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Abstract

Quantization of a damped harmonic oscillator leads to so called Bateman’s dual
system. The corresponding Bateman’s Hamiltonian, being a self-adjoint operator,
displays the discrete family of complex eigenvalues. We show that they correspond
to the poles of energy eigenvectors and the corresponding resolvent operator when
continued to the complex energy plane. Therefore, the corresponding generalized
eigenvectors may be interpreted as resonant states which are responsible for the
irreversible quantum dynamics of a damped harmonic oscillator.

1 Introduction

The damped harmonic oscillator is one of the simplest quantum systems displaying the
dissipation of energy. Moreover, it is of great physical importance and has found many
applications especially in quantum optics. For example it plays a central role in the
quantum theory of lasers and masers [1, 2, 3].

As is well known there is no room for the dissipative phenomena in the stan-
dard Hilbert space formulation of Quantum Mechanics. The Schrödinger equation
defines one-parameter unitary group and hence the quantum dynamics is perfectly
time-reversible. The usual approach to include dissipation is the quantum theory of
open systems [4, 5, 6, 7]. In this approach the dynamics of a quantum system is no
longer unitary but it is defined by a semigroup of completely positive maps in the space
of density operators [8] (for recent reviews see e.g. [9, 10]).

There is, however, another way to describe dissipative quantum systems based on
the old idea of Bateman [11]. Bateman has shown that to apply the standard canon-
ical formalism of classical mechanics to dissipative and non-Hamiltonian systems, one
can double the numbers of degrees of freedom, so as to deal with an effective iso-
lated classical Hamiltonian system. The new degrees of freedom may be assumed to
represent a reservoir. Applying this idea to damped harmonic oscillator one obtains
a pair of damped oscillators (so called Bateman’s dual system): a primary one and
its time reversed image. The Bateman dual Hamiltonian has been rediscovered by
Morse and Feshbach [12] and Bopp [13] and the detailed quantum mechanical analysis
was performed by Feshbach and Tikochinski [14]. The quantum Bateman system was
then analyzed by many authors (see the detailed historical review [15] with almost 600
references!).
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Surprisingly, this system is still worth to study and it shows its new interesting
features. Recently it was analyzed in [16] in connection with quantum field theory and
quantum groups (see also [17, 18]). Different approach based on the Chern-Simons
theory was applied in [19]. In a recent paper [20] a damped oscillator was quantized by
using Feynman path integral formulation (see also [21]). Moreover, the corresponding
geometric phase was calculated and found to be directly related to the ground-state en-
ergy of the standard one-dimensional linear harmonic oscillator. Bateman’s system has
been also studied as a toy model for the recent proposal by ’t Hooft about deterministic
quantum mechanics [22, 23].

In the present paper we propose a slightly different approach to the Bateman system.
The unusual feature of the Bateman Hamiltonian is that being a self-adjoint operator
it displays a family of complex eigenvalues. We show that these eigenvalues correspond
to the poles of energy eigenvectors and the corresponding resolvent operator when
continued to the complex energy plane. The similar analysis for the toy model of a
quantum damped system was performed in [24, 25]. Eigenvectors corresponding to
the poles of the resolvent are well known in the scattering theory as resonant states
[29, 30]. It shows that the appearance of resonances is responsible for the dissipation
in the Bateman system. Obviously, the time evolution is perfectly reversible when
considered on the corresponding system Hilbert space H = L2(R2). It is given by the

1-parameter group of unitary transformations U(t) = e−iĤt. It turns out that there
are two natural subspaces S± ∈ H such that U(t) restricted to S± defines only two
semigroups: U(t ≥ 0) on S−, and U(t ≤ 0) on S+. These two semigroups are related
by the time reversal operator T (see Section 6).

Our analysis is based on a new representation of the Bateman Hamiltonian, cf.
Section 4. This representation is directly related to the old observation of Pontriagin
[31] (see Section 3 for review) that any non-Hamiltonian system of the form

ẋk = Xk(x1, . . . , xN ) , k = 1, 2, . . . , N , (1.1)

may be treated as a Hamiltonian one in the extended phase-space (x1, . . . , xN , p1, . . . , pN )
with the Hamiltonian

H(x1, . . . , xN , p1, . . . , pN ) =

N∑

k=1

pk Xk(x1, . . . , xN ) . (1.2)

Note, that the above Hamiltonian has exactly the form considered by ’t Hooft [22].
From the mathematical point of view the natural language to analyze the Bateman

system is the so called rigged Hilbert space approach to quantum mechanics [26, 27, 28].
There are two natural rigged Hilbert spaces, or Gel’fand triplets, corresponding to
subspaces S±. We shall comment on that in Section 8.

2 Bateman Hamiltonian

The classical equation of motion for one-dimensional damped oscillator with unit mass
reads

ẍ+ 2γẋ+ κx = 0 , (2.1)
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where γ > 0 denotes the damping constant. Introducing Bateman’s dual system

ÿ − 2γẏ + κy = 0 , (2.2)

one may derive booth equations from the following Lagrangian

L(x, ẋ, y, ẏ) = ẋẏ − κxy + γ(xẏ − ẋy) . (2.3)

Introducing canonical momenta

px = ẏ − γy , py = ẋ+ γx , (2.4)

one easily finds the corresponding Hamiltonian

H(x, y, px, py) = pxpy − γ(xpx − ypy) + ω2xy , (2.5)

where
ω =

√
κ− γ2 . (2.6)

