
85ISSN: 1911-4745

Toward Interdisciplinary Integration in the Study of 
Comparative Cognition: Insights from Studying the  

Evolution of Multimodal Communication

Elizabeth Qing Zhang
Jiangsu Normal University

Michael Pleyer
Nicolaus Copernicus University in Toruń

In this article, we highlight the importance of interdisciplinary integration in the study of comparative 
cognition. Specifically, we argue that the study of comparative cognition can benefit from broadening 
its focus and integrating information from diverse subfields and including collaborations from other 
fields. We take the evolution of multimodal communication as an example to illustrate that an interdis-
ciplinary integration of linguistics, animal behavior, cognitive neuroscience, and genetics provides a 
more comprehensive picture of this phenomenon.  
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One of the most promising advancements in com-
parative cognition in recent years is that comparative 
psychologists have shifted to working on a broader range 
of species and cognitive abilities and have emphasized a 
team-science approach (e.g., Guillette & Sturdy, 2020). 
However, a remaining challenge for comparative cogni-
tion as a whole is that it has not paid enough attention to 
the integration of information from different disciplines. 
Recently, there have increasingly been calls for an “in-
tegrative comparative cognition,” such as by Burmeister 
and Liu (2020). They argued that neurobiological and 
neurogenomic studies can shed important light on the 
cognitive phenotypes that are the subject of comparative 
cognition. In this article, we highlight the importance of 
taking a broader range of fields into consideration using 
the evolution of multimodal communication as an example 
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to illustrate the benefits this interdisciplinary approach 
would have on the field of comparative cognition.

Human communication is fundamentally multi-
modal. Vocal and visual cues are integrated in human 
linguistic interaction—for example, in phenomena such as 
co-speech gestures and facial expressions that accompany 
vocalizations in spoken language, as well as the iconicity, 
sound symbolism, and cross-modal correspondences that 
motivate many aspects of language structure in both spo-
ken and signed languages (e.g., Dingemanse et al., 2015; 
Vigliocco et al., 2014). Appreciation of human communi-
cation as a multimodal phenomenon supports the idea that 
language itself has a multimodal origin (e.g., Fröhlich et 
al., 2019; Levinson & Holler, 2014). Indeed, comparative 
research on nonhuman animals shows that multimodality 
is a ubiquitous property of many animal communication 
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systems (Ota et al., 2015; Partan & Marler, 1999), suggest-
ing evolutionary continuity and deep evolutionary roots of 
multimodal communication. 

However, studies on the evolution of multimodal com-
munication have focused mainly on studying nonhuman 
primates (e.g., Fröhlich & van Schaik, 2018; Liebal et al., 
2014), likely because of their close evolutionary relation-
ship to humans. Nonhuman primates show simultaneous 
production of communication signals in the manual, facial, 
and vocal modalities (Genty et al., 2014; Micheletta et al., 
2013). A study of chimpanzees found that about half of all 
vocalizations were produced in combination with another 
communicative modality (Taglialatela et al., 2015). On the 
other hand, existing studies on multimodal communication 
in diverse species suggest that multimodality has even 
deeper evolutionary roots. However, although a wealth of 
studies are on multimodal communication in different spe-
cies, few studies have explicitly addressed the evolutionary 
continuity of multimodality outside of primates. That is, so 
far, studies showing the ubiquity of multimodality in the 
animal kingdom have not been properly integrated into an 
account of the evolution of multimodal communication. 
Furthermore, apart from the behavioral and cognitive lev-
els, neuroscientific and genetic (genomic) studies can also 
provide revealing insights into the evolutionary continuity 
of multimodal communication. 

For this reason, we argue that the study of the evo-
lution of multimodal communication is in need of inter-
disciplinary integration, which we believe is an important 
future challenge for the field of comparative cognition 
and behavior. 

On one hand, the field requires a combination of 
various research fields that explore the role of multimodal-
ity in humans in both naturalistic and laboratory settings 
(e.g., Macuch Silva et al., 2020; Rasenberg et al., 2022), 
as well as research in comparative cognition on the role of 
multimodality in a wide range of nonhuman species. For 

example, combinations of tactile, olfactory, acoustic, and 
visual cues have been reported in fruit flies (Ewing, 1983), 
fish (Tavolga, 1956), and birds (Dalziell et al., 2013; Ota et 
al., 2015). In songbirds, courtship displays integrate songs 
with hops, head motions and beak movements (Williams, 
2001). In addition, song type repertoire is coordinated tem-
porally with a dance-like movement repertoire (Dalziell & 
Peters, 2013). Overall, these data indicate that multimodal 
communication has a deep phylogenetic origin dating 
back to invertebrates. 

