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AXIOMATISATIONS OF
MINIMAL MODAL LOGICS
DEFINING
JASKOWSKI-LIKE
DISCUSSIVE LOGICS

Marek Nasienlewski
Andrzej Pletruszczak

Abstract laskowski's discussive logic D3 was formulated with the help of the modal
togic 55 as follows: A € Dy iffi 7 ©A*? & 55, where (—)°* (s a transtation of discussive
formutae into the modal language. Thus, the key role in the definition of the logic Do
is played hy the togic 35 In the literature there are constdered other modal logics
that are also defining the same logic Dy.

There are also investigated iranslations that are determining other Jaskowski-like
togics. In 3, 5, instead of the original translation with "right”-discussive conjunction,
ancther transiation is considered, where "left"-discussive conjunction is treated as las-
kowski's one. In 21, It has been shown that this new transformation yields a logic
different from Dy. Ciuciura denotes the obtained logic by "D3. There are two other
possibilities as regards the internal translation of discussive conjunctions.

The guestion arises (which has heen stated by Jodo Marcos), what does it change
tf we consider the weakest in a given class modal logics that determine these "new”
discussive logics. In {11; the smallest modal logics defining respective Jaskowski-like
discussive logics are constdered. In the present paper we give more elegant axiomati-
sations of these logics.

Keywords: Jaskowski's discussive togic, Jaskowski-like discussive logics, axiomatisa-
tions of faskowski-like discussive Logics, minimal modal {ogics defining laskowski logtc,

minimal modal logics delining Jaskowski-like discussive logics
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AxiomaTisaTions oF Minival Mopadl Locics..

1 BASIC NOTIONS AND FACTS
1.1 Some facts of modal logic

MODAL LANGUAGE.  Medal formulae are formed in the standard way
from propositional letters: ‘5", 'q', 'po’, 'p1’ 'pz, ... truth-value operators:

VLN, =] and e (connectives of negation, disjunction, conjunc-

tion, material implication and material equivalence, respectively); medal
operators: the necessity sign ‘0" and the possibility sign "¢ and brack-
ets. By For, we denote the set of modal formulae. Of course, the set
Fory ncludes the set of all classical formulae (without 'O" and "&7);
let Taut be the set of alt classical tautologies and PL — the set of
all modal formulae being instances of elements of Taut. Besides, for
any @. ¢, x & Forg, let |7/ ] be any formuta that results from x by
replacing none, one, or more occurrences of ¢, in y, by .

For any ¢ & For, let Sub(y) be the set of all modal formulae
being substitution instances of . For any @ C Fory, tet Sub(®) :=
Uges Sub(e). We have ¢ € Sub{y) and @ & Sub(®). Moreover,
we put ¢@ 1= {1 Fpze ¢ = "OPT} = {TC@T @ € @} and
O¢:={T0¢": ¢ < ¢}

moDAL LoGICS. A modal logic is any set L of modal formulae satis-
fying following conditions:

e Taut C L,

e [ includes the following set of formulee
{1_)([ﬂ:|wj/<>th“"X_l : ‘P'XeForm}‘ (rep”)
o [ is closed under the following two rules: modus ponens for '—"

oo /oy {mp)

and uniforim substitution;

® / s@ (sb)
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where s ¢ is the result of uniform substitution of formulae for propo-
sitlonal letters in ¢.

CHOSEN CLASSES OF LoGics.  We say that a moadal logic L is an
rte-logic iff L is closed under replacement of tautclogical equivalents,
e, forany @,y € Fory:

oo ePlandy €L then y[¥/y] € L (rte)
A madal logic is rte-logic iff it includes the following set

{ %[/l = X" by € Forgand Tp s e PLY. (repp)
Lemnva 1.1 A modal logic contains the formula:

Dp —p ()
iff it contains its dual version:

p—op (77)

Lemma 1.2 An rte-logic contains the following formulae:

O(p A gq) = (Op A Ug) (R)
COp —p (B)
SOp — Op {5)

iff it contains, respectively, theirs dual versions:

ClpVvg) e (CpvOg) (R°)
p—00Cp (8°)
Cp — HUOp (57

In [1} a modal logic is called classical modal (cm-logic for shert) iff
it is an rte-logic which contains

O(p — q) - (Op — Og) (K)
O(p = p) (N)
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Thus, all ¢cm-logics inctude the set OPL := {Tr7: 7 £ PL}
We say that a logic is congruential iff it is closed under the congru-
ence rule

per iy / Doy {car)

A logic is congruential iff 1t is closed under replacement
g [ xPrulex (rep)

Every congruential legic (s an rte-logic.
We say that a logic L is monotonic iff L is closed under the mono-
tonicity rule:

¢— / Tp >0y (mon)

Every monotonic logic is closed uncer {rep), te. is congruential.

