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Abstract. We classify two of Bertrand Russell’s theories of events within the point-free

ontology. The first of such approaches was presented informally by Russell in “The World

of Physics and the World of Sense” (Lecture IV in Our Knowledge of the External World

(1914)). Based on this theory, Russell sketched ways to construct instants as collections

of events. This paper formalises Russell’s approach from (1914). We will also show

that in such a reconstructed theory, we obtain all axioms of Russell’s second theory from

(1936) and all axioms of Thomason’s theory of events from (1989). Russell’s work cer-

tainly influenced the works of Stanisław Leśniewski, his student Alfred Tarski, and Czesław

Lejewski—prominent members of the Lvov-Warsaw School (LWS). We see our work in the

tradition of the research of Leśniewski and Tarski. Building on the technical tools devel-

oped in this environment and in the spirit of the traditional research of the LWS, we engage

here, in particular, with two classic works by Russell on fundamental ontology.

Introduction

In (1914) Russell presented the theory of events and instants in a completely informal

way. In Section 2, we will formalize its part about events. We will add the missing assump-

tions that seem necessary to obtain some of the statements given in (1914). We will also

clarify some inaccuracies there. Before that, however, in Section 1, we briefly introduce

the very idea of point-free ontology. We will refer to its precursors Russell (1914, 1936),

Whitehead (1919, 1920) and de Laguna (1922a,b).

In point 2.1, we will cover the basic notions of Russell’s theory from (1914). Then, in

point 2.2, we will discuss its analytical assumptions, i.e. those that result from the mean-

ings of primitive concepts and do not postulate the existence of events. In point 2.3, we

define two new concepts and, following Russell, we introduce a new axiom. This axiom

also does not postulate the existence of events, but we do not include it as an analytical

proposition. We also show some consequences of the axioms and definitions adopted here.

This part of the theory will be “existentially neutral”. In Point 2.4, we will introduce the

first “existentially involved” axiom and study its consequences. We define further binary

relations regarding events in point 2.5. Only some of them are defined by Russell, some are

mentioned but not defined, and one is not found in (1914). We do not introduce any new

axioms for these new concepts. We want to show what new interesting statements can be

obtained using only the axioms from Section 2.

In Section 3 after Russell, we will present the construction of instants (moments). We

will show that some of Russell’s requirements for moments could not be obtained by merely

applying his assumptions. We must use some new axioms regarding events to meet these

requirements.
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In Section 4, we will compare Russell’s theory from (1914) with his second theory from

(1936), which he has already formally presented. Thanks to the additional assumptions we

have adopted, we will show that it is possible to reconstruct the latter theory in the first one.

We also analyze the problem of the density of the relation is before on instants, presented

in (Russell, 1936). Let us add that Russell’s theory from (1914) is conceptually much more

interesting than his theory from (1936).

Section 5 compares Russell’s theories with Thomason’s theory from (1989). Moreover,

in Section 6, we discuss the influence of Russell and Whitehead on the works of Leśniewski,

Tarski and Lejewski—prominent members of the Lvov-Warsaw School. We will compare

Russell’s construction of instants and Tarski’s construction of points from (1929; 1956).

In the final section 7, we present the possibility of another way of defining instants,

also outlined by Russell (1914). This approach will be similar to the construction of points

shown by Grzegorczyk (1950, 1960) and examined in detail in (Gruszczyński and Pietrusz-

czak, 2018).

To keep easy to read this paper, we move the proofs of some facts to Appendix A. In

addition, we include the models used in the article in Appendix B.

1. Briefly about point-free ontology

When discussing space and time in an ontology, it is often assumed that they are made of

something indivisible, in other words, of “atomic” or “point” objects. In space, these would

be geometric points, and in the case of time, instants or, in other words, moments. When

combining time and space, space-time is composed of point events. From the perspective

of metaphysics, such an assumption is not intuitive because point objects are not compo-

nents of the real world (i.e. space, time, and space-time, respectively). However, it is very

convenient for formal considerations. In “point ontology”, time—treated as a distributive

set of instants—is structured as the set R of real numbers. On the other hand, space is given

the structure of the set R3 of ordered triples of real numbers and space-time the set R4 of

ordered fours of real numbers.

However, one can practice ontology without assuming the existence of point entities in

the real world. This approach—initiated by Russell (1914, 1936), Whitehead (1919, 1920)

and de Laguna (1922a,b)—is called point-free ontology. It does not mean that such an

ontology does not consider any objects of a ‘point nature’. The latter, however, are to be

abstractions constructed from the components of the real world. These abstract objects are

necessary to obtain a sufficiently rich theory of time, space, or space-time.

Point-free ontology is supposed to concern the real world. We exclude point objects but

also those with the character of lines, surfaces, and pieces. Thus, according to the Elements

of Euclid, we exclude all objects that either do not have length, width, or hight. We also

exclude any “mixtures” of such things.

In the sense of a point-free ontology, space is neither a distributive set of dimension-

less points nor their mereological sum. Space is the mereological sum of its chunks called

regions. For Russell (1914) and Whitehead (1919, 1920) points are abstract creations ob-

tained as set-theoretic constructions made of spatial regions (see also Tarski, 1929, 1956;

Gruszczyński and Pietruszczak, 2008, 2009):

[. . . ] one spatial object may be contained within another, and entirely enclosed by

the other. This relation of enclosure, by the help of some very natural hypotheses,

will enable us to define a “point” as a certain class of spatial objects, namely all

those (as it will turn out in the end) which would naturally be said to contain the

point. (Russell, 1914, p. 114)

In another edition of (Russell, 1914) we read:

This relation of enclosure, by the help of some very natural hypotheses, will en-

able us to define a "point" as a certain set of spatial objects; roughly speaking,
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the set will consist of all volumes which would naturally be said to contain the

point.

It should be observed that Dr. Whitehead’s abstract logical methods are appli-

cable equally to psychological space, physical space, time, and space-time.

(Russell, 1922, p. 120)

In the sense of point-free ontology, time is associated with events. Russell treated events as

“constituents of the real world”, not abstracts. Events are not point objects but must be of

some finite extent. Russell defined instants-points as abstract creations based on events.

We can say that point-free ontology’s main task is the formal construction of abstract ob-

jects such as instants and geometric points. Namely, after adding them, we can successfully

apply mathematical physics and point geometry methods. Such practices are necessary to

discuss the development of research on the nature of time and space. However, we need to

find the proper role of point objects in the ontology.

2. A formalization of Russell’s first theory about events

2.1. The primitive notions. The theory of events presented in (Russell, 1914) is entirely

informal. It has three primitive concepts: one non-relational, being an event, and two re-

lational: is earlier than and is (at least partially) simultaneous with. Thus, reconstructing

this theory, we will study the relational structures of the form 〈U, E, S〉, the components of

which correspond to the three primitive concepts of Russell’s theory: U is a non-empty set

(a universe composed of events); E and S are binary relations on U. So, for example, the

formulas ‘x ∈ U’, ‘x E y’ and ‘x S y’ are meant to express: x is an event; x is earlier than y

(which can be taken as an abbreviation for ‘x lasts before y’ or ‘x is before y’); x is (at least

partially) simultaneous with y.

The meaning of the phrase ’is earlier than’ is relatively intuitive if we take it as an ab-

breviation of ‘lasts before’. However, we may have difficulties adequately interpreting the

phrase ‘is (at least partially) simultaneous with’. Note that the words ‘is simultaneous with’

itself is ambiguous. Firstly, about events, this phrase can be understood as events occurring

at the same time. In this case, Russell speaks of complete simultaneity (which is reflexive,

symmetric and transitive). Secondly, Russell added in parentheses “at least partially”. It

suggests that the phrase may be understood in a sense “that the times of the two events over-

lap”. More specifically, two events occur in at least one common instant; see further (3.2).

Then this phrase determines a reflexive and symmetrical relation but “will not necessarily

be transitive” (Russell, 1914, p. 125).

Remark 2.1. In (1936) Russell, in a formal way, introduced a second theory of events based

on other primitive concepts than in (1914). They are being an event and the relational

concept wholly precedence. It can therefore be said that the second theory applies to the

structures of form 〈U, P〉, where U is a non-empty universe (composed of events) and P

is a binary relation on U. In such structures Russell (1936, p. 348)1 defines the relations

S ≔ P̄ \ P̆ and begins before ≔ S | P.2 These relations are to correspond to S and E in

the structure 〈U, E, S〉 (see further (dfPS) and (⋆E)). In Section 4.1, we will show that the

1914 theory we reconstruct is definitionally equivalent to the essential fragment of the 1936

approach. ⋄

1We will provide pages of the reprint of (Russell, 1936) in Logic and Knowledge, Allen & Unwin, 1956.
2For any binary relation R, R1a and R2 on U we define the following relations on U. The product of R1

and R2 is the relation R1 ∩ R2 such that for all x , y ∈ U: x R1 ∩ R2 y iff x R1 y ∧ x R1 y. The difference

between R1 and R2 is the relation R1 \ R2 such that for all x , y ∈ U: x R1 \ R2 y iff x R1 y ∧ ¬ x R1 y. The

complement of R is the relation R̄ such that: x R̄ y iff ¬ x R y. So R1 \ R2 = R1 ∩ R̄2. The converse relation

of R is the relation R̆ such that: x R̆ y iff y R x . So R =
˘̆
R. The relative product of R1 and R2 is the relation

R1 | R2 such that: x R1 | R2 y iff ∃u∈U (x R1 u ∧ u R2 y). So (R1 | R2 )̆ = R̆2 | R̆1 .
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2.2. Basic analytical assumptions. There is no doubt that the phrase “is earlier than” is

irreflexive, asymmetry and transitive and that these are its analytical properties (in the sense

that fluent English speakers think so). So these properties will also have the relation E:3

∀x∈U ¬ x E x, (irrE)

a1 ∀x , y∈U(x E y =⇒ ¬ y E x), (asE)

a2 ∀x , y,z∈U(x E y ∧ y E z =⇒ x E z). (tE)

Thus, E is a strict partial order. Notice that (irrE) follows directly from axiom a1 (also

(asE) follows from (irrE) and (tE)).

The analytical properties of the relation S are its reflexivity and symmetry:

∀x∈U x S x, (rS)

a3 ∀x , y∈U
(

x S y =⇒ y S x
)

. (sS)

Formula (rS) will result from a1 and a4 and our definitions (see p. 5).

2.3. Two auxiliary relations and the fourth axiom. In addition to the two primitive rela-

tions, Russell (1914) uses several auxiliary relations, defined by E and/or S. At this point,

we will introduce two such relationships. The first is the L relationship, expressed by the

phrase ‘is later than’, which is the conversion of ‘is earlier than’. Therefore, L is defined by

L ≔ Ĕ, i.e., for all x, y ∈ U we put:

x L y ⇐⇒ y E x . (dfL)

Directly from (irrE), (asE), (tE) and (dfL), L is irreflexive, asymmetric and transitive:

∀x∈U ¬ x L x , (irrL)

∀x , y∈U(x L y =⇒ ¬ y L x), (asL)

∀x , y,z∈U(x L y ∧ y L z =⇒ x L z). (tL)

Furthermore, using E and S, Russell defined an auxiliary relation P of total precedence

(“wholly precedes”):

When one event is earlier than but not simultaneous with another, we shall say that

it “wholly precedes” the other. (Russell, 1914, p. 19)

So P is defined by P ≔ E \ S = E ∩ S̄, i.e., for all x, y ∈ U we put:

x P y ⇐⇒ x E y ∧ ¬ x S y. (df P)

Notice that if y P̆ x, i.e. x P y, then we can say that y is wholly after x.

From (asE) and (df P) we obtain the asymmetry of P; and so also its irreflexivity:

∀x , y∈U(x P y =⇒ ¬ y P x), (asP)

∀x∈U ¬ x P x . (irrP)

About the relation P Russell (1914) assumes the following condition:

[. . . ] we know that of two events which are not simultaneous, there must be one

which wholly precedes the other, and in that case the other cannot also wholly

precede the one. (Russell, 1914, p. 119)

The second part of the above quote tells about the asymmetry of P, expressed by (asP), and

the first part of it states the connexity of P concerning S, i.e .:

∀x , y∈U(¬ x S y =⇒ x P y ∨ y P x). (conS

P
)

3We have adopted the following convention for marking some formulas. There may be a label to the right of

a given formula to indicate what the formula is saying. Furthermore, if the label appears to the right of a given

formula, it means that it is assumed as an axiom of a formalized theory, and the given digit indicates the next

number of the axiom. We have adopted as axioms only those formulas that are not derivable from other premises.
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In virtue of (sS), condition (conS

P
) is definitionally equivalent to the following, which states

the connexity of E concerning S:

a4 ∀x , y∈U(¬ x S y =⇒ x E y ∨ y E x). (conS

E
)

It is obviously that from (irrE) and (conS

E
) (as well from (irrP) and (conS

P
)) we obtain

(rS), i.e. the reflexivity of S.

Directly from (df P) and (sS) we obtain the converse implication to (conS

P
); and so:

∀x , y∈U(x S y ⇐⇒ ¬ x P y ∧ ¬ y P x). (dfPS)

2.4. The first “existentially involved” axiom. In analyzing the family of instants, Russell

(1914) makes three existentially involved assumptions. At this point, we will explore the

first of them.

