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ABSTRACT
Drawing on data on scientific co-publications derived from the Web
of Science for the periods 2002–2006 and 2012–2016, we construct
and analyse a key element of China’s intercity knowledge networks
(CIKNs): scientific collaboration networks. Employing network-
analytical and exponential random graph modelling techniques,
we examine the evolving structures and driving mechanisms
underlying these CIKNs. Our results show that the density of the
CIKNs has significantly increased over time. CIKN flows are dense
in the Southeastern but sparse in the Northwestern part of China,
with the Hu Line acting as a clearly visible border. As the
dominant knowledge centre, Beijing is involved in scientific
collaboration networks throughout the country, with the
diamond-shaped structure anchored by Beijing-Shanghai-
Guangzhou-Chengdu becoming evident. We find that preferential
attachment and transitivity are significant endogenous processes
driving scientific collaboration, while a city’s administrative level
and R&D investment are the strongest exogenous factors. The
impact of GDP and geographical proximity is limited, with
institutional proximity being the most sizable of the well-known
suite of proximity effects.
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Highlights

. China’s intercity knowledge networks are built on scientific co-publication data.

. Flows are dense in the Southeastern but sparse in the Northwestern part of China.

. A diamond structure anchored by Beijing-Shanghai-Guangzhou-Chengdu becomes
evident.

. Exponential random graph models help reveal the exogenous and endogenous forces.

. Significant endogenous forces include preferential attachment and transitivity.
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1 Introduction

Knowledge creation and diffusion among cities have drawn considerable attention in
urban and regional science because new knowledge is increasingly regarded as a strategic
resource for sustained economic growth of cities and regions. Cities are often argued to
be the ‘natural’ site for the development of interlocking pools of talent, knowledge insti-
tutions, and enterprises, thus becoming spatial incubators for knowledge innovation
(Florida et al., 2017). With the accelerated complexity of knowledge and knowledge inno-
vation, key actors in this process are pursuing cross-organizational and cross-regional
knowledge collaboration, forming an open innovation system (Chesbrough, 2003).
From this perspective, an intercity knowledge network is formed by various formal
and informal collaborative linkages between the cities in which these actors are
embedded. Research focuses on interconnected systems of knowledge flows aggregated
at the city level because knowledge collaboration is also a strategic process for cities to
achieve the joint complementarity and optimization of innovative resources (van der
Wouden and Rigby, 2019). Therefore, knowledge production in a city does not merely
depend on processes in its ‘local’ knowledge base, but also on its embeddedness in
wider knowledge networks and accessibility of external knowledge flows.

Data on scientific journal articles, patents, and research and development (R&D) pro-
jects are often-used proxies to construct intercity knowledge networks. Co-publications,
co-patents, and co-projects are a joint work among co-authors who share ideas, discuss,
interact, and jointly produce a qualified output (Liefner and Hennemann, 2011). When
the authors are affiliated to organizations in different cities, the knowledge collaboration
between them can be envisaged as a proxy for knowledge flows between the cities from
which they work. Therefore, these data have served as the input to analyses of how
knowledge spillovers, transfers, and collaborations (re)shape urban systems at
different scales. For instance, Matthiessen et al. (2010) demonstrated the hierarchical
and regional tendencies in the world city system through joint publications between
researchers located in different cities. Yao et al. (2020) investigated the spatial patterns
and topological features of China’s national innovation network based on intercity co-
patent data, while Lata et al. (2015) conducted a comparative analysis of intercity knowl-
edge flows in the European Union through the lens of project-based R&D networks, co-
patent networks, and co-publication networks. In empirical studies, publications and
patents are the most often used data for capturing tacit knowledge exchanges with
the former representing scientific knowledge and the latter representing technological
knowledge.