Throughout the paper we shall consider the underdamped case, i.e. κ > γ2.
Now, assuming symmetric Weyl ordering the canonical quantization is straightfor-

ward and leads to the following self-adjoint operator in the Hilbert space L2(R2, dxdy):

Ĥ = Ĥ0 + ĤI , (2.7)

where
Ĥ0 = p̂xp̂y + ω2x̂ŷ , (2.8)

and
ĤI = −γ

2

(
(x̂p̂x + p̂xx̂) − (ŷp̂y + p̂yŷ)

)
. (2.9)

Note, that
[Ĥ0, ĤI ] = 0 . (2.10)

Following Feshbach and Tichochinsky [14] one introduces annihilation and creation
operators

Â =
1

2
√

~ω

[
(p̂x + p̂y) − iω(x̂+ ŷ)

]
, (2.11)

B̂ =
1

2
√

~ω

[
(p̂x − p̂y) − iω(x̂− ŷ)

]
. (2.12)

They satisfy the standard CCRs

[Â, Â†] = [B̂, B̂†] = 1 , (2.13)

and all other commutators vanish. It turns out that the transformed Hamiltonian is
given by (2.7) with

Ĥ0 = ~ω(Â†Â− B̂†B̂) , ĤI = i~γ(Â†B̂† − ÂB̂) . (2.14)

3



It is easy to see [14, 16] that the dynamical symmetry associated with the Bateman’s
Hamiltonian is that of SU(1, 1). Indeed, constructing the following generators:

Ĵ1 =
1

2
(Â†B̂† + ÂB̂) , (2.15)

Ĵ2 =
i

2
(Â†B̂† − ÂB̂) , (2.16)

Ĵ3 =
1

2
(Â†Â+ B̂B̂†) , (2.17)

one easily shows that they satisfy su(1, 1) commutation relations:

[Ĵ1, Ĵ2] = iĴ3 , [Ĵ3, Ĵ2] = iĴ1 , [Ĵ1, Ĵ3] = iĴ2 . (2.18)

Moreover, the following operator

Ĵ0 =
1

2
(Â†Â− B̂†B̂) , (2.19)

defines the corresponding su(1, 1) Casimir operator. One easily shows that

Ĵ2
0 =

1

4
+ Ĵ2

3 − Ĵ2
1 − Ĵ2

2 . (2.20)

It is therefore clear that the Hamiltonian (2.14) can be rewritten in terms of su(1, 1)
generators as

Ĥ0 = 2~ωĴ0 , ĤI = 2~γĴ2 . (2.21)

The algebraic structure arising in this approach enables one to solve the corresponding
eigenvalue problem. Let us define two mode eigenvectors |nA, nB〉:1

Â†Â|nA, nB〉 = nA|nA, nB〉 , B̂†B̂|nA, nB〉 = nB|nA, nB〉 . (2.22)

It is convenient to introduce

j =
1

2
(nA − nB) , m =

1

2
(nA + nB) , (2.23)

and to label the corresponding eigenvectors of Ĵ0 and Ĵ3 by |j,m〉 rather than |nA, nB〉:

Ĵ0|j,m〉 = j|j,m〉 , (2.24)

Ĵ3|j,m〉 =

(
m+

1

2

)
|j,m〉 . (2.25)

Clearly,

j = 0,±1

2
,±1,±3

2
, . . . , m = |j|, |j| + 1, |j| + 2, . . . . (2.26)

Finally, defining

|ψ±
jm〉 = exp

(
∓π

2
Ĵ1

)
|jm〉 , (2.27)

1Mathematically oriented reader would prefer

(Â†
Â⊗ 1lB)|nA, nB〉 = nA|nA, nB〉 , (1lA ⊗ B̂

†
B̂)|nA, nB〉 = nB |nA, nB〉 ,

where 1lA (1lB) denotes the identity operator in “A-sector” (“B-sector”).
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one obtains
Ĥ|ψ±

jm〉 = E±
jm|ψ±

jm〉 , (2.28)

with
E±

jm = 2~ωj ± i~γ(2m+ 1) . (2.29)

Let us emphasize that the eigenvectors corresponding to energies (2.29) cannot be
normalized and should be considered as generalized eigenvectors not belonging to the
Hilbert space of the problem.

3 Canonical quantization of non-Hamiltonian systems

As is well known any dynamical system may be regarded as a part of a larger Hamilto-
nian system. Bateman’s approach is based on adding to the primary system a time re-
versed (dual) copy. Together they define a Hamiltonian system. There exists, however,
a general approach to canonical quantization of non-Hamiltonian systems based on an
old observation of Pontriagin [31]. Suppose we are given an arbitrary non-Hamiltonian
system described by

ẋ = X(x) , (3.1)

where X is a vector field on some configuration space Q. For simplicity assume that
Q ⊂ R

N , that is, the system has N degrees of freedom. This system may be lifted to
the Hamiltonian system on the phase space P = Q × R

N as follows: one defines the
Hamiltonian H : P −→ R by

H(x,p) = p ·X(x) =
N∑

l=1

plXl(x) , (3.2)

where (x,p) = (x1, . . . , xN , p1, . . . , pN ) denote canonical coordinates on P. The corre-
sponding Hamilton equations read as follows:

ẋk = {xk,H} = Xk(x) , (3.3)

ṗk = {pk,H} = −
N∑

l=1

pl
∂Xl(x)

∂xk
, (3.4)

for k = 1, . . . , N . In the above formulae { , } denotes the standard Poisson bracket on
P

{F,G} =
N∑

k=1

(
∂F

∂xk

∂G

∂pk
− ∂G

∂xk

∂F

∂pk

)
. (3.5)

