, BB – 

user number. 

 

2. Create a table with data set used for the calculations along with any scheduled frames. Pay 

attention to the careful planning of tables, descriptions, and frames. 

 
3. Calculations: 

After performing the calculations (finding the maximum yield), generate a simplex at a point near 

the maximum, where the step is: zc = 0.5 mol/dm3, zT = 0.5 oC. Determine the maximum yield for 

the new simplex. 

Present the calculated simplex points (c, T) on a graph. 

 

4. Prepare a worksheet for printing with margins: left 3 cm and upper 2 cm. Information concerning 

the user should be placed in a footer or header (optional).  

 

 
[1] R. Wódzki, J. Ceynowa, Sympleksowa metoda planowania doświadczeń ekstremalnych, Wiadomości Chemiczne, 1976, 

30, 327 

[2] W. G. Gorskij, W.Z. Brodskij, Zawod. Łab., 1968, 34, 7, 838 