From Russell’s words:

[. . . ] consider all the events which are simultaneous with a given event, and do not

begin later, i.e. are not wholly after anything simultaneous with it [. . . ]

(Russell, 1914, p. 119)

in the light of the symmetry of S, we can conclude that for Russell the equality L = P̆ | S

holds, i.e.:

∀x , y∈U
(

x L y ⇐⇒ ∃z∈U(z P x ∧ z S y)
)

. (⋆L)

Hence, by (dfL) and (sS), the equality E = S | P holds, i.e.:

a5 ∀x , y∈U
(

x E y ⇐⇒ ∃z∈U(x S z ∧ z P y)
)

. (⋆E)

For simplicity, we take (⋆E) as an axiom of the theory, not (⋆L).

Remark 2.2. The “⇐”-part of (⋆E) (in short: (⋆E

⇐)) is “existentially neutral”. Only its

“⇒”-part (in short: (⋆E

⇒)) is “existentially involved”. In Section 3.3, we will show that

(⋆E

⇒ ) will follow from axiom a6, which is also “existentially involved”. ⋄

It is obvious that (⋆E

⇐) is definitionally equivalent to:

∀x , y,z∈U(x S z ∧ z E y =⇒ x E y ∨ z S y). (2.1)

Hence, by (conS

E
), we obtain:

∀x , y,z∈U(x S z ∧ ¬ x E y ∧ ¬ z S y =⇒ y E z).

So, by (sS) and (asE), we obtain:

∀x , y,z∈U(x S z ∧ ¬ x E y ∧ x S y ∧ ¬ x E z =⇒ y S z). (2.2)

Furthermore, notice that from (asE) and (⋆E

⇐) we have P | E ⊆ S̄, i.e.:

∀x , y,z∈U(x P z ∧ z E y =⇒ ¬ x S y).

We can prove that having (tE), (sS), (df P), (conS

P
) and (⋆E) we get that the complement

Ē of E is transitive; and so E is co-transitive:

∀x , y,z∈U(x E y =⇒ x E z ∨ z E y). (ctE)

Russell does not mention this fact in (1914). However, having the transitivity of P, which

Russell assumed, is necessary. Also, from (ctE), we will get other facts needed to recon-

struct the family of instants, which cannot be accepted by taking only the transitivity of P.

For any binary relation R on U and any x ∈ U we put:

−→
R‘x ≔ {u ∈ U : u R x} and

←−
R ‘x ≔ {u ∈ U : x R u}.

From (ctE) and (irrE) for all x, y ∈ U we obtain:

¬ x E y ⇐⇒
−→
E‘y ⊆

−→
E‘x ⇐⇒

←−
E ‘x ⊆

←−
E ‘y . (2.3)
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Now we show that from (df P), (sS), (asE), (ctE) and (⋆E

⇐) we obtain the transitivity

of P. Firstly, notice that from (⋆E

⇐ ) and (sS) we have:

∀x , y,z∈U(x P y ∧ ¬ z E y =⇒ ¬ x S z).

Secondly, since from (df P) we have P ⊆ E, in the light of (ctE) we obtain:

∀x , y,z∈U(x P y ∧ ¬ z E y =⇒ x E z).

So from both of above conditions and (df P), we obtain:

∀x , y,z∈U(x P y ∧ ¬ z E y =⇒ x P z). (tĒ
P
)

Thirdly, from (tĒ
P
) and (asE) we get the following condition (which is stronger than the

condition expressing the transitivity of P):

∀x , y,z∈U(x P y ∧ y E z =⇒ x P z). (tE
P
)

Hence, since P ⊆ E, we get the transitivity of P:

∀x , y,z∈U(x P y ∧ y P z =⇒ x P z). (tP)

Furthermore, from (tE
P
) and (⋆E

⇐ ) we have:

∀x , y,z ,u∈U(x P y ∧ y S z ∧ z P u =⇒ x P u). (t+P)

Hence, using (df P), (tĒ
P
), (tP) and (sS), we obtain:

∀x , y,z ,u∈U(x P y ∧ z P u =⇒ x P u ∨ z P y). (ThP)

We can prove some facts further used. Firstly, from (tP) and (conS

P
) we get:

∀x , y,z∈U(x P y ∧ y S z ∧ ¬ z S x =⇒ x P z). (2.4)

Secondly, using (df P), (sS) and (rS), we get the following facts:

∀x , y∈U
(

∃z∈U(x S z ∧ y P z) ⇐⇒ ∃z∈U(y P z ∧ ¬ x P z)
)

, (2.5)

∀x , y∈U
(

∃z∈U(y S z ∧ z P x) ⇐⇒ ∃z∈U(z P x ∧ ¬ z P y)
)

, (2.6)

∀x , y∈U
(

∃z∈U(x S z ∧ z P y) ⇐⇒ ∃z∈U(z P y ∧ ¬ z P x)
)

, (2.7)

∀x , y∈U
(

∃z∈U(x P z ∧ z S y) ⇐⇒ ∃z∈U(x P z ∧ ¬ y P z)
)

, (2.8)

i.e. we have S | P̆ = P̄ | P̆, P̆ | S = P̆ | S̆ = P̆ | P̄, S | P = (P̆ )̄ | P and P | S = P | (P̆ )̄ .

Remark 2.3. We get some “existentially neutral” theory of events from axioms a1–a4 and

(⋆E

⇐ ), (ctE) (instead of a5). In this “truncated theory”, we will obtain all theses for which

we do not use (⋆E

⇒); for example: (tĒ
P
), (tE

P
), (tP), (t+P), (ThP), (2.5)–(2.8). ⋄

Finally, from (2.6) and the (⋆L) we have the equality L = P̆ | P̄, i.e.:

∀x , y∈U
(

x L y ⇐⇒ ∃z∈U(z P x ∧ ¬ z P y)
)

, (dfPL)

Moreover, from (2.7) and (⋆E) we have the equality S | P = (P̆)̄ | P, i.e.:

∀x , y∈U
(

x E y ⇐⇒ ∃z∈U(z P y ∧ ¬ z P x)
)

. (dfPE)

2.5. Other auxiliary binary relations. In this subsection, we will define some auxiliary

binary relations. Initially, we do not introduce any new axioms for these new concepts.

We only want to show what new exciting facts can be obtained using only the assumptions

given in Section 2. Let us add that some of these relations were mentioned but not defined by

Russell (1914). In the last point of this subsection, we will introduce the second existentially

involved axiom.
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2.5.1. The relation of lasts after. When introducing the relation of temporal enclosure

(see next), Russell used the relation of lasts after, which he has not defined anywhere. We

say that one event lasts after (in short: is after) another when it is simultaneous with some

event which is wholly after the other (see p. 4). Let us denote the relation lasts after by ‘A’.

So A ≔ S | P̆, i.e. for all x, y ∈ U we put:

x A y ⇐⇒ ∃z∈U(x S z ∧ y P z). (dfA)

Remark 2.4. (i) With reference to Remark 2.1, the relation A corresponds with the relation

ends after ≔ S | P̆ from (Russell, 1936, p. 348).

(ii) Even though (dfA) has an existential quantifier, its use will preserve the “existential

neutrality” of the “truncated theory” based on axioms a1–a4, (⋆E

⇐) and (ctE). It would be

different if we applied the relation A in some new, adequately constructed axiom. However,

we will not introduce any such axiom in this section. ⋄

Directly from (dfA) and (rS) we obtain that P ⊆ Ă, i.e:

∀x , y∈U(y P x =⇒ x A y). (P⊆Ă)

Now notice that, by (dfA) and (2.5), we have that A = P̄ | P̆, i.e.:

∀x , y∈U
(

x A y ⇐⇒ ∃z∈U(y P z ∧ ¬ x P z)
)

. (dfPA)

Moreover, directly from (dfA) and (df P) it follows that A is irreflexive:

∀x∈U ¬ x A x, (irrA)

and using (dfA), (t+P) and (sS) we can prove that A is asymmetric:

∀x , y∈U(x A y =⇒ ¬ y A x). (asA)

Now, using (dfA), (tĒ
P
) and (rS) we can prove that A is co-transitive:

∀x , y,z∈U(x A y =⇒ x A z ∨ z A y). (ctA)

But notice that, generally:

Lemma 2.1. Every asymmetric and co-transitive binary relation is transitive.

Thus, by (asA), (ctA) and Lemma 2.1, we have the transitivity of A:

∀x , y,z∈U(x A y ∧ y A z =⇒ x A z). (tA)

Moreover, from (ctA) and (irrA) for all x, y ∈ U we obtain:

¬ x A y ⇐⇒
−→
A‘y ⊆

−→
A‘x ⇐⇒

←−
A‘x ⊆

←−
A‘y . (2.9)

Now, we will get conditions that are useful later in the paper. Firstly, directly from (dfA),

(sS) and (2.4) we have:

∀x , y∈U(x A y ∧ ¬ x S y =⇒ y P x). (2.10)

Secondly, using (dfA), (P⊆Ă), (conS

P
) and (tP), we get:

∀x , y,z∈U(¬ z A x ∧ x P y =⇒ z P y). (tĀ
P
)

Thirdly, using (sS), (conS

P
), (⋆E

⇐) and (dfA) we obtain:

∀x , y,z∈U(z S x ∧ ¬ z S y =⇒ x E y ∨ x A y). (2.11)

Hence, by (rS), we have:

∀x , y∈U(¬ x E y ∧ ¬ x A y =⇒ x S y). (2.12)

Finally, notice that by (dfA), (conS

A
) and (P⊆Ă) we have:

∀x , y,z∈U(x S z ∧ ¬ x A y ∧ ¬ z S y =⇒ z P y),

∀x , y,z∈U(x S z ∧ ¬ x A y ∧ ¬ z S y =⇒ y A x).
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Therefore, by (sS) and (asA), we obtain:

∀x , y,z∈U(x S z ∧ ¬ x A y ∧ x S y ∧ ¬ x A z =⇒ y S z). (2.13)

2.5.2. The relations: beginning together, ending together, complete simultaneity. Al-

though Russell (1914) mentions the relation of complete simultaneity, he neither uses nor

defines it. Only when Russell (1914, p. 125) discusses examples of transitive relations

he writes: “The symmetrical relations mentioned just now are also transitive [. . . ] pro-

vided, in the case of simultaneity, we mean complete simultaneity, i.e. beginning and end-

ing together.” However, Russell does not write anywhere what he means by “beginning

and ending together”. We will use three binary relations BT ≔ Ē \ Ĕ, ET ≔ Ā \ Ă and

≡t ≔ BT ∩ ET as interpretations of the phrases ‘begins together’, ‘ends together’ and ‘is

completely simultaneous with’. So for all x, y ∈ U we put:

x BT y ⇐⇒ ¬ x E y ∧ ¬ y E x , (df BT )

x ET y ⇐⇒ ¬ x A y ∧ ¬ y A x , (df ET )

x ≡t y ⇐⇒ x BT y ∧ x ET y . (df≡t)

Notice that from our definitions, (asE) and (asA) we obtain:

∀x , y∈U
(

x BT y ∨ x ET y =⇒ x ⊑t y ∨ y ⊑t x
)

.

Directly from the pairs {(df BT ), (2.3)}, {(df BT ), (dfPE)}, {(df ET ), (2.9)}, {(df ET ),

(dfPA)}, for all x, y ∈ U we have, respectively:

x BT y ⇐⇒
−→
E‘x =

−→
E‘y ⇐⇒

←−
E ‘x =

←−
E ‘y , (dfEBT )

x BT y ⇐⇒
−→
P‘x =

−→
P‘y , (dfPBT )

x ET y ⇐⇒
−→
A‘x =

−→
A‘y ⇐⇒

←−
A‘x =

←−
A‘y , (dfAET )

x ET y ⇐⇒
←−
P ‘x =

←−
P ‘y . (dfPET )

The above gives the reflexivity, the symmetry and the transitivity of BT , ET , and ≡t.

Notice that both (conS

E
) and (conS

P
) are definitionally equivalent to:

∀x , y∈U(x BT y =⇒ x S y). (BT⊆S)

Hence, because ≡t ⊆ BT , we obtain:

∀x , y∈U(x ≡t y =⇒ x S y). (≡t⊆S)

Moreover, from (dfA), (conS

P
) and (P⊆Ă) we have:

∀x , y∈U(x ET y =⇒ x S y). (ET⊆S)

But the above condition is definitionally equivalent to:

∀x , y∈U(¬ x S y =⇒ x A y ∨ y A x). (conS

A
)

From (dfEBT ), (sS) and (2.1) we have:

∀x , y∈U
(

x BT y =⇒ ∀z∈U(z E x ∧ z S x ⇔ z E y ∧ z S y)
)

.