Previous studies dealing with intercity knowledge networks in urban and regional
science mostly focused on two domains. On the one hand, scholars examined the
spatial and topological structures of the knowledge networks, tracing their evolution
by means of spatial analysis, social network analysis, and complex network analysis
(Andersson et al., 2014; Li and Phelps, 2017; Cao et al., 2021a). Centrality measures,
network partition techniques, topological statistics are used to reveal hierarchies, sub-
groups, and complexity at the node, community, and network levels, respectively.
Other topics include the heterogenous spatial distribution of knowledge flows, the
degree of knowledge polycentricity, and core–periphery structures. On the other hand,
scholars discussed the driving mechanisms underlying these intercity knowledge flows
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by means of spatial interaction models, negative binomial regression and gravity-type
models, and multiple regression quadratic assignment procedures (MRQAP) (Scherngell
and Hu, 2011; Gui et al., 2019; Zhang et al., 2020b). These approaches primarily shed
light on how city attributes and multidimensional proximity (i.e. geographical, social,
cognitive, institutional, and cultural proximity) influence the formation and strength
of intercity knowledge flows (Boschma, 2005). However, much of this research has
above all focused on exogenous forces such as city attributes and dyadic attributes,
thus ignoring endogenous forces. Recent advances in social network research have
shown that networks are shaped by both exogenous and endogenous effects (Snijders
et al., 2006, 2010). Exogenous effects denote attribute-based factors of nodes and
edges, while endogenous effects denote structure-based factors of local network configur-
ations/structures, processes that cannot be captured by conventional (spatial) econo-
metric models.

Drawing on complex-network analytical tools, research has increasingly turned to the
analysis of the topology of the network per se. Some knowledge networks are shown to be
scale-free and small-world networks (Li et al., 2015; Duan et al., 2018), characterized by
self-organization processes such as transitivity (Vertes et al., 2012), preferential attach-
ment (Vinciguerra et al., 2010), and reciprocity (Zhang et al., 2020a). Work in this
vein mainly focused on statistical descriptions and has therefore rarely reported on the
potential influence of endogenous processes on the formation and evolution of intercity
knowledge networks.

Against this backdrop, the objective of this paper is to complement this literature by
specifying and applying an exponential random graph model (ERGM) to the study of
knowledge networks. An ERGM considers both exogenous forces and endogenous
forces, and is used here to address two more concrete research questions: (1) What are
the spatial and topological structures of intercity knowledge networks and their evolving
trajectories in China? (2) How do exogenous and endogenous forces affect the formation
and evolution of intercity knowledge networks in China? The research focuses on the
case of one of China’s intercity knowledge networks (CIKNs), i.e. collaborations
between scientists working in different cities. Our analyses draw on co-publication
data retrieved from Web of Science (WoS) for the periods 2002–2006 and 2012–2016.
The remainder of this article is organized as follows. The second section gives an over-
view of earlier models and possible determinants of intercity knowledge networks. The
third section elaborates our research design, including the construction and characteriz-
ation of CIKNs, the overview of ERGMs, and the specification of variables. The fourth
section presents and discusses the empirical results, followed by conclusions and
avenues for future research in the final section.

2 Literature review

2.1 Explanatory models for intercity knowledge networks

Drawing on a range of network-analytical techniques, various approaches have been put
forward to model intercity knowledge networks. These approaches range from standard
(spatial) econometric models, to permutation-based MRQAP models, and to stochastic-
based exponential random graph models (ERGMs) and stochastic actor-oriented models
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(SAOMs). Although these models diverge in several ways, one of the key differences is the
extent to which the interdependence of ties is considered.

Negative binomial gravity models are the most straightforward approach (Scherngell
and Hu, 2011; Cao et al., 2018). Since the dependent variables – the number of inter-city
collaborations – are usually count data with an over-dispersed distribution, a negative
binomial regression is fitted. The gravity ‘part’ of the model allows studying the role of
geography on the intensity of knowledge flows. A combination of both models can be
applied to analyse individual choices or aggregated behaviour, i.e. to networks whose
nodes are actors or cities (Scherngell, 2013). However, the model assumes ties to be inde-
pendent which is not very realistic. Scherngell and Lata (2013) later extended the model
with spatial filtering to consider the interdependence among ties sharing the same nodes.