Clearly, the formulae (3.3) reproduce our initial dynamical system (3.1) on Q. The
canonical quantization is now straightforward. Assuming the symmetric Weyl ordering
one obtains the following formula for the quantum Hamiltonian

Ĥquantum = W

(
N∑

l=1

plXl(x)

)
, (3.6)
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where W(f) denotes the Wigner-Weyl transform of a space-phase function f = f(x,p).
Recall, that the Wigner-Weyl transform of f is defined as follows

f̂ = W(f) =

∫
dσ

∫
dτ f̃(σ, τ ) exp

{
i

N∑

k=1

(σkx̂k + τkp̂k)

}
, (3.7)

where f̃(σ, τ ) denotes the Fourier transform of f(x,p). Clearly, Ĥquantum defines a
Schrödinger system in L2(RN , dx).

Consider now a damped harmonic oscillator described by

ẍ+ 2γẋ+ κx = 0 .

The above 2nd order equation may be rewritten as a dynamical system on R
2

ẋ1 = −γx1 + ωx2 , (3.8)

ẋ2 = −γx2 − ωx1 , (3.9)

with ω defined in (2.6). Clearly this system is not Hamiltonian if γ 6= 0. However,
applying the above Pontriagin procedure one arrives at the Hamiltonian system on R

4

defined by the following damped harmonic oscillator Hamiltonian:

H(x,p) = ω(p1x2 − p2x1) − γ(p1x1 + p2x2) . (3.10)

The corresponding Hamilton equations of motion read

ẋ = F̂x , ṗ = −F̂Tp , (3.11)

where

F̂ =

(
−γ ω
−ω −γ

)
, (3.12)

and F̂T denotes the transposition of F̂ . One may ask what is the relation between Bate-
man’s Hamiltonian (2.5) and that obtained via Pontriagin procedure (3.10). Surpris-
ingly they are related by the following simple canonical transformation (x, y, px, py) −→
(x1, x2, p1, p2):

x1 =
py√
ω
, p1 = −√

ω y (3.13)

x2 = −√
ω x , p2 = − px√

ω
. (3.14)

Assuming the symmetric Weyl ordering one obtains the following representation of the
quantum Bateman’s Hamiltonian (2.7) with

Ĥ0 = ω(p̂1x̂2 − p̂2x̂1) , (3.15)

and
ĤI = −γ

2
(p̂1x̂1 + x̂1p̂1 + p̂2x̂2 + x̂2p̂2) . (3.16)
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4 Spectral properties of the Hamiltonian

4.1 Polar representation

The formula (3.10) for H considerably simplifies in polar coordinates:

x1 + ix2 = reiϕ .

Defining the corresponding conjugate momenta

pϕ = L3 , pr =
xp

r
, (4.1)

with L3 denoting 3rd component of L = x × p in R
3, one finds

H = −ωpϕ − γrpr . (4.2)

The Hamilton equations in polar representation have the following simple form:

ϕ̇ = −ω , ṗϕ = 0 , (4.3)

and
ṙ = −γr , ṗr = γpr . (4.4)

The polar representation nicely shows that the Hamiltonian dynamics consists in pure
oscillation in ϕ–sector and dissipation (pumping) in r–sector (p–sector). In our opinion
it is the most convenient representation to deal with .

The quantization of (4.2) leads to (2.7) with

Ĥ0 = −ωp̂ϕ = iω~
∂

∂ϕ
, (4.5)

and

ĤI = iγ~

(
r
∂

∂r
+ 1

)
= −γ

(
rp̂r −

i~

2

)
, (4.6)

where the radial momentum p̂r is defined by

p̂r = −i~
(
∂

∂r
+

1

2r

)
. (4.7)

One easily finds the polar representation of the su(1, 1) generators:

Ĵ1 = −~

4

( ∂2

∂r2
+

1

r2
∂2

∂φ2

)
− 1

4~
r2 , (4.8)

Ĵ2 =
i

2

(
r
∂

∂r
+ 1
)
, (4.9)

Ĵ3 =
1

4~
r2 +

i

2

∂

∂φ
− ~

4

( ∂2

∂r2
+

1

r2
∂2

∂φ2

)
. (4.10)

together with the Casimir operator

Ĵ0 =
i

2

∂

∂φ
. (4.11)

Note, that unitary evolution generated by Ĥ is given by

Û(t) = e−iĤt/~ = e−iĤ0t/~ e−iĤI t/~ = eγt exp

(
ωt

∂

∂ϕ

)
exp

(
γt r

∂

∂r

)
, (4.12)

and hence
(Û(t)ψ)(r, ϕ) = eγtψ(eγtr, ϕ + ωt) . (4.13)

7



4.2 Complete set of eigenvectors

It is evident that Ĥ defines an unbounded operator in H = L2(R2, dx1dx2). It has
continuous spectrum σ(Ĥ) = (−∞,∞). To find the corresponding generalized eigen-
vectors let us note that in polar representation the Hilbert space H of square integrable
functions in R

2 factorizes as follows:

L2(R2, dx1dx2) = L2([0, 2π), dϕ) ⊗ L2(R+, rdr) . (4.14)

Therefore, the spectral problem splits into two separate problems in L2([0, 2π), dϕ) and
L2(R+, rdr). One easily finds

ĤΨlλ = ElλΨlλ , (4.15)

with
Elλ = ~(lω + λγ) . (4.16)