We say that a logic is regular iff it contains (K} and is closed under
{mon).

A legic is normal iff it contains (K) and is closed under the necessi-
tation rule

o / Op {nec)

Ail normal logics are reqular and cm-logics.

For all sets X and A of modal formulae and any set of rutes R in
Fory we say that the pair (A, R) is an axiomatization of X iff X is
the smallest set including A and closed under all rules from R.

1.2 The discussive logic Dy ond other joskowski-like logics

DISCUSSIVE LANGUAGE.  The logic Dy is defined as a set of discus-
sive formulae of a certain kind. These formulae are formed in the stan-
dard way from propositicnal letters: 'p', 'q’ 'po’ 'p1’ ‘p2. ... truth-value
operators: ‘=" and V' (negation and disjunction); discussive connectives:
A s (conjunction, implication and equivalence); and brackets.
Let Ford be the set of all these formulae.

SRR ke St e
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DEFINITION OF DISCcUsSIVE tocic Dy The logic Dy was formu-

lated with the help of the modal logic S5 as follows (see [7, 8)):

Dy:={AgFor!:T0A T £ S5},

where {—)* is a translation of discussive lormulae into modal language,

Le, it is a function {=)* from For? into Fory such that:
1. {a)* = g, for any propositional letter g,

2. for any A B & For®;
(@) (mA) =AY

(by (Av B)*="A"v B*7,

(c) (AN B)® =TA A OB*Y,

(d) (A=Y B)* =TOA* — B*7,

(e) (At B) ="(OA* — B*) A O(OB* — A7

Of course, Dy is closed under (sb) with respect to Fort. Moreover,

D, is closed under modus ponens for ‘9"
B/ B (mpg)
because 55 is clesed under the following rule:
Cp O — ) /Y (RC)

DEFINITIONS OF JASKOWSKI-LIKE LOGICS. In[3, 5] a logic D3 was
formulated with the help of the modal logic S5 as follows:

D :={Ac For:TOA" € S5},

where ()" is a function from For? into Fory such that for any A B €
For®:

() (AN B) = TOA* A BT,
(&) (Aot B)" =TO(0A" - BY) A (OB — AT,

and other cases stay as in the definition of the function (—)*.
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Additionally a logic B3 was defined as follows:
Dy :={AcFor’:T0A™ £ S5},

where (=)™ is a function frem For? inta Fory, such that for any A, 8 =
Ford:

()™ (AN B)” =TA™ A BT,
(e)” (Aed B)" = T{(CA™ - BYY A (OB — A7)

and, as previously, other cases stau the same. {Notice that in the trans-
lation for conjunction ‘<’ is not used.)

And finally, e logic D" was formulated also with the help of the
madal togic S5 as follows:

Dy = {AcFor :"OA T € S5,

where {—=)* is a function from For? into For,, such that for any A B € i
Ford:

(€ (AN BY =TOAY A OB,
(8)* (A« BY = TO(CAY = B*) AO(OB* — A%}

and again, other cases stay unchanged.

Thus, all these logics have different conditions for conjunction. Notice
that for each transiation — call it ‘any’ for all A, B < Ford: (A >
B)Y = ({A =Y B) A% (B =Y A)}@. Of course, these logics are also
closed under {sb) and {mpg}.

In (2] Ciuciura abserved that D% € Dj. It was shown that one of the
axioms of the logic D3 (s not a thesis of the logic D2, We also have:

Fact 13 ([11]). Every two logics among D3, D3, D3, and D" cross
each other.

