Plant signalling peptides

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Springer-Verlag

Abstract

Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found in animals,m ay exist in plants. Another example of signalling peptide is ENOD40, a product of a gene, which became active early in the root nodulation process following Rhizobium infection of legumes. Other predicted bioactive peptides or oligopeptides have been identified by means of genetic, rather then biochemical methods. The Arabidopsis CLAVATA3 protein is required for the correct organization of the shoot apical meristem and the pollen S determinant S-locus cysteine-rich protein (SCR also called S-locus protein 11, SP11). The plant signalling peptides discovered so far are involved in various processes and play an important role in communication between cells or organs, respectively. This review will focus on these peptides and their role in intercellular signalling.

Description

Keywords

CLAVATA3, ENOD40, insulin-like protein, natriuretic peptide, phytosulfokine, signalling peptides, systemin, RALF

Citation

Acta Physiologiae Plantarum vol. 25 (1), 2003, pp. 105-122.

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Poland