The corresponding eigenvectors Ψlλ are defined by

Ψlλ(r, ϕ) = Φl(ϕ)Rλ(r) , (4.17)

where

Φl(ϕ) :=
e−ilϕ

√
2π

, l = 0,±1,±2, . . . , (4.18)

and

Rλ(r) =
r−(iλ+1)

√
2π

, λ ∈ R . (4.19)

Note, that Φl ∈ L2([0, 2π), dϕ) whereas Rλ does not belong to L2(R+, rdr).
One easily shows that the family Ψlλ satisfies

∫ 2π

0

∫ ∞

0
Ψlλ(r, ϕ)Ψl′λ′(r, ϕ) r dr dϕ = δll′δ(λ − λ′) , (4.20)

and
∞∑

l=−∞

∫ ∞

−∞
Ψlλ(r, ϕ)Ψlλ(r′, ϕ′) dλ =

1

r
δ(r − r′)δ(ϕ − ϕ′) . (4.21)

They imply the following resolution of identity

1l =

∞∑

l=−∞

∫ ∞

−∞
dλ |Ψlλ〉〈Ψlλ| , (4.22)

and the spectral resolution of Hamiltonian

Ĥ =
∞∑

l=−∞

∫ ∞

−∞
dλElλ|Ψlλ〉〈Ψlλ| , (4.23)
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4.3 Feynman propagator

Let us calculate the corresponding Feynman propagator

K(x, t|x′, t′) = 〈x|Û (t− t′)|x′ 〉 , (4.24)

where Û(τ) = exp(−iĤτ/~). Using polar representation one finds

K(r, ϕ, t|r′, ϕ′, t′) =

∞∑

l=−∞

∫ ∞

−∞
e−iElλτ/~ Ψlλ(r, ϕ)Ψlλ(r′, ϕ′) dλ , (4.25)

with τ = t− t′. Now, using (4.17) one obtains

K(r, ϕ, t|r′, ϕ′, t′) = K1(r, t|r′, t′)K2(ϕ, t|ϕ′, t′) , (4.26)

where the radial and azimuthal propagators are given by

K1(r, t|r′, t′) =

∫ ∞

−∞
e−iλγτ Rλ(r)Rλ(r′) dλ , (4.27)

and

K2(ϕ, t|ϕ′, t′) =

∞∑

l=−∞

e−iωlτΦl(ϕ)Φl(ϕ
′) , (4.28)

respectively. Finally, formulae (4.18) and (4.19) imply

K2(ϕ, t|ϕ′, t′) = δ(ϕ′ − ϕ− ωτ) , (4.29)

and

K1(r, t|r′, t′) =
1

2π

1

rr′

∫ ∞

−∞
eiλ(ln r′−ln r−γτ) dλ

=
1

rr′
δ(ln r′ − ln r − γτ) = eγτ δ(r

′ − reγτ )

r′
. (4.30)

Therefore, the time evolution is given by

ψt(r, ϕ) =

∫ 2π

0

∫ ∞

0
K(r, ϕ, t|r′, ϕ′, t′ = 0)ψ0(r

′, ϕ′) r′dr′dϕ′

= eγt ψ0(e
γtr, ϕ + ωt) , (4.31)

which perfectly agrees with (4.13).

5 Analyticity and complex eigenvalues

Now we are going to relate the energy eigenvectors Ψnλ corresponding to the real
spectrum Enλ with the family of discrete complex eigenvalues of the Bateman’s Hamil-
tonian. Let us consider the distribution Ψnλ with λ ∈ C, i.e. for any test function
φ(r, ϕ)

Ψlλ(φ) = 〈φ|Ψlλ〉 =

∫ ∞

0
r−iλφl(r) dr , (5.1)
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where

φl(r) =
1

2π

∫ 2π

0
eilϕφ(r, ϕ) dϕ . (5.2)

Now, the analytical properties of Ψlλ depend upon the behavior of φl(r) at r = 0. A
distribution rα acting on the space of smooth functions S(R+)

S(R+) ∋ f −→
∫ ∞

0
rαf(r) dr , (5.3)

is well defined for all α ∈ C except the discrete family of points where it may have
simple poles (see e.g. [32]). The location of poles depends upon the behavior of a test
function f at r = 0. Assuming the most general expansion of f(r)

f(r) = f0 + f1 r + f2 r
2 + . . . , (5.4)

the poles are located at α = −1,−2,−3, . . . . However, φl(r) defined in (5.2) is much
more regular. It can be observed (see Appendix B.) that φl(r) may be expanded at
r = 0 as follows:

φl(r) = al r
|l| + al+2 r

|l|+2 + al+4 r
|l|+4 + . . . . (5.5)

Therefore, the poles that remain are located at

λnl = −i(|l| + 2n+ 1) , n = 0, 1, 2, . . . . (5.6)

Moreover, the corresponding residues of Ψlλ are given by

Res Ψlλ

∣∣∣
λ=λnl

=
1√

(|l| + 2n)!

f−nl√
2π

, (5.7)

where

f−nl(r, ϕ) = Φl(ϕ)
i(−1)|l|+2n

√
(|l| + 2n)!

δ(|l|+2n)(r)

r
. (5.8)

On the other hand

Ψlλ

∣∣∣
λ=λnl

=
√

(|l| + 2n)!
f+nl√
2π

, (5.9)

where

f+nl(r, ϕ) = Φl(ϕ)
r|l|+2n

√
(|l| + 2n)!