2 MODAL LOGICS DEFINING Dy, D3, D3 anp D5

There is a procedure (see [9]} that for a given class of logics fulfiiling
some natural conditions, returns, in the considered class, the minimal
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lagic which has the same theses beginning with ‘¢ as $5. The same
can be repeated for D3, D3, and D3".
We say that a modal logic L defines Dz (resp. D3, D3, D7) iff

e D)= {AcFor' :TOA T 2 L} (resp.
o D5 ={Ac o :TOA T 2 L],

e D, ={AcFor’ . "CA £ [}

¢ Db = [AcFor': oA T e L),

There are known other modal legics defining D2. The same holds for
the other three discussive logics.

We see that while expressing the logic Dz we refer to medal logics
which

nave the same theses beginning with "¢ as S5. (1)
Let S5, be the set of all these logics, that s,
Le S5, i Yocru, "Op' el & TOpT € SH.
By the definition we see:
Fact 21. For any L € S5,
1. {Toe: "o e S5) C 1,
2. IT L € 55, then L defines Dy, D3, D3 and D3™

Recall that rteS5M, emS5M, eS5M mSsM, ¢S5M and $5M are re-
spectively, the smallest rte-, cm-, congruential, monotonic, reqular and
normal logic in S5, Thus, by Fact 2.1 each of them defines logics D3,
D5 and D3*.

Let {(—)°" be any translation of discussive formulae into modal lan-
quage, Le. {—)" is a function from For® into Fory, and Let

DY = {A & Ford . TOAT™T 2 S5,

Corowtary 2.2 ((11]1. The logics rteS5™, emS5M, eS5M mS5™, rS5M,
and S5M are the smallest rte-, cm-, congruential, monotonic, regular,
and normal logic in S5, defining D3, respectively.
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Fact 2.3 ({9)). For any rte-logic L: L defines D, iff L £ S5,

In the proof of the next fact a function {—)°* Irom For, into For!
which <<un-modalizes>>> every modal formula was used:

1. {@)™ = g, for any propositional letter a,

2 forany @ i € Fory:

@) (@) =",

(b)  {g V)7 =T vy,

(c) (@/\ ) =gV )

{d (=) =" v,

(e) (ww¢)~”Hhh @ VATV (T Y ™))
N (Cp)r =T Al (pv=p)?

(g) (D) =T =4 =(pv-p)"

Next we observe that for any A B € Fory, § € {= ¢} and = & {AV
, —, <} the following formulae belong to PL:

(A" o 2
(A " B)ox - (Ao* * BD*) (*)
(DA)O* o 2O o A

And finally we see that for any fermulae A;, ..., A,, € we obtaln:
C*el ff C[™/0oan,. .. "/ oan] €L,

Fact 2.4 {{11]). For any rte-logic L: L defines D3 iff L € S5..

On the other hand in the procf of the below fact another function
{—)°2 from For, into For? is used where for any ¢ & Forg:

() (O@) =T=(g™ =" ~(p v ~p)).
The other cases are as in the formulation of the function (—)*.
Fact 25 ([11]). For any rte-logic L: L defines D3 iff L € S5..

And finally, in the proof of Fact 26 a function {—)* from Fory, into
Ford is needed such that for any ¢ & Fory,:
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M (Op)* =™ AT g7
Again, the other cases stay unchanged.

Fact 26 {(11]). For any rte-logic L: L defines D3* iff L & S5,.

CoroLLary 27 {[11). The logic rteS5™ (resp. cmSSM, eS5M mS5M,
rSSM, S5M) is the smallest rte- {resp. cm-, congruential, monotonic,
reqular, normal) modal logic defining the logics D2, D3, D5, and D3*.

Taking (nto account the above Corollary, we see that to find differ-
ences between logics defining respective discussive logics cne has to
search for modal logics that are weaker thar rteS5™. There are con-
sidered ([11]) the weakest modal logics defining respectively D3, D,
and D37, In the case of these modal logics, we do not have all theses
of S5 that begin with ‘&'

3 THE SMALLEST MODAL L0GICS DEFINING D3, D3, D3*
31 Logics A, A", A, and A"

Let A, A", A”, and A be the smallest logics defining Dy, D3, D5, and
D3", respectively. We define the following set of modal formulae:
Cen:={¢ & Fory, : agp, ¢ = "CA* 1}
={"TOA* T = For, : A& D2},
Cen™i={p € Fory : Jacoy ¢ = FOATT}
={TCA™ € For, : A € D3},
Cen™:={g & Forp : Jacp; ¢ ="CA™T}
={TCA™ € Forn : A€ D3},
Cen™:={¢p & Fory : Jaeny @ = TOAMT}
={"0A" Ve For,, : A € DY}

Lemma 3.1 ([11]). Every modal logic defining D3 (resp. D3, D3 and D37
includes the set Sub{Gen) {resp. Sub(Gen®), Sub(Gen™), Sub{Gen™)).