But using (df BT ), (ctE), (conS

E
), (2.1), (sS), (irrE) and (rS), we obtain:

∀x , y∈U
(

x BT y ⇐⇒ ∀z∈U(¬ x E z ∧ x S z ⇔ ¬ y E z ∧ y S z)
)

. (2.14)

Moreover, using (dfAET ), (2.11), (asE), (df′ ⊑t) and (dfS⊑t), we obtain:

∀x , y∈U
(

x ET y =⇒ ∀z∈U(z A x ∧ z S x ⇔ z A y ∧ z S y)
)

. (2.15)

But using (df ET ), (ctA), (conS

A
), (2.10), (dfA), (irrA) and (rS), we get:

∀x , y∈U
(

x ET y ⇐⇒ ∀z∈U(¬ x A z ∧ x S z ⇔ ¬ y A z ∧ y S z)
)

. (2.16)
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2.5.3. The relation of temporal enclosure. Russell defines this relation by the following:

One object will be temporally enclosed by another when it is simultaneous with

the other but not before or after it. Whatever encloses temporally or is enclosed

temporally we shall call an “event.” (Russell, 1914, p. 121)

In addition to the relation S, Russell used two relations is before and is after. We can

consider the relation E (is earlier than) to be the first, and the relation A (lasts after) to be

the second.

Let us denote the relation of temporal enclosure by ‘⊑t’. Its definition given by Russell

can be formally written as follows: ⊑t ≔ S ∩ Ē ∩ Ā. So for all x, y ∈ U we put:

x ⊑t y ⇐⇒ x S y ∧ ¬ x E y ∧ ¬ x A y. (df⊑t)

Condition (2.12) shows that we can simplify the above definition: one object will be tem-

porally enclosed by another when it is not before or after the other. That is, we have the

equality ⊑t = Ē ∩ Ā:

∀x , y∈U(x ⊑t y ⇐⇒ ¬ x E y ∧ ¬ x A y). (df ′ ⊑t)

Hence, by (irrE) and (irrA), we obtain the reflexivity of ⊑t:

∀x∈U x ⊑t x. (r⊑t
)

By (ctE) and (ctA), the complements of E and A are transitive. From this and (df′ ⊑t),

we have the transitivity of ⊑t:

∀x , y,z∈U(x ⊑t y ∧ y ⊑t z =⇒ x ⊑t z). (t⊑t
)

Moreover, we get: one event is temporally enclosed by another iff every event simultaneous

with the first is also simultaneous with the other. Formally, for all x, y ∈ U:

x ⊑t y ⇐⇒
−→
S‘x ⊆

−→
S‘y ⇐⇒

←−
S ‘x ⊆

←−
S ‘y . (dfS⊑t)

We will further show (see (3.10)) that one event will be temporally enclosed by another

when the second exists at any instant at which the first exists.

From (df≡t), (df BT ), (df ′ ⊑t), (dfS⊑t), (dfEBT ), (dfPBT ), (dfPET ), for all x, y ∈ U:

x ≡t y ⇐⇒ x ⊑t y ∧ y ⊑t x , (df⊑t
≡t)

⇐⇒
−→
S‘x =

−→
S‘y ⇐⇒

←−
S ‘x =

←−
S ‘y, (dfS≡t)

⇐⇒
−→
P‘x =

−→
P‘y ∧

←−
P ‘x =

←−
P ‘y. (dfP≡t)

By the above, we again obtain that ≡t is reflexive, symmetric, transitive, and it is a congru-

ence with respect to the relations S, E and P. We will further show (see (3.11)) that two

events are completely simultaneous iff they exist at the same instants.

Remark 2.5. Russell (1914, p. 121) claimed: “[. . . ] if one event encloses another different

event, then the other does not enclose the one”; that is, according to him, the relation ⊑t is

supposed to be antisymmetric. However, (df⊑t
≡t) shows that⊑t need not be antisymmetric

because the condition x ≡t y does not entail the identity x = y. A simple model can

illustrate it (see model 1 in Appendix B). ⋄

Finally, notice that directly from our definitions and (asA) we have:

∀x , y∈U
(

x A y =⇒ y E x ∨ y ⊑t x).

In addition to ⊑t, we can introduce the relation of non-tangential temporal enclosure,

which we will label by ‘⋐t’. For arbitrary x, y ∈ U we put:

x ⋐t y ⇐⇒ y E x ∧ y A x. (df⋐t)

Directly from (irrE), (irrA), (tE) and (tA), the relation ⋐t is irreflexive and transitive.

From our definitions, (asE) and (asA) we have:

∀x , y∈U(x ⋐t y =⇒ x ⊑t y ∧ x .t y). (2.17)
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Furthermore, using (ctE) and (ctA) we obtain:

∀x , y,z∈U(x ⋐t y ∧ y ⊑t z =⇒ x ⋐t z),

∀x , y,z∈U(x ⊑t y ∧ y ⋐t z =⇒ x ⋐t z).

Thus, by (2.17) and (t⊑t
), we have the transitivity of ⋐t.

2.5.4. The relation of is an initial contemporary of . Russell (1914, p. 119) writes: “all

the events which are simultaneous with a given event, and do not begin later [. . . ] [w]e will

call [. . . ] the “initial contemporaries”of the given event.” The concept, which is indicated in

the quotation, determines the binary relation IC ≔ S\L = S\ Ĕ (is an initial contemporary

of ). So for all x, y ∈ U we put:

x IC y ⇐⇒ x S y ∧ ¬ x L y ⇐⇒ x S y ∧ ¬ y E x . (df IC)

From the reflexivity of S and the irreflexivity of L, we obtain that IC is reflexive. Further-

more, from (df BT ), (df IC), (BT⊆S) and (sS) we have:

∀x , y∈U(x BT y ⇐⇒ x IC y ∧ y IC x). (2.18)

3. Instants

3.1. The definition of instants. From events as “components of the real world”,

Russell (1914, 1936) constructed abstract objects called instants as certain distributive sets

of events. A given instant is to be a set of all simultaneous events, i.e., to put it succinctly—

those with at least one common moment of duration. To paraphrase the quotation on p. 2

concerning the points created by Whitehead, we can say that we define a given instant as a

set of all events that we will naturally say that all of them occur in it. Russell (1914, p. 119)

describes the creation of an instant informally in the following words:4

Let us take a group of events of which any two overlap, so that there is some time,

however short, when they all exist. If there is any other event which is simultaneous

with all of these, let us add it to the group; let us go on until we have constructed

a group such that no event outside the group is simultaneous with all of them but

all the events inside the group are simultaneous with each other. Let us define this

whole group as an instant of time.

Thus, for Russell, a set α of events is an instant iff α meets the following two conditions:

(c1) ¬∃u∈U(u < α ∧ ∀x∈α u S x),
(c2) ∀x , y∈α x S y.

The pair of the above conditions is logically equivalent to the following:

∀u∈U(u ∈ α ⇔ ∀x∈α u S x), i.e., α = {u ∈ U : ∀x∈α u S x}. (In)

Let In be the family of all instants. Since {u ∈ U : ∀x∈α : u S x} =
⋂

{~S‘x : x ∈ α} holds,

any instant α shall meet the following equality:

α =
⋂{~S‘x : x ∈ α

}

. (In′)

The above corresponds to the definition used by Russell (1936, p. 351):

α ∈ In ⇐⇒ α =
⋂{

X ∈ 2U : ∃x∈α X = ~S‘x
}

⇐⇒
⋂{~S‘x : x ∈ α

}

,

which he expressed in the words: “an instant is a class of events which is identical with the

common contemporaries of all the members of the class.”

Using (c1) and (c2), we obtain the following criterion of the identity of instants:

∀α,β∈In(α = β ⇐⇒ ∀x∈α∀y∈β x S y). (3.1)

Moreover, the quote in this section shows that Russell’s intention was for the instants to be

maximal sets of events (w.r.t. inclusion). Indeed, using (3.1), we can prove:

4Russell more formally expresses the same at the beginning of (Russell, 1936).
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Fact 3.1. In is identical with the family of all maximal sets of events among sets satisfying

(c2). More precisely, we get:

1. All instants are maximal in In, i.e., for all α, β ∈ In, if α ⊆ β then α = β.

2. Every set of events which is maximal among sets satisfying (c2) belong to In.

Notice that since there is at least one event, by (c1), no instant is empty. Now for any

event x, let Ix be the family of all instants at which x exists. Using the axiom of choice or

some of its equivalent, we can prove that:

∀x , y∈U
(

x S y ⇐⇒ ∃α∈In x, y ∈ α
)

. (3.2)

Hence, by the reflexivity of S, we have Ix , ∅ , In. As Russell (1914, pp. 119–120)

pointed out, it can also be demonstrated without using the axiom of choice, using axiom

(e ) he introduced (see the next section).

3.2. The relation is before on the family of instants. Russell (1914, p. 119) accepted that

“one instant is before another if the group which is the one instant contains an event which is

earlier than but not simultaneous with, some event in the group which is the other instant.”

Therefore, we formally introduce the binary relation ≺ (is before) on the family In:

α ≺ β ⇐⇒ ∃x∈α∃y∈β (x E y ∧ ¬ x S y) ⇐⇒ ∃x∈α∃y∈β x P y . (df ≺)

Russell makes instants three requirements. The first one is that the relation ≺ has to be a

strict total order over In (see Russell, 1914, pp. 118–119). We can get it using our defini-

tions, (t+P), (3.1) and (conS

P
), respectively.

Theorem 3.2. The relation ≺ is irreflexive, transitive and connex, i.e.:

∀α∈In α ⊀ α, (irr≺)

∀α,β,γ∈In(α ≺ β ∧ β ≺ γ =⇒ α ≺ γ), (t≺)

∀α,β∈In(α , β =⇒ α ≺ β ∨ β ≺ α). (con≺)

Lemma 3.3. Every connex and transitive binary relation is co-transitive.

So from (irr≺) and (t≺) we obtain that ≺ is asymmetric, i.e.:

∀α,β∈In(α ≺ β =⇒ β ⊀ α). (as≺)

Moreover, by (con≺), (t≺) and Lemma 3.3, ≺ is co-transitive, i.e.:

∀α,β,γ∈In(α ≺ β =⇒ α ≺ γ ∨ γ ≺ β). (ct≺)

Remark 3.1. Russell (1914, p. 119) wrote that the conditions (conS

P
), (asP) and (tP) are

sufficient to obtain the conditions (irr≺), (t≺) and (con≺). In fact, we can read the same

in point I, in footnote 1, where Russell lists four assumptions (a)–(d) that have to give us

that ≺ is a strict total order. Assumptions (a) and (b) state (irrP) and (tP), respectively

(previously Russell mentioned as assumption (asP) instead of (irrP), but it is irrelevant as

he also assumed (tP)). Assumption (c) states that the relations P and S are disjoint (which

we get from their definition). Assumption (d) is condition (conS

P
). Russell, however, does

not prove it. We will show below that this is not the case.

Note that, indeed, the proofs of the conditions (irr≺) and (con≺) are based on conditions

(c) and (d), respectively. However, to prove (t≺), one has to use (t+P), for the derivation

of which we used (⋆E

⇐), which does not exist among the conditions mentioned by Russell.

We can show that conditions (as≺) and (t≺) do not follow from conditions: (irrP), (tP),

(conS

P
) and P ∩ S = ∅ (see model 2 in Appendix B). ⋄

Standardly, for all α, β ∈ In we put:

α � β ⇐⇒ α ≺ β ∨ α = β . (df �)

In the light Theorem 3.2, the relation � is a total order over In.
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3.3. An axiom for existing instants. Russell (1914, pp. 119–120) writes:

We have next to show that every event is “at” at least one instant, i.e. that, given any

event, there is at least one class, such as we used in defining instants, of which it is

a member. For this purpose, consider all the events which are simultaneous with a

given event, and do not begin later, i.e. are not wholly after anything simultaneous

with it. We will call these the “initial contemporaries” of the given event. It will

be found that this class of events is the first instant at which the given event exists,

provided every event wholly after some contemporary of the given event is wholly

after some initial contemporary of it.

So for any event x, Russell picks the following set:

φx ≔ {u ∈ U : u IC x} (dfφx)

The last quote assumes that Russell used to show that φx is an instant. This assumption

is also presented in footnote 1 as point (e): “An event wholly after some contemporary of

a given event is wholly after some initial contemporary of the given event.” So Russell

accepted the following axiom:

a6 ∀x , y∈U
(

∃z∈U(z P y ∧ z S x) =⇒ ∃z∈U(z P y ∧ z IC x)
)

. (e )

Now let us note some facts about φx sets. Firstly, from the reflexivity of IC, we have:

∀x∈U x ∈ φx . (3.3)

Secondly, directly from (dfφx), (df IC) and (2.2), we get that φx satisfies the equivalent of

condition (c2): ∀x∈U∀y,z∈φx y S z. Hence, directly from the definition of In, we obtain:

Lemma 3.4. For any event x: φx ∈ In if and only if φx satisfies the equivalent of condition

(c1): ¬∃u∈U(u < φx ∧ ∀v∈φx u S v).

Thirdly, by the above lemma, (sS), (2.3), (df IC) and (dfφx ), we can prove:

Theorem 3.5. For any x ∈ U, φx ∈ In if and only if x satisfies the following condition:

∀y∈U
(

x E y =⇒ ∃z∈U(z P y ∧ z IC x)
)

. (%)

The “⇐”-part of the above theorem is a formal equivalent to what Russell writes on the

first page of (Russell, 1936): “I have shown [(1914)] that every event x hast a first instant

if every event that begins after x has begun in wholly after some event which exists when

x begins.”

From (e ), (sS) and (⋆E

⇒), we obtain that condition (%) holds for any event x. Thus, in

virtue of Theorem 3.5, having axiom (e ) and (3.3), the fact that x ∈ Ix , ∅ we can obtain

constructively:

Fact 3.6. For any event x, we have φx ∈ Ix ∈ In.