. (5.10)

Now, the crucial observation is that f±nl satisfy

Ĵ0 |f±nl〉 =
l

2
|f±nl〉 , (5.11)

and

Ĵ2 |f±nl〉 = ± i

2
(|l| + 2n+ 1) |f±nl〉 , (5.12)

which proves that they define eigenvectors of Ĥ

Ĥ|f±nl〉 = E±
nl|f±nl〉 , (5.13)
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corresponding to complex eigenvalues

E±
nl = ~ωl ± i~γ(|l| + 2n + 1) . (5.14)

The above formula is equivalent to the Bateman’s spectrum (2.29) after the following
identification

j =
l

2
, (5.15)

and

m =
1

2
(|l| + 2n) = |j| + n , (5.16)

which reproduces condition (2.26). In terms of (nA, nB) one has

nA =
1

2
(|l| + l) + n , (5.17)

nB =
1

2
(|l| − l) + n . (5.18)

We have therefore the following relation between |ψ±
jm 〉 and |f±nl〉:

|ψ±
jm 〉 = |f±2j,m−|j| 〉 , (5.19)

that is, |f±nl〉 defined in (5.8) and (5.10) may be regarded as a particular representation
of |ψ±

jm 〉.
Let us introduce two important classes of functions [33]: consider the space of

complex functions f : C → C. A smooth function f = f(λ) is in the Hardy class from
above H2

+ (from below H2
−) if f(λ) is a boundary value of an analytic function in the

upper, i.e. Imλ ≥ 0 (lower, i.e. Imλ ≤ 0) half complex λ-plane vanishing faster than
any power of λ at the upper (lower) semi-circle |λ| → ∞. Now, define

S− =
{
φ ∈ S

∣∣∣ 〈Ψlλ|φ 〉 ∈ H2
−

}
, (5.20)

that is, φ ∈ S− iff the complex function

C ∋ λ −→ 〈Ψlλ|φ 〉 ∈ C ,

is in the Hardy class from below H2
−. Equipped with this mathematical notion let us

consider an arbitrary test function φ ∈ S−. The resolution of identity (4.22) implies

φ(r, ϕ) =

∞∑

l=−∞

∫ ∞

−∞
dλΨlλ(r, ϕ)〈Ψlλ|φ 〉 . (5.21)

Now, since 〈Ψlλ|φ 〉 ∈ H2
−, we may close the integration contour along the lower semi-

circle |λ| → ∞ (see Figure 1).
Hence, due to the residue theorem one obtains

φ(r, ϕ) = −2πi

∞∑

l=−∞

∞∑

n=0

Res Ψlλ(r, ϕ)
∣∣∣
λ=λnl

〈Ψlλ|φ 〉
∣∣∣
λ=λnl

. (5.22)
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Figure 1: Integration contour along the lower semi-circle for l = 2.

Finally, using (5.7) and (5.9) one gets

φ(r, ϕ) =

∞∑

l=−∞

∞∑

n=0

f−nl(r, ϕ) 〈 f+nl|φ 〉 . (5.23)

We have proved, therefore, that the subspace S− ⊂ S ⊂ H gives rise to the following
resolution of identity

1l− ≡ 1l
∣∣∣
S−

=

∞∑

l=−∞

∞∑

n=0

|f−nl 〉〈 f+nl| . (5.24)

The same arguments lead us to the following spectral resolution of Ĥ restricted to S−:

Ĥ− ≡ Ĥ
∣∣∣
S−

=

∞∑

l=−∞

∞∑

n=0

E−
nl |f−nl 〉〈 f+nl| , (5.25)

with E−
nl defined in (5.14). Introducing the following family of operators

P̂−
nl = |f−nl 〉〈 f+nl| , (5.26)

the spectral decompositions (5.24) and (5.25) may be rewritten as follows

1l− =
∞∑

l=−∞

∞∑

n=0

P̂−
nl , (5.27)

and

Ĥ− =

∞∑

l=−∞

∞∑

n=0

E−
nl P̂

−
nl . (5.28)

Note, that
P̂−

nl P̂
−
n′l′ = δnlδn′l′ P̂

−
nl , (5.29)

that is, the family P̂−
nl seems to play the role of the family of orthogonal projectors.

Note, however, that P̂−
nl are not hermitian.
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6 Time reversal

It was shown in [20] that Bateman’s Hamiltonian is time reversal invariant

T †ĤT = Ĥ , (6.1)

where T denote the anti-unitary time reversal operator. Moreover, it turns out [20]
that both Ĵ0 and Ĵ2 satisfy

T †Ĵ0T = Ĵ0 , T †Ĵ2T = Ĵ2 . (6.2)

Let us define
Ξlλ = T Ψlλ . (6.3)

In analogy with (4.22) and (4.23) one has the following resolution of identity

1l =
∞∑

l=−∞

∫ ∞

−∞
dλ |Ξlλ〉〈Ξlλ| , (6.4)

and spectral resolution of the Hamiltonian

Ĥ =

∞∑

l=−∞

∫ ∞

−∞
dλElλ |Ξlλ〉〈Ξlλ| . (6.5)

Now, let us introduce another subspace S+ in the space of test functions

S+ =
{
φ ∈ S

∣∣∣ 〈Ξlλ|φ 〉 ∈ H2
+

}
, (6.6)

that is, φ ∈ S+ iff the complex function

C ∋ λ −→ 〈Ξlλ|φ 〉 ∈ C ,

is in the Hardy class from above H2
+. It is easy to show that

S+ = T (S−) , (6.7)

and vice versa
S− = T (S+) . (6.8)