MRQAP models are specifically designed to tackle tie interdependence by means of a
combination of QAP and OLS/logistic regression (Li et al., 2021). The dependent and
independent variables in MRQAP are in the form of matrices and the parameters are esti-
mated by comparing regression statistics to the distribution of these statistics generated
from row/column permutations of variables (Broekel et al., 2014). A recent example of its
application can be found in the work of Park and Koo (2021), who use MRQAP to ident-
ify the impact of proximity on knowledge network formation in the Korean steel
industry.

However, both above-mentioned models do not take endogenous structural variables
into account, even though these may be of great importance (Liu et al., 2015; Zhang et al.,
2016). To overcome this problem, ERGMs and SOAMs in social networks can be a
powerful alternative to investigate how local structures influence network formation
and this alongside other factors at the node and dyad levels. For instance, Qin et al.
(2020) combine variables of local network structures, multidimensional proximity and
node attributes in SOAMs, and describe the factors influencing China’s knowledge col-
laboration networks. Broekel and Hartog (2013) confirm that the factors at the node,
dyad, and structural network levels jointly determine the structure of intercity R&D col-
laboration network in Germany through ERGMs. However, previous model specifica-
tions were applied to binary networks. Unfortunately, scholars using SOAMs and
traditional ERGMs have long been forced to ‘dichotomize valued networks, resulting
in significant loss of data.… The choice of where exactly to dichotomize a network is
often based on arbitrary cutoffs, and can dramatically affect the results’ (Pilny and
Atouba, 2018). Recent advances in valued ERGMs address the important limitation (Kri-
vitsky, 2012), which offers the potential to explore the mechanisms underlying the for-
mation of intercity knowledge networks. However, to the best of our knowledge, this
has not been explored in urban and regional science.

2.2 Determinants of intercity knowledge networks

Possible determinants of intercity knowledge networks can be categorized into exogen-
ous and endogenous forces. The former includes forces at the node and the dyadic level,
while the latter denotes factors at the network level.

Node-level factors can be city attributes including socio-economic development in the
broadest sense of that term in general and the size of the knowledge base in particular.
Cities with more innovative organizations and actors can be expected to have more
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linkages as they have more collaboration opportunities and demands. A similar argument
can be applied to the socio-economic environment. Cities with better economic perform-
ance and a more open cultural and social environment would allow innovative agents to
better overcome obstacles in the collaboration process (Yao et al., 2020). In addition,
urban hierarchies in terms of administrative systems can also be a factor, especially in
the Chinese socio-political context: cities with higher administrative levels can apply pre-
ferential policies to expand their resource bases, thus having the advantages over other
cities for developing more intercity linkages (Cao et al., 2021a). Based on this, we
propose the following hypothesis:

Hypothesis 1: The formation of intercity co-publication networks is influenced by city factors
including economic performance, size of the knowledge base, and administrative level.

Dyad-level factors include edge attributes commonly discussed in the ‘proximity lit-
erature’ in economic geography, which has conceptual linkages with research in the
homophily effect in sociology. The most straightforward of these is geographical proxi-
mity, which states that researchers in cities that are located closer to each other are
more likely to collaborate due to easier face-to-face contact (Hoekman et al., 2009;
Ma et al., 2014). Other forms of proximity are non-geographical, and are most com-
monly classified as social, institutional, cultural, and cognitive proximity. Social proxi-
mity can be defined as the relational embeddedness of researchers in terms of
partnership, kinship, and friendship. Researchers already knowing each other more
easily develop trust-based cross-regional collaborations, thus promoting knowledge
exchange among cities (Breschi and Lissoni, 2009). Institutional proximity refers to
the extent to which researchers or organizations operate with similar routines, estab-
lished practices, and incentive structures (Boschma, 2005). Cultural proximity, in
turn, broadly defined as informal institutional proximity, refers to the extent to
which researchers share a coherent manner of interpretation and articulation such as
a common language, religion, and ethnic community (Teixeira et al., 2008). Both
forms of proximity can increase trust and lower transaction costs. As a corollary, insti-
tutional and cultural differences at the organization and city levels are often believed to
be barriers to knowledge diffusion and collaborative activities (Ponds et al., 2007;
Zhang et al., 2020b). In the field of scientific collaboration, cognitive proximity, some-
times sailing under the flag of technological proximity, refers to the degree of overlap
between two researchers in terms of their knowledge bases and technological experi-
ence (Knoben and Oerlemans, 2006; Cao et al., 2019). It is argued that similarities in
knowledge backgrounds of researchers can facilitate effective communication in
knowledge collaboration and better absorption of external knowledge (Cao et al.,
2021a). Hence, we posit the following hypothesis:

Hypothesis 2: The formation of intercity co-publication networks is influenced by geo-
graphical proximity as well as the main forms of non-geographical proximity.

And finally, structure-level factors are network configurations or local structures,
which relate to properties of the entire network. Four factors are commonly examined
in this context: edges, mutuality, k-star (preferential attachment), and triadic closure
(transitivity) (cf. Ter Wal and Boschma, 2009; Broekel and Hartog, 2013; Zhang et al.,
2020a; Qin et al., 2020). Edges are the most essential structural factor for networks,
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which is indispensable in stochastic-based models to help constraining the size of the net-
works in the simulation process. Mutuality may be a relevant variable in directed net-
works in that it reflects the probability of city pairs to develop a reciprocal
relationship. However, given that we are dealing with undirected networks this is not
a relevant indicator for our study. Preferential attachment in knowledge networks
suggests that researchers or organizations who already have many linkages are more
likely to attract or develop new collaborations in the future. When inter-personal and
inter-organizational behaviours are aggregated at the intercity level, the overall
network would show a hub-and-spoke structure. The preferential attachment processes
have been shown in the case of intercity Internet networks (Vinciguerra et al., 2010) and
firm networks (Li et al., 2021). Transitivity predicts that partners of researchers or organ-
izations are more likely to engage in direct collaborations themselves, resulting in many
triangles and dense cliques. Such cliques could also be seen as a sign of social proximity
that could strengthen trust and willingness among researchers to conduct collaboration
(Coleman, 2003). Thus, we put forward the following hypothesis:

Hypothesis 3: The formation of intercity co-publication networks is influenced by endogen-
ous effects such as preferential attachment and transitivity.

3 Research design

3.1 Construction of CIKNs

We use a comprehensive dataset of co-publications retrieved from theWoS to investigate
the structure and dynamics of intercity knowledge collaboration in China. In line with
Cao et al. (2021a, 2021b), CIKNs are aggregated at the scale of 217 prefectural-and-
higher-level cities or municipalities across 20 city-regions including Hong Kong,
Macau and Taiwan. In spite of the long-standing political conflicts between Taiwan
and Mainland China, the inter-personal and inter-organizational exchanges in forms
of scientific collaboration have witnessed a rapid increase in recent years, which leads
us to include these collaborations in our data. The periods of 2002–2006 and 2012–
2016 (2006 and 2016 for short) are selected because China experienced its most rapid
annual increases in scientific publications during the period 2002–2006, ultimately repla-
cing the United States as the largest provider of scientific publications in 2016 according
to the National Center for Science and Engineering Statistics.1 The average number of co-
publications of each year in the study periods are used to smooth the fluctuations in an
individual year. Consequently, two undirected and valued CIKNs are established for 2006
and 2016.

3.2 Characterization of intercity knowledge networks

3.2.1 Connectivity, degree, and density
Connectivity of a city is the sum of the city’s co-publications with other cities, indicating
the overall status of the city within the network. The degree of a city measures the
number of partners/neighbours of the city in the network. Network density refers to
the ratio between the actual number of edges and the total possible number of edges
in the network. In an undirected network of size n, there will be n(n-1)/2 possible edges.
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3.2.2 Average path length and clustering coefficient
The average path length (L) is the average number of steps along the shortest paths for all
possible pairs of cities, while the average clustering coefficient (C) is the degree to which
cities in the network tend to cluster together. They are specified as:

L = 1
n(n− 1)

∑n

i,j=1
dij

C = 1
n

∑n

i=1

2Ei
ki(ki − 1)

where n is the number of cities in the network, dij is the length of shortest path between
city i and city j, ki is the number of neighbours of city i, Ei is the number of edges between
neighbours of city i.