Notice that using (2.14), (sS) and (2.18) we obtain:

∀x , y∈U(x BT y ⇐⇒ φx = φy). (3.4)

3.4. The first instant at which a given event exists. Having the order ≺ on the set In,

we can show that φx “is the first instant at which [x] exists”. For this, let us note that in

virtue of (c2) and (⋆E

⇐), we obtain that if one of two events that have at least one instant in

common wholly precedes a third, the second is earlier than the third:

∀α∈In∀x , y∈α∀u∈U(x P u =⇒ y E u). (3.5)

Using the above, we can prove that:

∀α∈In∀x∈α α ⊀ φx , (3.6)

∀x∈U¬∃α∈Ix α ≺ φx . (3.6′)
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So φx is a minimal element in Ix since φx ∈ Ix . Hence, by (3.3), (con≺) and (3.6′), we

obtain that φx is the first instant at which x exists. Formally:

∀x∈U∀α∈Ix φx � α. (3.7)

Finally, notice that we get:

∀x , y∈U(x E y ⇐⇒ φx ≺ φy). (3.8)

Hence, by (con≺), we get:

∀x , y∈U(¬ x E y ⇐⇒ φy � φx ). (3.9)

Russell’s second requirement to In and ≺ consisted of three parts:

[. . . ] every event must be at a certain number of instants; two events are simul-

taneous if they are at the same instant, and one is before the other if there is an

instant, at which the one is, which is earlier than some instant at which the other

is. (Russell, 1914, p. 119)

So far, we have only shown that φx is the first instant at which the given event x exists.

However, we did not find a “certain number of instants” at which the event occurs. Notice

that, having (e ), also without the axiom of choice, we get (3.2), which, as Russell wrote,

shows that: “two events are simultaneous if they are at the same instant”.

Fact 3.7. From (e ) follows (3.2).

From (3.8) and Fact 3.6, we obtain: if one event is before the other, then “there is an

instant, at which the one is, which is earlier than some instant at which the other is.” For-

mally:

∀x , y∈U
(

x E y =⇒ ∃α∈Ix∃β∈Iy α ≺ β
)

.

Moreover, having (e ), also without the axiom of choice, we can prove:

∀x , y∈U(x ⊑t y ⇐⇒ Ix ⊆ Iy). (3.10)

Hence, by (df⊑t
≡t), we have:

∀x , y∈U(x ≡t y ⇐⇒ Ix = Iy). (3.11)

3.5. The last instant at which a given event exists. In (1914), Russell did not deal with the

problem of the existence of the last instant for a given event. However, Russell (1936, p. 363)

gives the condition that “ensures every event has a last instant”. Figuratively speaking, we

can get this condition as a “mirror image” of condition (e ), i.e., in the latter, we will replace

the relation E with the relation A ≔ S | P̆ ≕ ends after in (Russell, 1936, p. 348). Namely,

the condition x IC y we defined by: x S y ∧ ¬ y E x. Instead of the latter, we will use:

x S y ∧ ¬ y A x, which says that x is a final contemporary of y, i.e., x is contemporaneous

with the end of y; in short: x FC y. That is, for all x, y ∈ U we put:

x FC y ⇐⇒ x S y ∧ ¬ y A x. (df FC)

In (1936, p. 363) Russell accepted the following axiom:

∀x , y∈U
(

∃z∈U(x S z ∧ y P z) =⇒ ∃z∈U(y P z ∧ z FC x)
)

. ( e)

Now for any x ∈ U we put:

λx ≔ {u ∈ U : u FC x}. (df λx)

Let us note some facts about λx sets. Firstly, from the reflexivity of FC, we have

∀x∈U x ∈ λx . (3.12)

Secondly, directly from (df λx), (df FC) and (2.13), we get that λx satisfies the equivalent

of condition (c2): ∀x∈U∀y,z∈λx y S z. Hence, directly from the definition of In, we obtain:

Lemma 3.8. For any event x: λx ∈ In if and only if λx satisfies the equivalent of condition

(c1): ¬∃u∈U(u < λx ∧ ∀v∈λx u S v).
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Thirdly, by the above lemma, (sS), (df FC), (df λx), (ctA), (2.12), we can prove:

Theorem 3.9. For any x ∈ U, λx ∈ In if and only if x satisfies the following condition:

∀y∈U
(

x A y =⇒ ∃z∈U(z P y ∧ z FC x)
)

. (‰)

From ( e), (sS) and (⋆E

⇒ ) we obtain that condition (‰) holds for any event x. Thus, in

virtue of Theorem 3.9 and (3.12), we obtain:

Fact 3.10. For any event x, we have λx ∈ Ix ∈ In.

Now notice that from our definitions, (ET⊆S) and (sS) we have:

∀x , y∈U(x ET y ⇐⇒ x FC y ∧ y FC x). (3.13)

Hence, using (2.16) and (sS), analogous to (3.4), we get:

∀x , y∈U(x ET y ⇐⇒ λx = λy). (3.14)

Furthermore, using (3.5), analogous to (3.6) and (3.6′), we can prove that:

∀α∈In∀x∈α λx ⊀ α, (3.15)

∀x∈U¬∃α∈Ix λx ≺ α. (3.15′)

So λx is a maximal element in Ix since λx ∈ Ix . From (3.7), (con≺) and (3.15′) we have

that λx is the last instant at which the an event x exists and moreover for any x ∈ U:

Ix = {α ∈ In : φx � α � λx }. (3.16)

So we see that having ( e), without the axiom of choice, we can prove:

∀x , y∈U(x A y ⇐⇒ λy ≺ λx ). (3.17)

Hence, by (con≺), we get:

∀x , y∈U(¬ x A y ⇐⇒ λx � λy). (3.18)

Furthermore, from our definitions, (tĒ
P
), (tĀ

P
) and (tP) we get:

∀x , y∈U(x P y ⇐⇒ λx ≺ φy).

Finally, directly from our definitions and one of the pairs {(3.9), (3.18)}, {(3.4), (3.14)},

{(3.8), (3.17)}, respectively, for all x, y ∈ U we get:

x ⊑t y ⇐⇒ φy � φx ∧ λx � λy ,

x ≡t y ⇐⇒ φy = φx ∧ λx = λy ,

x ⋐t y ⇐⇒ φy ≺ φx ∧ λx ≺ λy .

Of course, for the second condition, we could also use the first, (df⊑t
≡t) and the antisym-

metry of �.

Notice that (e ) and ( e) do not follow from a1–a5 and accepted definitions (see model 3

in Appendix B). In (1936), on the first page, Russell wrote that “the existence of instants

requires hypotheses which there is no reason to suppose true”, and further he adds: “There

is, however, no reason, either logical or empirical, for supposing these assumptions [i.e.

(e ) and ( e)] to be true.” However, Theorems 3.5 and 3.9 show that these assumptions are

not only sufficient but also necessary to obtain the first and the last instant at which a given

event exists, respectively.

Furthermore, it is not clear why in (1936) Russell challenges conditions (e ) and ( e), in

(1914) he accepts the condition (⋆E

⇒), and in (1936) definitions of relations begins before

(≔ S | P) and ends after (≔ S | P̆). Namely, condition (⋆E

⇒) says that if x E y, there should

exist an event z such that z S x and z P y. Also, the conditions (⋆E

⇒) and (e ) together say

that if x E y, there is an event u such that u IC x and u P y. So if we accept (⋆E

⇒) and

reject (e ), then there are events x, y and z such that x E y, z S x, x E z and z P y hold.

After all, in such a situation, it seems more natural be exist an initial fragment z of x which
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wholly precedes y, i.e. we have z BT x and z P y. The initial fragment satisfies condition

(e ). Similar considerations can be made for condition (e ) and the definition of the relation

begins before, as well for condition ( e) and the definition of the relation ends after, which

are considered in (Russell, 1936, p. 348).

3.6. The density of ≺. Russell’s third requirement for ≺ says that it is dense on In (see

1914, 119), i.e.:

∀α,β∈In

(

α ≺ β =⇒ ∃γ∈In(α ≺ γ ∧ γ ≺ β)
)

. (d≺)

To obtain this, Russell (1914, p. 120) assumed a specific condition which he reiterated in

paragraph III of footnote 1 as: “( f ) If one event wholly precedes another, there is an event

wholly after the one and simultaneous with something wholly before the other.” Formally:

a7 ∀x , y∈U
(

x P y =⇒ ∃z∈U(x P z ∧ ∃u∈U(z S u ∧ u P y))
)

. (f )

To make (f ) easier to express, we can use (⋆E

⇐ ), obtaining:

∀x , y∈U
(

x P y =⇒ ∃z∈U(x P z ∧ z E y)
)

. (f ′)

We can prove that (d≺) follows from (f ′), (3.7), (3.8), (t≺) and Fact 3.6. Moreover, note

that as an axiom we could take (f ′) because (f ) follows from (⋆E

⇒) and (f ′).

About assumption (f ), Russell, however, notes:

Whether this is the case or not, is an empirical question; but if it is not, there is no

reason to expect the time-series to be compact [dense]. (Russell, 1914, p. 120)

The above shows that Russell believed that, in a specific sense, axiom (f ) is not only suf-

ficient but also necessary for the density of ≺ in the set of instants. It turns out that this is

so.

Theorem 3.11. If conditions a1–a5, (e ), ( e) hold and ≺ is dense, then (f ) holds.

Thus, the following comes as a surprise:

In KEW [i.e. (1914)] Russell adopts postulates II and III [i.e. axioms (e ) and (f ),

respectively], which entail the compactness [i.e. density] of the series of instants

[. . . ]. But these postulates are seriously a posteriori. I agree with the Russell of OT

[i.e. (1936)] that there are no obvious reasons for accepting either as epistemically

basic. So we should seek more evident sufficient conditions for compactness.

(Anderson, 1989, p. 256)

Alas, the best condition I can think of that entails compactness is just:

E. P(x , y) ⊃ (∃z)[P(x , z).P(z, y)],

i.e., there is an event between x and y if x wholly precedes y. As far as I can

see, Russell’s two postulates from KEW [. . . ] are no better epistemically than this.

Worse, I think. (Anderson, 1989, p. 257)

Anderson’s words above are surprising for two reasons. Firstly, his condition E expresses

the density of P:

∀x , y∈U
(

x P y =⇒ ∃z∈U(x P z ∧ z P y)
)

. (dP)

The density of P entails (f ) since S is reflexive. Thus, each epistemic model of (dP) is also

a model of (f ). Thus, it is easier to find the epistemic model of (f ) than for (dP). Second,

all assumptions of Theorem 3.11 apply in theory from (Russell, 1936). Thus we find no

“more evident sufficient conditions” for density.

4. Russell’s second theory of events and instants

As we remember (see Remarks 2.1 and 2.4), Russell’s second theory of events and in-

stants is a theory of structures of the form 〈U, P〉, where U is a non-empty universe (com-

posed of events) and P is a binary relation on U. In such structures Russell (1936, p. 348)

defines the relation S ≔ P̄ \ P̆, i.e., in elementary notation, he used condition (dfPS). The
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first three axioms of Russell’s second theory express the irreflexivity of P and the transitivity

of P and S | P. So, in elementary notation, he used conditions (tP) and the following:

∀x , y,z∈U
(

∃u∈U(x Su ∧ uP y) ∧ ∃u∈U(y Su ∧ uP z) =⇒ ∃u∈U(ySu ∧ uP z)
)

.

(tS |P)

In (1936, p. 348), Russell also introduced the relations: begins before ≔ S | P, begins

after ≔ P̆ | S, ends after ≔ S | P̆ and ends before ≔ P | S̆. Since S is symmetric, i.e. S̆ =

S, begins after and ends before are converse to begins before and ends after, respectively.

Indeed, (begins before)̆ = (S | P )̆ = P̆ | S ≕ begins after and (ends after)̆ = (S | P̆ )̆ =
P | S ≕ ends before. The relations begins before and ends after correspond to the relations

E and A, respectively. In (Russell, 1936, p. 350), the set In is defined in the same way as

in (Russell, 1914).

4.1. Russell’s second theory vs his first theory of events. To compare the theory from

(Russell, 1936) with the theory from (Russell, 1914), we need to define the relation E in

the former. For this, let us assume that E ≔ S | P ≕ begins before, i.e., in elementary

notation, we use condition (⋆E). We can prove that the fragment of Russell’s second theory

based on the first three of its axioms is definitionally equivalent to the fragment of his first

theory based on axioms a1–a5:

Theorem 4.1. The theory based on (irrP), (tP), (dfPS), (tS |P), (⋆E) is equivalent to the

theory based on a1–a5, (df P).

By the above theorem and model 3 from Appendix B, condition (e ) does not follow from

the first three axioms of Russell’s second theory plus definitions (df IC). So it is interesting

how Russell obtained in (1936) that for any event x, the set φx belong to In.

We will show that Russell (1936, p. 353) accepts (e ) as an additional assumption. Firstly,

we read: “The initial contemporaries of an event x are the events which exists when x
begins, i.e. ~S‘x − P̆“~S‘x.” So there is an event y that satisfies the condition: x S y ∧

¬∃z∈U(x S z ∧ z P y). Given (⋆E), we simplify it to the condition: x S y ∧ ¬ x E y.