Indeed, if φ ∈ S− then 〈Ψlλ|φ 〉 ∈ H2
−. One has therefore

〈Ξlλ|T φ 〉 = 〈φ|T † Ξlλ 〉 = 〈Ψlλ|φ 〉 ∈ H2
+ , (6.9)

which implies that T φ ∈ S+.2 Moreover

S− ∩ S+ = {∅} . (6.10)

2In the above formulae we have used

〈ψ|Aφ 〉 = 〈φ|A†
ψ 〉 ,

which holds for any anti-linear operator A.
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To prove this property let us assume that φ ∈ S− ∩ S+. Since φ ∈ S+, one has
〈Ξlλ|φ 〉 ∈ H2

+. However

〈Ξlλ|φ 〉 = 〈φ|T Ψlλ 〉 = 〈Ψlλ|T †φ 〉 ∈ H2
+ . (6.11)

On the other hand T † ∈ S− and hence 〈Ψlλ|T †φ 〉 ∈ H2
−. Therefore, 〈Ψlλ|T †φ 〉 ∈

H2
− ∩ H2

+ which means that 〈Ψlλ|T †φ 〉 is en entire function vanishing on the circle
|λ| −→ ∞. However, any entire function is necessarily bounded and hence such φ
which belongs both to S− and S+ does not exist.

Now, take any test function φ ∈ S+. Formula (6.4) implies

φ(r, ϕ) =

∞∑

l=−∞

∫ ∞

−∞
dλΞlλ(r, ϕ)〈Ξlλ|φ 〉 . (6.12)

Let us continue the eigenvectors Ξlλ for the complex λ plane. They have simple poles
at λ = −λnl with λnl defined in (5.6). The corresponding residues of Ξlλ follows from
(5.7)

Res Ξlλ

∣∣∣
λ=−λnl

=
1√

(|l| + 2n)!

T f−nl√
2π

. (6.13)

Moreover,

Ξlλ

∣∣∣
λ=−λnl

=
√

(|l| + 2n)!
T f+nl√

2π
. (6.14)

Now, since 〈Ξnλ|φ 〉 ∈ H2
+, we may close the integration contour in (6.12) along the

upper semi-circle |λ| → ∞. The residue theorem implies

φ(r, ϕ) = 2πi

∞∑

l=−∞

∞∑

n=0

Res Ξlλ(r, ϕ)
∣∣∣
λ=−λnl

〈Ξlλ|φ 〉
∣∣∣
λ=−λnl

. (6.15)

Finally, using (6.13) and (6.14) one gets

φ(r, ϕ) =
∞∑

l=−∞

∞∑

n=0

T f−nl(r, ϕ) 〈φ|T f+nl 〉 , (6.16)

and hence it implies the following resolution of identity on S+:

1l
∣∣∣
S+

=

∞∑

l=−∞

∞∑

n=0

T |f−nl 〉〈 f+nl|T † . (6.17)

Now, the formula (5.12) together with (6.2) gives

Ĵ2 T |f±nl〉 = ∓ i

2
(|l| + 2n+ 1)T |f±nl〉 , (6.18)

and hence one deduces the following relations between |f±nl〉 and time reversed T |f±nl〉

T |f+nl〉 = eiαnl |f−nl〉 , T |f−nl〉 = eiαnl |f+nl〉 , (6.19)
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where αnl are arbitrary (n, l)-depended phases. It should be stressed that these phases
are physically irrelevant. Actually, one may redefine |f+nl〉 in (5.8) and (5.10) such that
these additional phase factors disappear from (6.19). Let us observe that

T 2|f±nl〉 = |f±nl〉 , (6.20)

irrespective of αnl. Taking into account (6.19) one obtains from (6.17)

1l+ ≡ 1l
∣∣∣
S+

=
∞∑

l=−∞

∞∑

n=0

|f−nl 〉〈 f+nl| . (6.21)

The same arguments lead us to the following spectral resolution of Ĥ

Ĥ+ ≡ Ĥ
∣∣∣
S+

=
∞∑

l=−∞

∞∑

n=0

E+
nl |f+nl 〉〈 f−nl| , (6.22)

with E+
nl defined in (5.14). Finally, introducing

P̂+
nl = |f+nl 〉〈 f−nl| = (P̂−

nl)
† , (6.23)

with P̂−
nl defined in (5.26), the spectral decompositions (6.21) and (6.22) may be rewrit-

ten as follows

1l+ =

∞∑

l=−∞

∞∑

n=0

P̂+
nl , (6.24)

and

Ĥ+ =

∞∑

l=−∞

∞∑

n=0

E+
nl P̂

+
nl . (6.25)

7 Resonances and dissipation

What is the physical meaning of the complex eigenvalues E±
nl? To answer this question

let us consider the resolvent operator of the Bateman’s Hamiltonian

R̂(Ĥ, z) = (Ĥ − z)−1 . (7.1)

Using the family of eigenfunctions |Ψlλ 〉 one has

R̂(Ĥ, z) =

∞∑

l=−∞

∫ ∞

−∞

dλ

Elλ − z
|Ψlλ〉〈Ψlλ| , (7.2)

with Elλ defined in (4.16). Now, using the same technique as in Section 5 one easily
finds

R̂−(z) ≡ R̂(Ĥ, z)
∣∣∣
S−

=

∞∑

l=−∞

∞∑

n=0

1

E−
nl − z

P̂−
nl , (7.3)

with P−
nl defined in (5.26). This shows that E−

nl constitute poles of the resolvent operator
on S−. In the same way using the family |Ξlλ 〉

R̂(Ĥ, z) =
∞∑

l=−∞

∫ ∞

−∞

dλ

Elλ − z
|Ξlλ〉〈Ξlλ| , (7.4)
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Figure 2: A closed curve γ+
nl on a complex energy plane.