3.2.3 Knowledge polycentricity
Knowledge polycentricity reflects the extent to which there are multiple knowledge
centres as well as distributed linkages between them in the organization of intercity
knowledge networks. We use a primacy-ratio-based indicator, whereby the knowledge
polycentricity (KP) is defined as the ratio between the average connectivity of 2nd,
3rd, 4th, 5th, and 6th largest cities and the largest connectivity:

KP = 1
5

∑6

j=2
Conj/Con1

where Con1 is the largest number of co-publications of cities and Conj ( j = 2,3,… , 6) is
the jth largest number of co-publications of cities.

3.2.4 Community detection
The CIKNs can be partitioned into different communities where cities are (more) densely
connected internally but (more) sparsely connected externally. Modularity maximization
is the most widely used method for community detection and it achieves this goal by
iteratively optimizing local communities until the modularity is no longer improved
(Blondel et al., 2008). The detecting technique can be implemented in R program by
fast-greedy algorithm without an a priori threshold.

3.3 Exploring driving mechanisms: ERGM

3.3.1 An overview of ERGM
In order to reveal the mechanisms underlying CIKNs’ formation and evolution, we employ
an EGRM approach. ERGMs are stochastic models whose basic premise is that the global
structure of the observed network is a snapshot of a set of ongoing and dynamic local pro-
cesses (Lusher et al., 2013). An ERGM allows for flexible inclusion of such hypothesized
processes and provides statistical inference on how these processes drive network formation
by comparing the observed network to the theoretical sets. Since the CIKNs are weighted
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networks, valued ERGMs are more suitable for our simulation and can be expressed as:

Pru;h,h,g(Y = y) = h(y) exp (h(u) · g(y))
kh,h,g(u)

where Pru;h,h,g(Y = y) is the probability that the network Y generated by the ERGM is iden-
tical to the observed network y, g(y) is the hypothesized network statistic, h(u) is the par-
ameter corresponding to the network statistic, kh,h,g(u) is the normalized constant to ensure
all probabilities summing up to 1, and h(y) is the predetermined reference distribution
which represents a baseline distribution of network linkages in the absence of any model
terms.

Different from a simple Bernoulli distribution for binary ERGMs, the baseline distri-
bution for valued ERGMs needs to take weights into consideration, thus determining the
support and the basic shape of the ERGM distribution (Krivitsky, 2012). In practice,
Poisson, geometric, binomial, and discrete uniform distributions are commonly used.
The choice of reference distributions depends on the nature of data in the observed net-
works. Intercity co-publications are count data exhibiting over-dispersion (i.e. they have
a variance larger than the mean), and therefore a binomial distribution is specified as the
reference distribution for modelling CIKNs, which is also demonstrated to be typical for
measuring strength, frequency, and intensity (Pilny and Atouba, 2018).

The estimation of the parameters can be implemented through a Markov Chain
Monte Carlo (MCMC) algorithm as this is often the most accurate approach (van
Duijn et al., 2009). Starting with stochastic simulation from a set of initial parameters,
MCMC iteratively refines those values by comparing the simulated networks with the
observed one until the parameters generate networks bearing high resemblance with
the observed network and the parameter estimates stabilize. Poorly specified ERGMs
fail to converge and can be fixed by removing factors that are problematic.

3.3.2 Specification of variables
The dependent variable in our ERGMs is the observed CIKN at one time point, while the
independent variables incorporate possible exogenous node-level and dyad-level factors
and endogenous network-level factors as reviewed in section 2.2. To test hypothesis 1, we
employ the gross domestic product (GDP), and R&D investment from local government,
the number of universities, the number of college students as the proxy accounting for
economic performance and knowledge base, respectively. These data have been drawn
from the China City Statistical Yearbook published by the National Bureau of Statistics
for mainland cities and from the official statistics websites for Taiwanese cities. The
different variables represent the mean values of a five-year moving window of 2002–
2006 and 2012–2016. In addition, Provincial capital is a dummy variable to measure
the impact of administrative hierarchy.