However, the latter defines y IC x. Secondly, we read: “The subsequent contemporaries

of an event x are the events which overlap with x but begin later, i.e. ~S‘x ∩ P̆“~S‘x.” So

there are events y that satisfy the condition: x S y ∧ ∃z∈U(x S z ∧ z P y). Given (⋆E),

we simplify it to the condition: x S y ∧ x E y. Third, we read: “Then our condition for the

existence of a first instant of x is: Every subsequent contemporary of x begins after the end

of some initial contemporary of x.” So, literally speaking, the condition given by Russell

formally has the form:

∀x , y∈U
(

x S y ∧ ∃z∈U(x S z ∧ z P y) =⇒ ∃z∈U(z P y ∧ z IC x)
)

,

∀x , y∈U
(

x S y ∧ x E y =⇒ ∃z∈U(z P y ∧ z IC x)
)

.

However, these notations can be simplified to (e ). Indeed, each of the conditions ¬ x S y

∧ ∃z∈U(xS z ∧ zP y) and ¬ xS y ∧ xE y entails xP y. Hence we get ∃z∈U(zP y ∧ z IC x)
because IC is reflexive.

4.2. Are there events lasting only for an instant? The adopted axioms do not exclude that

there may be an event that lasts only for an instant. Notice that in model 1 from Appendix B,

all events take place for only one, the same instant. Therefore, the fact that no event lasts

only for an instant also does not follow from assumptions (irrP), (tP), (tS |P), (e ) and ( e)

adopted in (Russell, 1936).

In connection with the study of the density of the set of instants, Russell (1936, p. 351)

writes:

[. . . ] in general we shall have x S | P | S x; this is only falls if

~S‘x ∩ P“~S‘x = Λ . ~S‘x ∩ P̆“~S‘x = Λ, [where Λ ≔ ∅]
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i.e. if no contemporary of x ends before x or begins after x begins. In that case,
~S‘x ∈ In, i.e. x lasts only for one instant.

However, by (sS), each of the above two conditions is equivalent to ¬ x S | P | S x, i.e.:

¬∃u , v∈U(x S u ∧ u P v ∧ v S x). ($)

Indeed, firstly, we have: ¬∃u∈U(x S u ∧ u P | S x), i.e. “no contemporary of x ends

before x.” Secondly, we have: ¬∃v∈U(x S v ∧ v P̆ | S x), i.e. “no contemporary of x
begins after x begins.” Notice that using Theorems 3.5 and 3.9 we obtain:

Lemma 4.2. For any x ∈ U, from condition ($) follow conditions (%) and (‰), and so we

obtain that φx and λx are instants.

Now note that x ∈ φx ⊆ ~S‘x, x ∈ λx ⊆ ~S‘x and ~S‘x satisfies the equivalent of (c1):

¬∃u∈U(u < ~S‘x ∧ ∀
v∈~S‘x

u S v). Hence, by (In), we obtain:

Lemma 4.3. For any event x: ~S‘x ∈ In iff ~S‘x satisfies the condition ∀
u , v∈~S‘x

u S v.

Using Lemmas 4.2 and 4.3, Fact 3.1(1), we can prove (without using the axiom of choice

and axioms (e ), ( e)):

Fact 4.4. for any x ∈ U, condition ($) is equivalent to each of the following:

(i) there are no events u and v such that u S x, v S x and ¬ u S v, i.e. ∀
u , v∈~S‘x

u S v;

(ii) ~S‘x is an instant;

(iii) Ix =
{~S‘x
}

;

(iv) ~S‘x ⊆ φx , and so ~S‘x = φx ;

(v) ~S‘x ⊆ λx , and so ~S‘x = λx .

Obviously, condition (iii) implies the following:

(vi) Ix is a singleton, i.e. x lasts only for an instant.

Thus, without using the axiom of choice, it follows that each of equivalent conditions ($),

(i), . . . , (v) implies (vi). But, using this axiom, we obtain that

Fact 4.5. All conditions of ($), (i), . . . , (vi) are equivalent to each other.

Moreover, without using the axiom of choice and axioms (e ) and ( e), we can derive:

Fact 4.6. From ($) entail the following conditions:

(vii) Ix =
{

φx
}

;

(viii) λx = φx ∈ In;

(ix) Ix =
{

λx
}

.

However, using axioms (e ) and ( e) but without the use of the axiom of choice, we

obtain:

Fact 4.7. All conditions of ($), (i), . . . , (ix) are equivalent to each other.

4.3. A sufficient condition for the existence of instants. (Russell, 1936, p. 358) states

that: “a sufficient condition for the existence of instants is”:

∃x , y∈U
(

x S y ∧ ¬∃u , v∈U(u S x ∧ u P v ∧ v S y)
)

.

Next, Russell (1936) concludes: “If this hypothesis is satisfied, there are two events a, x
such that [. . . ] and the last instant of a is the first instant of x.” Indeed, by applying the

facts previously proved in this work but without (e ), ( e) and the axiom of choice, it can be

shown that:

Fact 4.8. Let x and y be any events such that

x S y ∧ ¬∃u , v∈U(u S x ∧ u P v ∧ v S y). (£)

Then:
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1. φx = λy and φx ∈ In.

2. Neither x E y or y A x.

3. ¬ x A y iff x ⊑t y and Ix =
{

λx
}

=

{

φx
}

=

{

λy
}

⊆ Iy .

4. ¬ y E x iff y ⊑t x and Iy =
{

φy
}

=

{

λy
}

=

{

φx
}

⊆ Ix .

5. x ≡t y iff Ix =
{

φx
}

=

{

φy
}

=

{

λx
}

=

{

λy
}

= Iy and x satisfies condition ($).

4.4. The problem of the density of ≺ in (Russell, 1936). In (Russell, 1914, p. 120), the

assumption (f ), i.e. axiom a7, was controversial for Russell (cf. the quote on p. 15). In

(1936, p. 351), Russell writes that condition (d≺) holds “if (a) no event lasts only for an

instant, (b) any two overlapping events have at least one instant in common. These condi-

tions are sufficient; the necessary conditions are slightly less stringent.” In the light of the

previous point, Russell’s conditions (a) and (b) can be written as:

∀x∈U∃u , v∈U(x S u ∧ u P v ∧ v S x), (a )

∀x , y∈U(x S y =⇒ ∃α∈In x, y ∈ α). (b )

Notice that condition (b ) is the “⇒”-part of (3.2). Moreover, in the light of Theorem 3.11,

if indeed conditions (a ) and (b ) was to be sufficient for the density of the relation ≺, their

conjunction should be equivalent to condition (f ).

However, Russell was wrong, as Anderson (1989, p. 257) demonstrated. Namely, An-

derson made a diagram showing a model in which (irrP), (tP), (dfPS), (tS|P), (a ) and (b )

hold but (d≺) does not hold. In this diagram, Anderson only outlined a fragment of the

model by adding: “And if the diagram is imagined to continue in the same way [. . . ].”5

Remark 4.1. Anderson (1989, p. 256) wrote:

Unfortunately, there’s an error in Russell’s proof. {endnote 10: The error occurs

on line 10 from the bottom, p. 219 (line 7 from the bottom of p. 351 of the reprint

of OT [i.e. (1936)] in Logic and Knowledge, [. . . ]). The stated further condition is

not sufficient as claimed [whereby, the “further condition” is to be (b )].}

However, Anderson did not indicate where Russell went wrong in his argument. Let us

explain where Russell made a mistake.

Russell (1936, p. 351) notes that the density of ≺

requires [we will be using our symbolism]

α, γ ∈ In ∧ x ∈ α ∧ z ∈ γ ∧ x P y =⇒

∃β,a ,c , y,y′ a ∈ α ∧ c ∈ γ ∧ β ∈ In ∧ y, y′ ∈ β ∧ a P y ∧ y′ P c .

For this it is necessary (not sufficient) to have

P ⊆ S | P | S | P | S

since, in the above, x S a ∧ a P y ∧ y S y′ ∧ y′ P c ∧ c S z and x P z.

Next, Russell aptly points out that assuming (a ) we get:

P | S ⊆ S | P | S | P | S.

And since, as Russell notices, “P ⊆ P | S is always true”, we get P ⊆ S | P | S | P | S. Next

Russell adds: “The only further condition required for [the density of ≺] is, by the above,

[(b )].” Russell, however, does not explain this. Indeed, the condition “P ⊆ S | P | S | P |

S” says that for arbitrary x, z ∈ U we have:

x P z =⇒ ∃a , y,c , y′∈U(x S a ∧ a P y ∧ y S y′ ∧ y′ P c ∧ c S z).

But using (b ), from the above, we only get:

∀α,γ∈In∀x∈α∀z∈γ
(

x P z =⇒ ∃α′ ,γ′ ,β∈In(x ∈ α′ ∧ α′ ≺ β ≺ γ′ ∧ z ∈ γ′),

5Model 4 in Appendix B formally presents Anderson’s diagram. See also model 5 in this appendix.
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which is even true in Anderson’s diagram (see model 4, p. 27), where α′ ≺ α, β = α and

γ ≺ γ′, and in model 5. We also do not get (d≺) starting with the condition:

x P z =⇒ ∃a , y,c∈U(x S a ∧ a P y ∧ y S x ∧ x P c ∧ c S z),

which is stronger than “P ⊆ S | P | S | P | S”. From the above and (b ) we only get:

∀α,γ∈In∀x∈α, z∈γ
(

x P z =⇒
∃α′ ,γ′ ,β∈In(x ∈ α′ ∧ x ∈ β ∧ α′ ≺ β ≺ γ′ ∧ z ∈ γ′)

)

,

which is also true in models 4 and 5 on p. 27.

Finally, note that Russell unnecessarily complicated the notation because it was enough

to note that from (a ) for arbitrary x, y ∈ U we have a condition:

x P z =⇒ ∃a , y∈U(x S a ∧ a P y ∧ y S x ∧ x P z),

which is stronger than previously considered. Hence, by (b ), we obtain:

∀α,γ∈In∀x∈α∀z∈γ
(

x P z =⇒ ∃α′ ,β∈In(x ∈ α′ ∧ x ∈ β ∧ α′ ≺ β ≺ γ)
)

,

which is not true in Anderson’s diagram (model 4 but it is true in model 5. Unfortunately,

in neither of the three considered cases, we get α � α′ (see model 5). ⋄

5. Thomason’s theory of events vs Russell’s theories

Thomason’s theory from (1989), like Russell’s theory from (1936), has a primitive re-

lation P characterized by two axioms (irrP) and (ThP). Thus, we obtain both axioms of

Thomason’s theory in the theory we reconstruct.

Furthermore, Thomason (1989, p. 49) defined the relations begins before and ends before

as bb ≔ (P̆ )̄ | P and eb ≔ P | (P̆ )̄ , respectively. So, by (dfPE), bb corresponds

with E. Moreover, in virtue of (2.8), we have eb = P | S; so eb corresponds with Ă

since Ă = (S | P̆)˘= P | S̆ = P | S.

From (ThP) we obtain ‘xPy ∧ yP x ⇒ xP x ∨ yPy’ and ‘xPy ∧ yPu⇒ xPu ∨ yPy’.
From them and (irrP), we obtain (asP) and (tP), respectively.

To compare Russell’s theories with the theory from (Thomason, 1989), we must define

the relations E and S in the later one. For this, we put E ≔ (P̆ )̄ | P ≕ bb, i.e., we use

(dfPE); and S ≔ P̄ ∩ (P̆)¯, i.e., we use (dfPS). We can prove that both the fragment of

Russell’s first theory based on axioms a1–a5 and the fragment of Russell’s second theory

based on the first three of its axioms are definitionally equivalent to Thomason’s theory

based on (irrP) and (ThP), i.e. we can prove that (cf. Theorem 4.1):

Theorem 5.1. Let U be a non-empty set and P, S, E be binary relations on U. Then the

following theories of structures of the form 〈U, P, S, E〉 are equivalent:

(1) the theory based on (irrP), (tP), (tS|P), (dfPS), (⋆E);

(2) the theory based on a1–a5, (df P);

(3) the theory based on (irrP), (ThP), (dfPE), (dfPS).

6. Russell’s and Whitehead’s influence on the works of

Leśniewski, Tarski and Lejewski

When Russell wrote “one spatial object may be contained within another, and entirely

enclosed by the other” (see quote on p. 2), he meant the relation of being a part of on which

Leśniewski (1991a,b) based his theory called mereology. With this concept, Leśniewski

defines the concept of being a collective class of (some objects). Collective classes (sets)

are certain wholes composed of parts. Of course, Leśniewski did not invent the concept of a

collective class. It is discussed, for example, by Whitehead and Russell in their comments in

Principia Mathematica (1910–3) concerning the theory of classes developed in that work.

Whitehead made use of such sets in his thoughts on the philosophy of space-time (see, e.g.,



20 ANDRZEJ PIETRUSZCZAK

1919; 1920; 1929). However, Whitehead and Russell used these terms informally. They

were formalized only by Leśniewski, who created mereology.

In constructing instants, Russell used Whitehead’s method of extensive abstraction

(which he knew before Whitehead published it). The operation of this method can be seen

in Tarski’s (1929; 1956) construction of points in his geometry of solids. By presenting this

construction, it is easier to explain what Russell meant when in the quote mentioned above

from p. 2, he wrote about the point as a specific class of spatial objects which contain a

point. The primary concepts of Tarski’s theory are the concept of solid (as an appropriate

piece of space), the concept of a ball (or a sphere; as a solid of a particular kind), and the

notion of being a part of. Points are identified with distributive sets of concentric balls.