one finds

R̂+(z) ≡ R̂(Ĥ, z)
∣∣∣
S+

=

∞∑

l=−∞

∞∑

n=0

1

E+
nl − z

P̂+
nl , (7.5)

which shows that E+
nl constitute poles of the resolvent operator on S+. As is well

known [29] the poles of the resolvent operator correspond to resonant states. Hence,
the complex eigenvalues E±

nl may be interpreted as resonances of the Bateman’s Hamil-

tonian. Note that due to the Cauchy theorem operators P̂±
nl may be represented by the

following integrals

P̂±
nl =

1

2πi

∮

γ±
nl

R̂±(z) dz , (7.6)

where γ±nl is any (clockwise) closed curve which encircles a single pole z = E±
nl (see

Figure 2).
Finally, let us turn to the evolution generated by the Bateman’s Hamiltonian.

Clearly,
R ∋ t −→ Û(t) = exp(−iĤt/~) ,

defines a group of unitary operators on the Hilbert space L2(R2). Now, it is easy to
see that if ψ− ∈ S−, then Û(t)ψ− belongs to S− only if t ≥ 0. Similarly, if ψ+ ∈ S+,
then Û(t)ψ+ belongs to S+ only if t ≤ 0. Therefore, we have two natural semigroups

Û−(t) : S− −→ S− , for t ≥ 0 , (7.7)

and
Û+(t) : S+ −→ S+ , for t ≤ 0 , (7.8)

where
Û−(t) = Û(t)

∣∣∣
S−

, and Û+(t) = Û(t)
∣∣∣
S+

. (7.9)

One has

ψ−(t) = Û−(t)ψ− =
∞∑

l=−∞

e−iωlt
∞∑

n=0

e−γ(|l|+n+1)t P̂−
nl ψ− , (7.10)
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for t ≥ 0, and

ψ+(t) = Û+(t)ψ+ =

∞∑

l=−∞

e−iωlt
∞∑

n=0

eγ(|l|+n+1)t P̂+
nl ψ+ , (7.11)

for t ≤ 0. It should be clear that these two semigroups are related by the time reversal
operator T : indeed formulae (6.19) imply

T P̂−
nl T † = P̂+

nl and T P̂+
nl T † = P̂−

nl , (7.12)

and hence

T Û−(t)T † =
∞∑

l=−∞

∞∑

n=0

T
(
e−iE−

nl
t/~ P̂−

nl

)
T †

=

∞∑

l=−∞

∞∑

n=0

e−iE+

nl
(−t)/~ P̂+

nl = Û+(−t) , (7.13)

for t ≥ 0. Similarly, one finds

T Û+(t)T † = Û−(−t) , (7.14)

for t ≤ 0. We have shown that perfectly reversible quantum dynamics Û(t) on the
full Hilbert space L2(R2) is no longer reversible when restricted to the subspaces S−

and S+. This effective irreversibility is caused by the presence of resonant states |f±nl 〉
corresponding to complex eigenvalues E±

nl.

8 Conclusions

In this paper we have studied the spectral properties of the Bateman Hamiltonian. It
was shown that the complex eigenvalues E±

jm given by (2.29) corresponds to the poles of

the resolvent operator R̂(Ĥ, z) = (Ĥ − z)−1. Therefore, the corresponding generalized
eigenvectors may be interpreted as resonant states of the Bateman dual system. It
proves that dissipation and irreversibility is caused by the presence of resonances.

From the mathematical point of view the Bateman system gives rise to the so called
Gel’fand triplet or rigged Hilbert space [26, 27] (see also [28, 34]). A Gel’fand triplet
(rigged Hilbert space) is a collection of spaces

Φ ⊂ H ⊂ Φ′ , (8.1)

where H is a Hilbert space, Φ its dense subspace and Φ′ is the dual space of continuous
linear functionals on Φ. Note, that elements from Φ′ do not belong to H. This is
a typical situation when one deals with the continuum spectrum. The corresponding
generalized eigenvectors are no longer elements from the system Hilbert space. They
are elements from the dual space Φ′, i.e. distributions acting on Φ [35, 36]. In our case
we have two natural Gel’fand triplets:

S− ⊂ L2(R2) ⊂ S ′
− , (8.2)
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and
S+ ⊂ L2(R2) ⊂ S ′

+ . (8.3)

The first triplet corresponds to the forward dynamics Û− and the second one corre-
sponds to the backward semigroup Û+. A similar analysis based on rigged Hilbert
space approach was performed in [24, 25] for a toy model damped system defned by
ẋ = −γx.

Appendix A

Let us briefly sketch calculations leading to (5.7) and (5.9). We introduce a distribution
Ψlλ acting on a test function φ(r, ϕ) as an antilinear functional defined by the integral

Ψlλ(φ) = 〈φ|Ψlλ〉 =
1

2π

∫

R2

e−ilϕr−iλ−1φ(r, ϕ)dS =

∫ ∞

0
r−iλφl(r)dr , (A.4)

where λ ∈ C , dS = rdr dϕ, and φl(r) is given by (5.2). Expanding φl(r) in the power
series and rewriting the last integral as

∫ ∞

0
r−iλφl(r)dr =

∫ 1

0
r−iλ

[
φl(r) − φl(0) − rφ

′
l(0) − . . .− rl−1

(l − 1)!
φ

(l−1)
l (0)

]
dr

+

∫ ∞

1
r−iλφl(r)dr (A.5)

+

∫ 1

0
r−iλ

[
φl(0) + rφ

′
l(0) + . . .+

rl−1

(l − 1)!
φ

(l−1)
l (0)

]
dr ,

one can observe that the first two summands are regular for all λ ∈ C. The last integral,
however, equals to

l−1∑

k=0

φ
(k)
l (0)

k!