On the other hand, the study of the evolution of mul-
timodality would also profit from interdisciplinary insight 
from neuroscience and genetics. From a neuroscientific 
perspective, the hippocampus and basal ganglia both 
represent conserved subcortical structures that are found 
in all vertebrates. Homologous neural structures have also 
been proposed for invertebrates (Lin et al., 2013; Wolff & 
Strausfeld, 2015). The basal ganglia are mostly involved 
in action selection, motor control, and cognitive functions 
such as procedural learning and memory (Graybiel, 2005). 
Functions of the hippocampus include declarative learning 
and memory, navigation, and episodic memory (Voss et 
al., 2017). Concerning communication, studies on vocal 
production learning in animals, especially songbirds, have 
demonstrated a crucial role for the basal ganglia in song 
learning (Jarvis, 2019). Detailed comparisons of the neural 
circuitry of songbirds and humans have also shown that 
certain analogous (potentially homologous) cortico-basal 
ganglia-thalamo-cortical circuits are essential to vocal 
learning (Pfenning et al., 2014). Regarding the hippo-
campus, studies on human patients with amnesia suggest 
that it is also vital for the production of gestures (Hilliard 
et al. 2017). As the hippocampus is involved in spatial 
cognition, this suggests a hippocampal contribution to 
the evolution of the use of gestures in humans (Levinson, 
2023). Therefore, there is suggestive evidence that the 
connection between the hippocampus and the basal ganglia 
could underlie multimodal communication across species. 
Still, more interdisciplinary work is needed in this domain, 
representing an important challenge for future work on the 
evolution of multimodal communication.

Last, genetic studies have the potential to serve as an 
important puzzle piece in unraveling the evolution of mul-
timodal communication from an interdisciplinary perspec-
tive. As a case in point, the integration of speech and gesture 
might be influenced by the human version of the FOXP21 
1. We follow the convention that capitalized FOXP2 “refers to 
the human gene, Foxp2 refers to the gene in mice and FoxP2 
refers to the gene in other species” (Schatton & Scharff, 2017, 
p. 26).
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gene. In evolution, FoxP2 represents a conserved tran-
scription factor among vertebrates; there is also indicative 
data in invertebrates. Drosophila possesses a homolog of 
FoxP2: FoxP, which is responsible for sex-specific walking 
and flight as well as pulse-song structure (Lawton et al., 
2014). Studies in vertebrates also indicate a connection of 
FoxP2 to both the basal ganglia and hippocampus, and their 
interaction in multimodal communication. When Foxp2 is 
knocked out in mice, infant mice will produce abnormal 
ultrasonic vocalizations (Shu et al., 2005). Further studies 
in mice have demonstrated that heterozygous mutations 
of Foxp2 impair sensorimotor association learning (Kurt 
et al., 2012). Also in mice, Zbtb20, a repressor of Foxp2, 
has been found to bind to and repress cortical layer marker 
genes (including Foxp2) in the developing hippocampus 
(Nielsen et al., 2014). Knockdown studies in songbirds, in 
which the expression of particular genes is reduced, also 
show a connection of FoxP2 to vocalizations. Specifically, 
if FoxP2 expression is knocked down in Area X in juvenile 
zebra finches, this affects the completeness and accuracy 
of song production learning (Haesler et al., 2007). More 
research is needed to untangle the possible influence of 
human FOXP2 on the evolution of specifically human 
multimodal communication. Human FOXP2 has incorpo-
rated two fixed amino acid changes in a broadly defined 
transcription suppression domain (Zhang et al., 2002). 
These two amino acid changes (N325S, T303N) occurred 
at some point since the evolutionary split from the lineage 
of chimpanzees and bonobos (Enard et al., 2002) and were 
likely present before the split of Neanderthals and Homo 
sapiens (Krause et al., 2007), which is currently estimated 
to have happened between 800 thousand years ago and 400 
thousand years ago (cf. Endicott et al., 2010; Harvati & 
Reyes-Centeno, 2022). This suggests evolutionary conti-
nuity of (humanlike) multimodal communication, possibly 
dating back to Homo heidelbergensis (Dediu & Levinson, 
2018). However, an ongoing debate concerns the timing of 
the evolution of FOXP2 and other possible subtle changes 
that might have occurred since the split from the Neander-
thal lineage (see, e.g., Fisher, 2019). Animal studies offer 
important further insights here, as mice injected with a 
humanized version of FOXP2 showed a reduced dopamine 
level, increased dendritic length, and long-term synaptic 
depression (Enard et al., 2009), suggesting a role of human 
FOXP2 in altering the basal ganglia structure and function. 
Moreover, mice with a humanized version of FOXP2 also 
show an accelerated transition from declarative learning to 
procedural learning (Schreiweis et al., 2014). As the neural 
bases of declarative and procedural performance are the 
hippocampus and basal ganglia, respectively, this suggests 

a key role of FOXP2 in better connecting the basal ganglia 
and hippocampus; this connection represents an important 
aspect of human multimodal communication.

The main thrust of this commentary rests on two 
aspects: On one hand, it represents a call to take multi-
modality seriously in the study of communication in 
different species and to include a wider range of species 
in comparative cognition studies of multimodal communi-
cation. On the other hand, it is a call for interdisciplinary 
integration. Using the evolution of multimodal communi-
cation as an example, we want to make a case for the idea 
that comparative cognition can benefit from broadening 
its focus, integrating information from different subfields 
and including collaborators from other fields. As we have 
shown, the integration of insights from fields such as the 
language sciences, animal communication, neuroscience, 
and genetics has the potential to make important contribu-
tions to the study of multimodality and its evolution. We 
hope that, in the future, such interdisciplinary integration 
will lead to further exciting discoveries and the develop-
ment of interspecies frameworks for the study of multi-
modal communication. More generally, our discussion of 
the evolution of multimodal communication serves as an 
example of how broader interdisciplinary collaboration 
within and outside comparative cognition can potentially 
greatly move the field forward.
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