Intuitively, the point is common to all balls concentric with a given ball. We abstract from

everything that is not common to concentric balls, i.e. we also ignore their “extensiveness”.

Only their middle remains. Of course, this centre is not in the universe of considerations,

i.e. among solids. We treat it as an abstract entity. To put it succinctly, a set of concentric

balls “imitates” a point (which, as a distributive set, is an abstract entity). The main idea

of Tarski’s theory is that one can define the relation concentricity of balls using only the

notion being a ball and the notion being a part of.

Let S be the set of all solids and B be the set of all balls (B ( S). In the set B, we define

a concentric relation ⊚, which is reflexive, symmetric and transitive (see Gruszczyński and

Pietruszczak, 2008, 2009). For any ball b, we define a distributive set πb of all concentric

balls from b, i.e. πb ≔ {x ∈ B : x ⊚ b}. We identify the set πb with the point defined by b.

Generally, a point is a distributive set of all balls concentric with a given ball. Let Π be the

family of all points, i.e. we put Π ≔ {π ∈ 2B : ∃b∈B π = πb } = {πb : b ∈ B}. Notice that

for the points, we get the following conditions:

(p1) ¬∃b∈B(b < π ∧ ∀x∈π b ⊚ x),
(p2) ∀x , y∈π x ⊚ y.

The pair of the above conditions is logically equivalent to the following:

∀b∈B(b ∈ π ⇔ ∀x∈α b ⊚ x), i.e., π = {b ∈ B : ∀x∈π b ⊚ x}. (Pt)

The above conditions correspond to the conditions (c1), (c2) and (In) that Russell used to

construct instants from events. However, there is a fundamental difference between Rus-

sell’s solution and Tarski’s solution. For any instant α, Russell gets α =
⋂

{~S‘x : x ∈ α}.
However, in Tarski’s theory, there is a trivial condition to this. Namely, for any point π

we have {πb : b ∈ π} = {π}, where πb = ~⊚‘b, so π =
⋂

{π}. Indeed, for any x, y ∈ π
πx = π = πy holds since ⊚ is an equivalence relation. For a set of instants, such a trivial

case does not hold because S is not an equivalence relation, i.e. for different instants x and

y, we can have ~S‘x , ~S‘y.

In comparing Russell’s construction of instants with Tarski’s construction of points, it

is irrelevant that in the former, we used events and in the latter, only balls, not all solids.

Namely, Tarski’s construction of points can be modified in such a way that—as in the pre-

sented quote—a given point is the set of all solids that can be said to contain it. However,

the points are still designated by balls. Thus, for any ball b, to the point πb belongs every

and only such a solid whose part is some sphere concentric with the sphere b, i.e., for any

s ∈ S: s ∈ πb iff there is an x ∈ B such that x ⊚ b and x is part of s. With this approach,

we still get {πb : b ∈ π} = {π}.
Tarski’s geometry of solids based on mereology is classified as point-free geometries, in

which the primary notion of spatial region is used instead of the primary notion of dimen-

sionless point. In it, points are defined as abstract formations obtained based on regions.

Let us add that the universe of the theory, i.e. the set of all regions, is not space. The space

is the largest region; the other regions are its mereological parts.

It can be assumed that Russell’s paper also influenced Lejewski’s work, who created

a theory, chronology, which is based directly on mereology, and uses two primitives: is
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wholly earlier than and is an object whose duration is shorter than that of (see Lejew-

ski, 1982, 1986). Lejewski (1986) also planned to create a theory of objects extended and

distributed in space, which he called stereology.

Finally, note that Peter Simons (1987, pp. 81, 82, 92, 93) expressed similar views on the

topic discussed in this section.

7. Future work – intents again

Russell (1914) outlines a different “solution” to obtain a dense set of instants. It is sup-

posed be to define instants by the relation ⊑t of temporal enclosure:

Instants may also be defined by means of the enclosure-relation, exactly as was

done in the case of points. [. . . ] In order that the relation of temporal enclosure

may be a “point-producer,” we require (1) that it should be transitive; (2) that every

event encloses itself but if one event encloses another different event, then the other

does not enclose the one; (3) that given any set of events such that there is at least

one event enclosed by all of them, then there is an event enclosing all that they all

enclose, and itself enclosed by all of them; (4) that there is at least one event. To

ensure infinite divisibility, we require also that every event should enclose events

other than itself. (Russell, 1914, p. 121)

Regarding the requirements of (1) and (2), we showed that the relation ⊑t is transitive and

reflexive. In Remark 2.5, however, we explained that Russell’s requirement for it to be an-

tisymmetric (“if one event encloses another different event, then the other does not enclose

the one”) is impracticable. By (df⊑t
≡t), we only have: if x ⊑t y and x .t y, then y @t x.

We will formally express requirement (3) as follows:

∀X∈2U
(

∃u∈U∀x∈X u ⊑t x =⇒
∃y∈U(∀u∈U(∀x∈X (u ⊑t x ⇒ u ⊑t y) ∧ ∀x∈X y ⊑t x

)

.

Requirement (4) is our assumption that U , ∅. Since ⊑t may not be antisymmetric, for the

last additional requirement, it should rather have the form: every event should enclose an

event which is not completely simultaneous with it. Formally:

∀x∈U∃y∈U(y ⊑t x ∧ x .t y). (7.1)

Continuing with the last quote, Russell writes:

Assuming these characteristics, temporal enclosure is an infinitely divisible point-

producer. We can now form an “enclosure-series” of events, by choosing a group

of events such that of any two there is one which encloses the other; this will be

a “punctual enclosure-series” if, given any other enclosure-series such that every

member of our first series encloses some member of our second, then every mem-

ber of our second series encloses some member of our first. Then an “instant” is

the class of all events which enclose members of a given punctual enclosure-series.

So an “enclosure-series” of events is supposed to be any non-empty set Q of events satis-

fying the following condition:

∀x , y∈Q(x ⊑t y ∨ y ⊑t x). (7.2)

Let ES be the family of all “enclosure-series” of events. Moreover, a set Q from ES is a

“punctual enclosure-series” iff Q satisfies the following condition:

∀Y ∈ES

(

∀x∈Q∃y∈Y y ⊑t x ⇒ ∀y∈Y∃x∈Q x ⊑t y
)

.

Let PES be the family of all “punctual enclosure-series”. Finally, for any Q ∈ PES we put

FQ ≔ {u ∈ U : ∃x∈Q x ⊑t u}. In the light (7.2) we can consider FQ to be a filter generated

by Q. So by an instant, Russell means any filter X = FQ for Q ∈ PES.

The way shown by Russell resembles the one chosen by Grzegorczyk (1950, 1960) to

define points in mereological fields.6 It would resemble it more if we had chosen the relation

6Grzegorczyk’s theory (1960) is examined in detail in (Gruszczyński and Pietruszczak, 2018, 2019).
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of non-tangential temporal enclosure, ⋐t, instead of the relation ⊑t. Then, in virtue of

(2.17), condition (7.1) can be replaced by the following:

∀x∈U∃y∈U y ⋐t x

and condition (7.2) can be replaced by the condition below:

∀x , y∈Q(x ⋐t y ∨ x ≡t y ∨ y ⋐t x).

It is a counterpart of the first of the three conditions to be met by Grzegorczyk’s pre- points

in mereological fields (see Grzegorczyk, 1960; Gruszczyński and Pietruszczak, 2018).

Counterparts of the second and third of these conditions would respectively say that for

any Q from PES: ∀x∈Q∃y∈Q y ⋐t x and ∀x , y∈U(∀u∈Q(u S x ∧ u S y) ⇒ x S y). Grze-

gorczyk (1960), similar to Russell, as a point takes any filter generated by some pre-point.

It seems that the sets from PES should meet all counterparts of conditions for pre-points.

In future works, we will investigate whether Russell’s goals can be achieved in an above-

presented way.

Appendix A. Proofs

Proof of (conS

E
). “(conS

P
) ⇒ (conS

E
)” In the light of (df P), we make use of P ⊆ E.

“(conS

E
)⇒ (conS

P
)” Suppose that ¬ x P y and ¬ y P x. Then, by (df P), we have: ¬ x E y ∨

x S y and ¬ y E x ∨ y S x. Hence, by (sS), we get: x S y ∨ ¬(x E y ∨ y E x). This and

(conS

E
) give us x S y.

Proof of (ctE). Suppose that (a) x E y and (b) ¬ x E z. Then, by (df P) and (⋆E) we for

some u0 ∈ U we have (a1) x S u0, (a2) u0 P y and (b′) ∀u∈U(x S u ⇒ ¬ u P z). If u0 S z,

then z E y, by (sS), (a2), (df P) and (⋆E

⇐). So we assume that ¬ u0 S z. Then, by (conS

P
),

either u0 P z or z P u0. But, by (a1) and (b′), we have ¬ u0 P z. So z P u0; so also z P u0.

Moreover, by (a2), also u0 E y. Therefore, by (tE), we have z E y.
Proof of (ThP). Suppose that (a) xP y, (b) zPu and (c) ¬ xPu. Then, by (c) and (df P),

either ¬ x E u or x S u. In the first case, by (b) and (tĒ
P
), we have z P y. Hence, by (a) and

(tP), we have z P y. In the second case, by (sS) and (t+P), we also have z P x.

Proof of (2.4). Let (a) xPy, (b) ySz, and (c)¬ zSx. Then, by (c) and (conS

P
), either zP x

or x P z. However, in the first case, by (a) and (tP), we have z P y, which contradicts (b).

Proof of (asA). Assume for a contradiction that x A y and y A x. Then for some z1 we

have: (a1) x S z1 and (b1) y P z1; and for some z2 we have: (a2) y S z2 and (b2) x P z2. Then

from (b2), (a2), (b1), (sS) and (t+P) we have x P z1, which contradicts (a1).

Proof of (ctA). Suppose that x A y and ¬ x A z. Then for some u we have (a) x S u, (b)

y P u and (c) ∀v (x S v ⇒ ¬ z P v). So ¬ z P u, by (a) and (c). Hence either z S u or ¬ z E u.

In the first case, by (b), we have z A y. In the second case, by (b) and (tĒ
P
), we have y P z.

Hence we also have z A y since z S z.

Proof of Lemma 2.1. Let a relation R be asymmetric and co-transitive. Assume that

x R y and y R z. Then ¬ z R y since R is asymmetric. So x R z since R is co-transitive.

Proof of (tĀ
P
). Suppose that (a) xP y and (b) ¬ zA x, i.e. ∀u∈U(uS z ⇒ ¬ xPu). Then,

by (b) and (rS), we have ¬ x P z. But, by (a) and (b), we have ¬ y S z. Hence, by (conS

P
),

either y P z or z P y. In the first case, by (a) and (tP), we have a contradiction: x P z.

Proof of (2.11). Assume that (a) z S x, (b) ¬ z S y and (c) ¬ x A y, i.e. ∀u∈U(x S u ⇒
y P u). Then, by (sS), (a) and (c), we have ¬ y P z. Hence, by (b) and (conS

P
), we have

z P y. From this, (a) and (⋆E

⇐) we have x E y.

Proof of (2.14). “⇒” Let (a) x BT y, i.e. (a1) ¬ x E y, (a2) ¬ y E x. Now suppose that

(b) ¬ x E z and (c) x S z. Then, by (ctE), (a2) and (b), we have (d) ¬ y E z. Assume for a

contradiction that (e) ¬ y S z. Then, by (d) and (conS

E
), we have (f) z E y. However, (2.1),

(sS), (a1), (c), (e) and (f) give a contradiction. So we have y S z. Moreover, we can get the

converse implication similarly. “⇐” Suppose that ∀z∈U(¬ x E z ∧ x S z ⇔ ¬ y E z ∧ y S z).
Then, by (irrE) and (rS), we obtain ¬ x E y and ¬ y E x, i.e., x BT y.
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Proof of (2.15). Let x ET y, i.e., ¬ x A y and ¬ y A x. Moreover, suppose that z A x
and z S x. Then z A y, by (dfAET ). Now assume for a contradiction that ¬ z S y. Then, by

(2.11), either y E x or x A y. So x E y. Hence ¬ y E x, by (asE). So, by (df′ ⊑t), we have

x ⊑t y. Therefore, by (dfS⊑t), we obtain a contradiction: ¬ z S x. Moreover, we can get

the converse implication similarly.

Proof of (2.16). “⇒” Let (a) x ET y, i.e. (a1) ¬ x A y, (a2) ¬ y A x. Now suppose that

(b) ¬ x A z and (c) x S z. Then, by (ctA), (a2) and (b), we have (d) ¬ y A z. Assume for a

contradiction that (e) ¬ yS z. Then, by (d) and (conS

A
), we have (f) zA y. But, by (2.10), (e)

and (f), we have yP z. From this, (c) and (dfA), we obtain a contradiction: xAy. Moreover,

we can get the converse implication similarly. “⇐” Suppose that ∀z∈U(¬ x A z ∧ x S z ⇔
¬ y A z ∧ y S z). Then, by (irrA) and (rS), we obtain ¬ x A y and ¬ y A x, i.e. x ET y.