Let Axp| be the set of modal formulae such that the pair {Axp(, {(mp}})
is an axiomatlzation of PL.
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Fact 3.2 ([11]). A{resp. A", A=, A*) is the smallest modal logic including
the set Gen {resp. Gen®, Gen™, Gen”). Consequently, A {resp. A*, A™,
A) is axiomatized by the sum of sets Axpy, (rep”), and Sub{Cen) {resp.
Sub{Gen®), Sub{Gen™), Sub(CGen™)) and {mp) as the only rule.

CoroLLary 3.3 ([11)). Every two logics among A, A, A-, and A* cross
each other.

From facts 2.4-2.6 we obtain:

Fact 34 (10, 11). The logic A is not an rte-logic, so A C rteS5™
Moreover, none of the logics A", A™, and A* is an rte-logic

32 Simplified axiomatisations of the considered joAllkowski-iike
discussive logics

Although Fact 3.2 gives an axiomatisations of logics A, A*, A™, and
A, it is not elegant since the sets Cen, Gen™, Gen™ and Cen™ are
infinite (other constituents of sums constituting axiomatisations of the
considered modal legics can be easily replaced by respective finite
sets). We recall Kotas's method of axiomatisation of Da, since it can
alsc be adopted to finally give axiomatisaticns of the considered modal
logics.

For any rute R on Fory we define the following rules R and RV
on Forg:

R® = {C@r.... 0P, O (o1, @ ) € RE

R® = {{Ogy,. ... 0@, O¢) : (g1, @, ) € RY.
Moreover, for any set of rules R on Fory we put R :={R°: R e R}
and R%:={R":RcR}

Now, let AxfTigm be any finite axiomatization of Taut with {mp) and
(sh}. Next we consider the following rules:

Se [/ {nec"‘)
So /g (pos™")
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In [12] a set M-S5 = {¢ &€ For, @ Op € SH} was considered.

Adopting axiomatisation given in [4] we see that for the case where ‘&
is a primitive symbol of the language it has the following form:

Fact 35 (4]). 1. The set M-S5 is axiomatized by the sum of sets

aAd {rep®), {OK OT.05}, and the rules (sb), (nec™"), {pos™'},

Taut:

(nec), (mp)~

in

2. The set OS5 is axiomatized by the sum of the sets DA {rep®),

[TOK,0OT,05}, and the rules (sh), (nec)®, (mp)~.

It appears that unmodalizing functions used in prools of facts 2.4-2.6
are variants of the function used in [4] Let (=)°: For, — For? be a
function such that for any ¢ & Fory:

(M) (Cp)"=(pv-p) A ¢
(9) (Dg)° = ~((p Vv ~p) A = ¢°),

and other conditions stay as in the definiticn of the function oy.
Now we have

Lemma 3.6 (4] 1. For ang A € Ford, if 4 € D, then A* & M-S5,
2. For any ¢ € Fory, if ¢ € M-85, then ¢° € D».

Let us recall the following notation [see [10]). For any I € For? and
any translation $ from Ford into For, we put

= {TeA e For, s A T)

Of course, for $ = e we have Gen = D3*.
Moreover, for any rule R on For® we define the following rule RS
on Fory:

R ={{pr. . @u ) 134, 4 Befot @1 = rOAST 0,
=TOAST = "OB T and (A1, . A.B) e R},

Thus, for any Aq,. .., Ay, B € Ford:

(Al ALBY € Riff (OAF ., 05, 0B%) e R*.
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For R being a set of rules on fFory, let R = {R*: R e R}

Similarly as in the case of modal logics, for all sets X and A of
discussive formulae and any set of rules R in For? we say that the pair
(A R) is an axiomatization of X iff X is the smallest set ncluding A
and closed under all rules from R.