∫ 1

0
r−iλrk dr =

l−1∑

k=0

φ
(k)
l (0)

k!

1

k − iλ+ 1
(A.6)

and has simple poles in λk = −i(k + 1), k = 0, 1, . . . , l − 1. Moreover, one can read
from (A.6) that

Res 〈φ|Ψlλ〉
∣∣∣
λ=−i(k+1)

=
φ

(k)
l (0)

k!
. (A.7)

Finally, using

φ
(k)
l (0) =

1

2π

∫ 2π

0
e−ilϕφ

(k)
(0, ϕ) dϕ (A.8)

and

φ
(k)

(0, ϕ) = (−1)k
∫ ∞

0

δ(k)(r)

r
φ(r, ϕ) rdr , (A.9)

we get

φ
(k)
l (0) =

(−1)k

2π

∫

R2

e−ilϕ δ
(k)(r)

r
φ(r, ϕ)dS . (A.10)
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But due to (5.5) in the case investigated here k = |l| + 2n, hence the poles are located
at λnl = −i(|l| + 2n+ 1) and

Res 〈φ|Ψlλ〉
∣∣∣
λ=λnl

=
1√

(|l| + 2n)!

〈φ|f−nl〉√
2π

, (A.11)

where f−nl is a distribution given by (5.8).
The conjugate distribution Ψlλ is defined as

Ψlλ(φ) = 〈φ|Ψlλ〉 =
1

2π

∫

R2

eilϕriλ−1φ(r, ϕ)dS =

∫ ∞

0
riλφl(r)dr (A.12)

and it is regular in λ = λnl. The poles of 〈φ|Ψlλ〉 are located at λ = λnl. Hence

〈φ|Ψlλ〉
∣∣∣
λ=λnl

=
√

(|l| + 2n)!
〈φ|f+nl〉√

2π
, (A.13)

where f+nl is a distribution given by (5.10).

Appendix B

Let us briefly proof that φl(r) given by (5.2) has a power series expansion (5.5) starting
from r|l|. Supposing that φ(x1, x2) is an analytic function

φ(x1, x2) = φ(0, 0) +
∑

k1,k2

∂k1+k2φ(0, 0)

∂xk1

1 ∂x
k2

2

xk1

1 x
k2

2 (B.1)

in cartesian coordinates (x1, x2) it is obvious that in polar (r, ϕ)-coordinates one obtains
the following expansion for φl(r):

φl(r) =
1

2π

∫ 2π

0
e−ilϕφ(r cosϕ, r sinϕ) dϕ

=
1

2π

∫ 2π

0
e−ilϕ

[
φ(0, 0) +

∑

k1,k2

Ak1,k2
rk1+k2(cosϕ)k1(sinϕ)k2

]
dϕ

=
1

2π

∑

k1,k2

Ak1,k2
rk1+k2

∫ 2π

0
e−ilϕ(cosϕ)k1(sinϕ)k2 dϕ , (B.2)

where

Ak1,k2
=
∂k1+k2φ(0, 0)

∂xk1

1 ∂x
k2

2

,

stand for derivatives of φ(x1, x2) in (0, 0). Now, the question is: for which values of
k ≡ k1 + k2 the sum in (B.2) does not vanish? Clearly, it should be

∫ 2π

0
e−ilϕ(cosϕ)k1(sinϕ)k2 dϕ 6= 0 . (B.3)
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Using the Newton expansions

(cosϕ)k1 =
(1

2

)k1
(
eiϕ + e−iϕ

)k1

=
(1

2

)k1
k1∑

m1=0

(
k1

m1

)
eim1ϕe−i(k1−m1)ϕ ,

(sinϕ)k2 =
( 1

2i

)k2
(
eiϕ − e−iϕ

)k1

=
( 1

2i

)k2
k2∑

m2=0

(
k2

m2

)
(−1)k2−m2eim2ϕe−i(k2−m2)ϕ ,

one can rewrite (B.3) as

(1

2

)k1
( 1

2i

)k2
k1∑

m1=0

k2∑

m2=0

(
k1

m1

)(
k2

m2

)
(−1)k2−m2

∫ 2π

0
e−i(l+k−2(m1+m2))ϕdϕ 6= 0 , (B.4)

hence (B.4) will not vanish iff

l + k − 2(m1 +m2) = 0 . (B.5)

Clearly,
0 ≤ m1 ≤ k1 , 0 ≤ m2 ≤ k2 . (B.6)

Now, let l < 0, so l = −|l| and

k = |l| + 2(m1 +m2) = |l| + 2n , (B.7)

where n = m1 +m2 ≥ 0. Due to (B.6), in order to satisfy (B.7) it should be k ≥ |l|.
On the other hand, if l > 0, then

k = −l+ 2(m1 +m2) ≤ −l + 2k , (B.8)

because of (B.6) and finally k ≥ l = |l|. Note that in this case k = l + 2(m1 +m2 − l),
where m1 +m2 − l ≡ n ≥ 0.

As a result we obtained that for a given n the lowest power of r in expansion (B.2)
is k1 + k2 = |l|. Moreover, in both cases

k1 + k2 = k = |l| + 2n , n = 0, 1, 2, . . . (B.9)

holds.
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