Proof of (dfS⊑t). Firstly, from (df ′ ⊑t) and (2.11) we have: ∀x , y∈U
(

x ⊑t y =⇒

∀z∈U(z S x ⇒ z S y)
)

.

Secondly, from (dfA), (df P) and (sS) we obtain: ∀x , y
(

∀z∈U(z S x ⇒ z S y) =⇒
¬ xAy

)

; and from (⋆E

⇒), (sS) and (df P) we have: ∀x , y
(

∀z∈U(zSx ⇒ zSy) =⇒ ¬ xEy
)

.

Hence, by (df ′ ⊑t), we have: ∀x , y
(

∀z∈U(z S x ⇒ z S y) =⇒ x ⊑t y
)

.

Proof of Fact 3.1. 1. Assume for a contradiction that for some α, β ∈ In we have α ⊆ β

and α , β. Then, by (3.1), for some x ∈ α and y ∈ β we have ¬ x S y. However, we also

have x ∈ β. So x S y, by (c2).

2. Let us take any set X of events which is maximal in the family of sets satisfying (c2).

We will show that X also satisfies (c1). For this, assume for a contradiction that there is

u ∈ U such that u < X and ∀x∈X u S x. Then Y ≔ X ∪ {u} satisfies (c2). So X is not

maximal among sets satisfying (c2).

Proof of (3.2). “⇒” For any chain C of sets satisfying the condition (c2), the sum
⋃

C

also satisfies this condition. Thus, in any partially ordered (by the relation of inclusion)

family of sets that satisfy (c2), each chain C has a supremum, which is
⋃

C. Moreover, for

any x, y ∈ U such that x S y, the set {x, y} satisfies (c2). So let us take the family Fx , y of

all sets that satisfy (c2) and include {x, y}. The Kuratowski-Zorn lemma shows that there is

a maximal set in Fx , y. By Fact 3.1(2), we get that this set belongs to Ix ∩ Iy. “⇐” Directly

from (c2).

Proof of Theorem 3.2. Ad (irr≺): Assume for a contradiction that for some α ∈ In we

have α ≺ α. Then for some x, y ∈ α we have xP y. But, by (c2), we obtain a contradiction:

x S y.

Ad (t≺): Suppose that α ≺ β and β ≺ γ. Then for some x ∈ α, y, z ∈ β and u ∈ γ we

have x P y and z P u. Hence y S z, by (c2). Therefore, by (t+P), we obtain x P u. Hence we

have: α ≺ γ.

Ad (con≺): Suppose that α , β. Then, by (3.1), for some x ∈ α and y ∈ β we have

¬ x S y. Hence, by (conS

P
), either x P y or y P x. So either α ≺ β or β ≺ α.

Proof of Lemma 3.3. Let a relation R be connex and transitive. Suppose that x R y. If

y = z then we have x R z. If y , z, then either y R z or z R y since R is connex. In the first

case, we have x R z, by the transitivity of R.

Proof of Theorem 3.5. “⇒” Suppose that (%) does not hold, i.e., for some y0 we have

(a) x E y0 and (b) for any z, if z S x and ¬ x E z, then either z S y0 or ¬ z E y0. But, by (2.3),

if ¬ x E z and ¬ z E y0, then ¬ x E y0. From this, (a), (dfφx) and (b) we obtain: for any

z ∈ φx we have z S y0. Since, by (a), y0 < φx , from Lemma 3.4 we obtain that φx < In.

“⇐” In virtue of Lemma 3.4, we need to check that φx satisfies the equivalent of condition

(c1): ¬∃u∈U(u < φx ∧ ∀v∈λx u S v). Assume for a contradiction that for some u0 ∈ U we

have u0 < φx and ∀v∈φx u0 S v. Then ¬ u0 IC x and u0 S x. Hence x E u0. Moreover, by

(%), for some z0 we have (i) z0 P u0 and (ii) z0 IC x. By (ii), we have z0 ∈ φx . Therefore,

z0 S u0, by (sS). But it is contrary to (i).

Proof of (3.4). “⇒” Suppose that x BT y. Then for any u ∈ U: u ∈ φx iff u IC x iff

u S x and ¬ x E u iff (by (sS) and (2.14)) u S y and ¬ y E u iff u IC y iff u ∈ φy. “⇐” Let
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φx = φy. Then, since x ∈ φx and y ∈ φy, we have x ∈ φy and y ∈ φx , i.e, x IC y and

y IC x. So, by (2.18), we have x BT y.

Proof of (3.6). Assume for a contradiction that for some event x and instant α, we have

(a) x ∈ α and (b) α ≺ φx . From (b) for some y, z ∈ U we have (c) y ∈ α, (d) z ∈ φx and

(e) y P z. From (a), (c), (e) and (3.5) we have x E z. Furthermore, from (d), we have z IC x.

So we obtain a contradiction: ¬ x E z.

Proof of (3.8). “⇒” Let x E y. Then (a) ¬ y E x, by (asE), and (b) ¬ x BT y. From (b)

and (3.4) we have (c) φx , φy. If x S y, then x IC y, by (a). Hence x ∈ φy. So φx ≺ φy, by

(c), (3.6) and (con≺). If ¬ x S y, then x P y, by (a). So we obtain φx ≺ φy since x ∈ φx and

y ∈ φy, by (3.3). “⇐” Suppose that φx ≺ φy, Then there are events u and v such that (a)

u S x, (b) ¬ y E v and (c) u P v. Firstly, notice that (d) x E v. Indeed, if ¬ x E v then, by (tĒ
P
)

and (c), we have uP x, which contradicts (a). Secondly, by (ctE), (d) and (b), we have xEy.
Proof of Fact 3.7. “⇒” Let x S y. Note that one of the following cases occurs: x BT y,

x E y, y E x. In the first case, by (3.3) and (3.4), we have x, y ∈ φx = φy. In the second

case, by (asE), we have ¬ x E y. Hence, by our assumption, we have x IC y. Therefore,

x ∈ φy; and so we have x, y ∈ φy, by (3.3). Similarly, in the third case, we show x, y ∈ φy.

Proof of (3.10). “⇒” Assume that Ix * Iy, i.e., for some α0 ∈ In we have x ∈ α0 and

y < α0. Then, by (c1), for some z0 ∈ α0 we have ¬ z0 S y. Furthermore, by (c2), we have

z0 S x. Therefore, x @t y, by (dfS⊑t). “⇐” Assume that x @t y. Then, by (dfS⊑t), for

some z0 we have z0 S x and ¬ z0 S y. Hence, by (3.2), for some α0 ∈ In we have z0 , x ∈ α0.

Moreover, by (c2), we have y < α0. So we obtain that Ix * Iy.

Proof of (‰). “⇒” Suppose that (‰) does not hold, i.e., for some y0 we have (a) xA y0
and (b) for any z, if z S x and ¬ x A z, then either z S y0 or ¬ z E y0. Now notice that, by

(ctA), if xA y0 and ¬ xA z, then zA y0. Moreover, by (2.12), if ¬ zE y0 and ¬ zA y0, then

zSy0. From this, (a), (df λx) and (b) we obtain: for any z ∈ λx we have zSy0. Since, by (a),

y0 < λx , from Lemma 3.8, we obtain that λx < In. “⇐” In virtue of Lemma 3.8, we need

to check that λx satisfies the equivalent of (c1): ¬∃u∈U(u < λx ∧ ∀v∈λx u S v). Assume for

a contradiction that for some u0 ∈ U we have u0 < λx and ∀v∈λx u0 S v. Then ¬ u0 FC x and

u0 S x. Hence x A u0. Moreover, by (‰), for some z0 we have (i) z0 P u0 and (ii) z0 FC x.

By (ii), we have z0 ∈ λx . Therefore, z0 S u0, by (sS). However, it is contrary to (i).

Proof of (3.14). “⇒” Suppose that x ET y. Then for any u ∈ U: u ∈ λx iff u FC x iff

u S x and ¬ x A u iff (by (sS) and (2.16)) u S y and ¬ y A u iff u FC y iff u ∈ λy. “⇐”

Let λx = λy. Then, since x ∈ λx and y ∈ λy, we have x ∈ λy and y ∈ λx , i.e, x FC y and

y FC x. So, by (3.13), we have x BT y.

Proof of (3.16). “⊆” From (3.7), (con≺) and (3.15). “⊇” Suppose that α < Ix , i.e.,

x < α. Then for some y0 ∈ α we have ¬ x S y0. So, by (conS

P
), either y0 P x or x P y0. In

the first case, α ≺ φx . In the second case, λx ≺ α.

Proof of (3.17). “⇒” Let x A y. If ¬ x S y, then y P x, by (2.10). So, by Fact 3.10, we

obtain λy ≺ λx . If x S y, then x ∈ λy since ¬ y A x, by (asA). Moreover, y < λx ; and so

λx , λy since y ∈ λy. So λy ≺ λx , by (3.16). “⇐” Suppose that λy ≺ λx , Then there are

events u and v such that (a) u S x, (b) ¬ yA v and (c) v P u. From (tĀ
P
), (b) and (c), we have

y P u. Hence, by (a) and (sS), we have x A y.

Proof of (d≺). Let α ≺ β, i.e., for some x, y ∈ U we have: (i) x ∈ α, (ii) y ∈ β and

(iii) x P y. Then, by (iii) and (f ′), for some z we have (iv) x P z and (v) z E y. Therefore,

α ≺ φz , by (i) and (iv). Moreover, (vi) φz ≺ φy, by (v) and (3.8). Furthermore, by (ii) and

(3.7), we have φy � β. If φy = β then α ≺ φz ≺ β. If φy ≺ β then φz ≺ β, by (vi) and

(t≺). So also α ≺ φz ≺ β.

Proof of Theorem 3.11. Suppose that (f ) does not hold, i.e., there are events x and y

such that x P y and for all events z and u such that x P z and u P y we have ¬ z S u. Then

λx ≺ φy since x ∈ λx and y ∈ φy. Assume for a contradiction that for some instant α0, we

have λx ≺ α0 ≺ φy. Then there are z1 and z2 such that z1 ∈ λx , z2 ∈ α0 and z1 P z2, and

there are u1 and u2 such that u1 ∈ α0, u2 ∈ φy and u1 P u2. Since ¬ x A z1 and z1 P z2,
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we have x P z2, by (tĀ
P
). Moreover, since u1 P u2 and ¬ y E u2, we have u1 P y, by (tĒ

P
).

Therefore, ¬ z2 S u2, which is contrary to that z2 , u1 ∈ α0. Thus, ≺ is not dense.

Proof of Theorem 4.1. “⇒” a5 = (⋆E). Ad a3 and a4, i.e. (sS) and (conS

P
): From (dfPS).

Ad a2, i.e. (tE): From (⋆E) and (tS |P). Ad a1, i.e. (asE): From (tE) and (irrE), which

we obtain from (⋆E) and (dfPS). Ad (df P): Firstly, by (irrP), we have (a): x P y =⇒

(x P y ∨ y P x) ∧ ∃z (¬ x P z ∧ ¬ z P x ∧ z P y). Secondly, by (tP), we have (b):

¬
(

y P x ∧ ∃z (¬ x P z ∧ ¬ z P x ∧ z P y)
)

. Hence we obtain (c): (x P y ∨ y P x) ∧
∃z (¬ x P z ∧ ¬ z P x ∧ z P y) =⇒ x P y. Thus, from (a), (c), (dfPS) and (⋆E) we obtain:

x P y ⇐⇒ ¬ x S y ∧ x E y.

“⇐” (irrP), (tP) and (dfPS) are proved on pages 4, 6 and 5, respectively. Moreover,

(tS|P) follows from (⋆E) and (tP).

Proof of Lemma 4.2. For (%): Suppose that x E y. Hence, by (⋆E

⇒ ) and (sS), for some

z1: z1 S x and z1 P y. Now suppose that ¬ z1 IC x. Then x E z1. Hence, applying (⋆E

⇒) and

(sS) again, for some z2: z2 S x and z1 P z2. Thus, ($) does not hold. For (‰): Similarly,

we use (dfA) instead of (⋆E

⇒). Therefore, we can use Theorems 3.5 and 3.9.

Proof of Fact 4.4. “($) ⊢⊣ (i)” From (dfPS). “(i) ⊢⊣ (ii)” From Lemma 4.3. “(iii) ⊢ (ii)”

Obvious.

“(ii) ⊢ (iii)” Assume for a contradiction that ~S‘x ∈ In and for some α0 ∈ In we have

x ∈ α0 , ~S‘x. Then, by Fact 3.1(1), we have ~S‘x * α0; i.e., for some u ∈ ~S‘x: u < α0.

So u S x. Hence, by (i), we have (a): for each z ∈ ~S‘x we have z S u. Furthermore, since

x ∈ α0, we obtain (b): for any y ∈ α0, we have y S x. Since u < α0, for some v ∈ α0 we

have ¬ v S u. Hence, by (b), we have v S x. Hence, by (a), we obtain a contradiction: v S u.

“($) ⊢ (iv), (v)” From ($) and Lemma 4.2, we have φx , λx ∈ In. Hence, by (3.3) and

(3.12), we have φx , λx ∈ Ix . But from ($) we obtain (iii). So φx = ~S‘x = λx .