Fact 37 ([10)) Let {A.{{mpy)}) be an axicmatization of D
Then (AxpL U [(rep®) U A® {{mpg)® (mpi}h) and
(Axp U (rep®) U A%, {(RC), (mp)}) are axiomatizations of A. Conse-
guently, A is the smallest modal logic which includes the set .A“* and
ts closed under the rule (mpy)°" {resp. (RC}).

One can extend the above lemma to a theorem (see [10, Fact 4.2))
that can be used tc obtain an axiomatisation of the logic A. We can
use Kotas's axiomatisation [4, 6] of Dy. To be able to express Kotas's
result, we recall his abbreviation:

p—ig=={(rv-r)N =(-pVaq))

THeoRem 3.8 ([4). The logic Dy is axiomatised by the sum of the sets
(OASR e (Drep™))°, {(DK)°, (QT)°, (T5)°}, and the formulae

p§a) o5 (p§9)" and T(p§a) o (pg)t for § & (N
WV, = 59), and the rules (sb)°, {nec™"Y’, {pos™")", (nec)®?, (mp_1),
(mp)"™”. '

Using translations (=)* and (—)* (resp. (—)" and {—)%; [~)*
and (—)*) we extend Kotas' Lemma 36 to the case of D3, D, and
D3*.

Lemva 39. 1. (a) For any A € For®, if A € D3, then A* € M-S5.

{b) Forany ¢ & Fory, tf ¢ € M-55, then ¢° < D,

2. (a) For any A € For?, if A< D3, then A~ € M-S5.
(b) For any ¢ < Fory, if @ © M-55, then ¢* < DI

3. (a) Forany A€ Ford, if A< Dy, then A* & M-S5.
{b) toreny ¢ € Fory, i @ € M-55, then ¢™ € D3*.
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We can easily obtain axiomatisations of D3, D5 and D3*. Now we
will use respective abbreviations for those logics:

p—iq=r-(=(~pvag)N{rv-r))
p—igi=({-pvag) =" (rvar)

Wa see that in the next theorem, in the case of D5* one can use either

—1 or —Z. Besides, the implication —3 can be used in each case.

Trueorem 310, 1. The logic D3 is axiomatised by the sum of the
sets (DAXTaut) Lo B{{rep)) {(BK)T (AT (D5)71}, and T{p §
q) =% (p§9)" and "(p§q) L (p§q)1T for § € {4V, —F
=Y as axioms, ond the rules {sb)®, (nec™)”', (pos™""", (nec)®™,
(mp_..z). (mp)~

2. The logic D, is axiomatised by the sum of three sets (DAXE 1%,
(D{rep®))™, {(OK)%2, (@T)%=, (092} and the formulae
"(p§q) = (p§q) and T(p§q) ~I (p§q)~T for § e {1V
, ¢, =Y, as axioms, and the rules (sb)*, (nec™ 1™, (pos™1)7, (nec)=*
(mp_;3), (mp)7°

3. The logic D3* is axiomatised by the sum of three sets (DAX?—QM)D],
(Blrep))>, {(QK)*, (A7), (CI5)}, and T(p §q)™ = :(p§a)”
and T(p §q) =2 {p§q)*7 for § = (A v, =9 =U) as axioms, and
the rules (sb)*%, (nec™")™ {(pos™1)%, (nec)™*, (mp_z), {mp)™°

¢

The obtained axiomatisations of the logics D3, D3 and D3* can be
used to give axiomatisations of logics A¥, A”, and A*. Fact 3.7 can he
extended to any axiomatization of Dz and also of D7, D3, and D3 In
such a way we obtain an extension of the mentioned Fact 4.2 from [10]
to the case of D3, D3 and D3

TreorEM 311, Let (AR} be an axiomatization of Dy (resp. D3, D3,
. The pairs

UA®, RO U {{mp)}},

1

{AxpL U (rep”)

(AxpL U{rep®) U A%, R U {(mp)}},
( )

{ )

L ]

O

A
VA RE U {{mp)}),
AT, RE* U {(mp)})

AxpL U (rep

Axpl U(rep®
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are axiomatizations of the logics A, A", A™, and A", respectively.

2. The logic A {resp. A*, A=, A*) is the simallest modal logic which
includes the set A% (resp. A”, A”", AY") and is closed under all
rules from the set R {resp. R, R®" and R%"}.
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