“(iv) ⊢ ($)” Suppose that there are events u and v such that u S x, v S x and u P v. Then,

by (sS) and (⋆E

⇐), we have x E v. Hence ¬ v IC x. Therefore, we obtain ~S‘x * φx .

Proof of Fact 4.5. “(vi) ⊢ (i)” Let Ix be a singleton, i.e., Ix = {α0}, for some α0 ∈ In.

Suppose that u S x and v S y. Then, by (3.2) (which we obtain from the axiom of choice),

for some α1 , α2 ∈ In we have x, u ∈ α1 and x, v ∈ α2. Therefore, α1 = α0 = α2; and so

u, v ∈ α0. Hence u S v. Thus, we obtain (i).

Proof of Fact 4.6. “($) ⊢ (vii), (viii), (ix)” From ($) and Lemma 4.2, we have φx , λx ∈

In. Hence, by (3.3) and (3.12), we have φx ∈ Ix ∋ λx . But from ($) we obtain (iii). So

φx = ~S‘x = λx and Ix = {φx } = {λx }.

Proof of Fact 4.7. “(vi) ⊢ (vii), (viii), (ix)” By Facts 3.6 and 3.10, which we obtain from

(e ) and ( e), x ∈ φx , λx ∈ In, respectively. Hence, by our assumption, λx = φx and

Ix =
{

φx
}

=

{

λx
}

.

“(viii) ⊢ (vii), (ix)” From (3.16), (3.3) and (3.12).

“(vii) ⊢ ($)” Suppose that there are u and v such that u S x, v S x and u P v. Then, by

(sS) and (⋆E

⇐), we have x E v. So ¬ v IC x, i.e. v < φx . Furthermore, by (asE), we have

¬ v E x. Hence x IC v, i.e. x ∈ φv. Moreover, since x ∈ φx , we have φx , φv. By Fact 3.6,

φx , φv ∈ In. So {φx , φv} ⊆ Ix , {φx }.

“(ix) ⊢ ($)” Suppose that there are u and v such that u S x, v S x and u P v. Then, by

(sS) and (dfA), we have x A u. So ¬ u FC x, i.e. v < λx . Furthermore, by (asA), we have

¬ uA x. Hence x FC v, i.e. x ∈ λu . Moreover, since x ∈ λx , we have λx , λu . By Fact 3.10,

λx , λu ∈ In. So {λx , λu } ⊆ Ix , {λx }.

Proof of Fact 4.8 1. Ad φx = λy: We show that for any u we have: u IC a iff u FC b.

“⇒” Firstly, u S x entails ¬ x A u. Indeed, if y A u, then, by (dfA) and (£), for some v

we have a contradiction: u S x, u P v and v S y. Secondly, u S x and ¬ x E u entail u S y.

Indeed, if ¬ uS y then, by (conS

P
), either uP y or y P u. In the first case, by (rS) and (£), we

obtain a contradiction: u S x, u P y and y S y. In the second case, by (tE
P
), we also obtain

a contradiction: y P x. “⇐” Firstly, u S y entails ¬ x E u. Indeed, if x E u, then, by (⋆E

⇒)
and (£), for some z we have a contradiction: z S x, z P u and u S y. Secondly, u S y and
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¬ y A u entail u S x. Indeed, if ¬ u S x, then either u P x or x P u. In the second case, by

(rS) and (£), we obtain a contradiction: x S x, x P u and u S y. In the first case, by (tĀ
P
), we

also obtain a contradiction: y P x.

Ad φx ∈ In: Since y ∈ λy, we have y ∈ φx . Assume for a contradiction that φx does

not satisfy condition (c1). Then there is v such that v < φx and ∀z∈φx v S z. Therefore,

v S y and v S x; and so x E v. So for some u, by (£), we obtain a contradiction: u S x, u P v

and v S y. Thus, by Lemma 3.4, we have φx ∈ In.

2. “⇒” If x E y then, by (rS), (⋆E

⇒), (£), there is u such that we obtain a contradiction:

u S x, u P y and y S y. If y A x then, by (rS), (dfA), (£), there is v such that we obtain a

contradiction: x S x, x P v and v S y.

3. “⇐” Directly from our definitions.

“⇒” Ad x ⊑t y: We will use (dfS⊑t), that is, we will show that ~S‘x ⊆ ~S‘y. Indeed, if

for some z we have zS x and ¬ z S y, then, by (2.11), our assumption and point 2, we obtain

a contradiction. Ad λx ∈ In: Assume for a contradiction that λx does not satisfy condition

(c1). Then there is v such that v < λx and ∀z∈λx v S z. Therefore, v S x; and so x A v.

Hence, by (2.9) and our assumption, we have y A v. So for some u, by (dfA) and (£), we

obtain a contradiction: uS x, vPu and vS y. Thus, by Lemma 3.8, we have λx ∈ In. Ad the

rest: By our assumption, (3.18), (3.16) and point 1, we have λx � λy = φx � λx ; and so

λx = φx = λy.

4. “⇐” Directly from our definitions.

“⇒” Ad y ⊑t x: We will use (dfS⊑t), that is, we will show that ~S‘y ⊆ ~S‘x. Indeed,

if for some z we have z S y and ¬ z S x, then, by (2.11), our assumption and point 2, we

obtain a contradiction. Ad φy ∈ In: Assume for a contradiction that φy does not satisfy

condition (c1). Then there is v such that v < φy and ∀z∈φy v S z. Therefore, v S y; and so

y E v. Hence, by (2.3) and our assumption, we have x E v. So for some u, by (⋆E

⇒) and (£),

we obtain a contradiction: u S x, u P v and v S y. Thus, by Lemma 3.4, we have φy ∈ In.

Ad the rest: By our assumption, (3.9), (3.16) and point 1, we have λy = φx � φy � λy;

and so φy = λy = φx .

5. “⇒” By points 3 and 4 and our definitions. For ($), we use (dfS≡t) and (£).

“⇐” By (3.11).

Proof of Theorem 5.1. “(1)⇔ (2)” Theorem 4.1.

“(2)⇒ (3)” (irrP), (ThP), (dfPE) and (dfPS) are proved on pages 4, 6, 6 and 5, respec-

tively.

“(3)⇒ (1)” From (ThP) and (irrP) we obtain (tP). By (dfPS) we have (∗) for all x, y:
x S | P y iff for some u we have ¬ x P u, ¬ uP x and uP y. Ad (tS|P): Suppose that x S | P y
and y S | P z. Then, by (∗), for some u1 and u2 we have: (a1) ¬ x P u1, (b1) ¬ u1 P x, (c1)

u1 P y, (a2) ¬ y P u2, (b2) ¬ u2 P y, (c2) u2 P z. In the light (ThP), (c1), (c2) and (b2) we

have u1 P z. Hence, by (a1) and (b1), we have x S | P z. Ad (⋆E): “⇒” Suppose that x E y,

i.e., by (dfPE), for some u we have ¬ u P x and u P y. Now if ¬ x P u, then x S | P y, by (∗).
If x P u then x P y, by (tP). So, by (irrP), we have: ¬ x P x and x P y. Thus, by (∗), also

x S | P y. “⇐” Directly from (∗) and (dfPE).

Appendix B. Models

Model 1. We take the model of all axioms in which U ≔ {1, 2}, 1 , 2, E ≔ ∅ and

S ≔ U × U. We have L = P = A = ∅ and BT = ET = ⊑t = ≡t = U × U. So 1 ≡t 2,

1 ⊑t 2 and 2 ⊑t 1. Moreover, we have IC = U × U. So the universe U ≔ {1, 2} is the only

instant in this model; hence, λ1 = φ1 = {1, 2} = φ2 = λ2.

Model 2. We give the following model: U ≔ {1, 2, 3, 4}, E ≔ {〈1, 2〉, 〈1, 4〉, 〈3, 2〉,
〈3, 4〉} and S ≔ U

2 \ {〈1, 2〉, 〈2, 1〉, 〈3, 4〉, 〈4, 3〉}; and so P = {〈1, 2〉, 〈3, 4〉} and IC =

idU ∪ {〈1, 3〉, 〈3, 1〉, 〈1, 4〉, 〈3, 2〉, 〈2, 4〉, 〈4, 2〉}. Thus, P ∩ S = ∅ and (irrP), (asP), (tP),

(conS

P
), (irrE), (asE), (tE), (rS),(sS), (conS

E
), (⋆E

⇒), (ctE), (e ) hold but (⋆E

⇐), (tĒ
P
), (tE

P
),

(t+P), (ThP) do not hold. In the model, In consists of tree sets: α1 = {1, 4}, α2 = {2, 3},
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α3 = {1, 3}. We have α1 ≺ α2 and α2 ≺ α1 but α1 ⊀ α1. Thus, (t≺) and (as≺) do not hold

in the model.

Model 3. LetU consist of the following open intervals of real numbers: (0, 2), (1, 3) and
(

1
n
, 2n−1

2n(n−1)

)

, for any n > 1. For any x ∈ U, let x = (bx , ex ). Moreover, for all x, y ∈ U

we put: x E y iff bx < by; x S y iff x ∩ y , ∅. So x P y iff ex < by; x IC y iff x ∩ y , ∅
and bx 6 by. Thus, (0, 2) E y and (0, 2) S y, for any y , (0, 2) Moreover, for any n > 0:
(

1
n
, 2n−1

2n(n−1)

)

P (1, 3) and
(

1
n+1 ,

2n+1
2n(n+1)

)

P

(

1
n
, 2n−1

2n(n−1)

)

. Therefore, x IC y iff x = (0, 2)
and y , (0, 2). Of course, all axioms a1–a5 are true. But we have: (0, 2) E (1, 3) and there

is no z ∈ U such that z P (1, 3) and z IC (0, 2). So (e ) is false.

Note that in this model, φ(1,3) = {(1, 3)}. So, by (c1), the set φ(0,2) does not belong to

In since (1, 3) S (0, 2). Moreover,φ(1,3) = {(0, 2), (1, 3)} and φ(1,3) belongs to In. So also

from Fact 3.1 we obtain that φ(0,2) is not an instant.

Model 4. Let us then formally present the model that will correspond to Anderson’s

diagram (see p. 18). Let the universeU consist of all closed intervals of the form [2k , 2k+3],
where k is an integer. For any x ∈ U, let x = [bx , ex ]. For all x, y ∈ Uwe put: xP y iff ex <
by, So for all x, y ∈ U: xSy iff x∩y , ∅; x S | P y iff bx < by iff xEy; x ICy iff x∩y , ∅
and bx 6 by. Obviously, a1–a6, ( e), (irrP), (tP), (dfPS), (tS|P), (⋆E), (a ) and (b ) are true

in the model. But (d≺) and (f ) do not hold. Indeed, for any x ∈ U we have φx , λx and

Ix = {φx , λx }. So, by (3.16), there is no α ∈ In such that φx ≺ α ≺ λx . Moreover, notice

that for any α ∈ In there are x, y ∈ U such that x , y, α = {x, y}, α = φx and α = λy.

Model 5. We can also give a different model of a1–a6, ( e), (irrP), (tP), (dfPS), (tS |P),

(a ), (b ) in which (f ) and (d≺) do not hold; and which has the first and last instant. This

model is based on intervals used in the Cantor set construction. Let us enter the sequence

(Si )
∞
i=0 of closed intervals included in the interval [0, 1]. The set S0 consists of one interval

[0, 1]. From this interval we cut the middle open interval (1/3, 2/3) of length 1/3. There are

two closed intervals [0, 1/3] and [2/3, 1] that remain, which make up the set S1. From these

last closed intervals, cut out their middle open intervals (1/9, 1/6) and (7/9, 8/9) of length 1/9.

We get four closed intervals [0, 1/9], [1/6, 1/3], [0, 7/9], [8/9, 1], which form the set S2. Gen-

erally, for n > 0, the set Sn consists of 2n of disjoint closed intervals that arise from 2n−1

closed intervals belonging to Sn by cutting out each one of their middle open intervals of

length 1/2n . Let U ≔
⋃∞
=1 Si . For any x ∈ U, let x = [bx , ex ]. Moreover, for all x, y ∈ U

we put: x E y iff bx < by; x S y iff x∩ y , ∅. So x P y iff ex < by; x IC y iff x∩ y , ∅ and

bx 6 by. Obviously, a1–a6, ( e), (irrP), (tP), (dfPS), (tS|P), (⋆E), (a ) and (b ) are true in

the model. In general, the set of instants in this model can be assigned to the numbers of

the Cantor set. Notice that φ[bx ,ex] = {y ∈ U : bx ∈ y} and λ[bx ,ex ] = {y ∈ U : ex ∈ y}.
Therefore, λ[0,1/3] ≺ φ[2/3,1]. But there is no instant α such that λ[0,1/3] ≺ α ≺ φ[2/3,1]. Of

course, (f ) is also false in this model. Namely, if it were true, then (d≺) would also be true.

You can also see that [0, 1/3]P [2/3, 1] but there is no z ∈ U such that [0, 1/3]P z and zE [2/3, 1]
because for any u ∈ U: if [0, 1/3] P u then u = [2/3, 1].

Notice that in this model for any α ∈ In we have φ[0,1] � α � λ[0,1].

Finally, for x ≔ [0, 1/3], α ≔ λx , y ≔ [2/3, 1] and γ ≔ φy, we have: α′ ≺ β � α.
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