Building on the early ideas presented by the French School of proximity dynamics (cf.
Rallet and Torre, 1999; Kirat and Lung, 1999), Boschma’s (2005) summary of multi-dimen-
sional proximity has become particularly popular in economic geography. It entails geo-
graphical, institutional, organizational, social and cognitive proximity. These well-known
forms of proximity are nevertheless not always evident in intercity co-publication networks
and some of them are intertwined in our empirical case. For instance, when interpersonal
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scientific collaboration between scholars from different organizations such as universities,
academic institutes, companies, and hospitals is aggregated into the intercity collaboration,
the original organization (affiliation) information would be disregarded. Instead, the
‘affiliation’ of a city would be the province or region where it is situated, in which sense
the organizational proximity of two cities can also be taken as institutional proximity
(Broekel, 2015) because cities in the same province or city region are often subject to
the same institutional framework at the macro level. Alongside institutional and organiz-
ational proximity, social proximity can also play a key role in the scientific collaboration
among cities. However, it shows strong overlap with the key endogenous force of triadic
closure as Ter Wal (2014) demonstrated that triadic closure is a specific case of the
social proximity effect on tie formation. In addition, Broekel (2015) argued that social
and cognitive proximity between linked actors are quite likely to be correlated. To avoid
possible multicollinearity and model degeneracy, we restrict our treatment of non-geo-
graphical forms of proximity to institutional proximity and cultural proximity.

As a result, to test hypothesis 2, our proximity framework includes geographical, insti-
tutional, and cultural dimensions. Geographical proximity is measured by the Euclidean
distance between cities. Institutional proximity is measured by two variables of province
and region, which are dyadic dummy variables with cities in the same province or city-
region being 1, and 0 otherwise. The scope of city-regions is based on the urban agglom-
erations in the 13th fifth plan of China as well as Cao et al. (2021a). Cultural proximity is
also dyadic dummy variable in which city-pairs sharing dialect are 1 and 0 otherwise
based on 2010 Atlas of Chinese Dialects (Xiong and Zhang, 2012). To test hypothesis
3, variables of edges, k-star, triadic closure are considered except mutuality because
the CIKNs are undirected. In a valued ERGM, the three variables correspond to sum,
nodesqrtcovar, and transitiveweights.

According to the specification of models and variables, we run the ERGM simulation
through the packages of statnet and ergm.count in the R program. The estimates of par-
ameters are tested by p-value and an overall goodness-of-fit (GOF) is given by the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). The best
fitting model can be achieved by performing various types of model comparison, of
which a smaller AIC and BIC indicate a better GOF.

4 Results and discussion

4.1 The evolving structures of CIKNs

Figure 1 shows the main structure of CIKNs in 2006 and 2016, in which the size of nodes
denotes the total number of co-publications of cities, the width of edges denotes the col-
laboration intensity of city-pairs, and the colour of nodes denotes the communities each
city belongs to. With regard to topological properties, it is clear that the scale and scope of
CIKNs have dramatically increased from 2006 to 2016. Compared with the CIKN in 2006
including 2688 intercity collaboration linkages among 192 cities, the network has inten-
sified with 217 cities engaging in 7820 knowledge collaboration process in 2016. There-
fore, the network density has risen from 0.147 to 0.337, with average degree growing
from 28 to 72. In 2006, it was still quite difficult to initiate knowledge collaboration
among cities because the average path length was 1.920, which was greater than that
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of a random network of the same size. However, the length was shortened to 1.576 by
2016, smaller than that of an identical-size random network. Meanwhile, the average
clustering coefficient ascended from 0.449 to 0.598. The smaller average path length
together with the larger clustering coefficient indicate a small-world structure of CIKN

Figure 1. China’s intercity knowledge networks, 2006–2016.
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in 2016, which can be deemed beneficial for innovation output because the inter-organ-
izational and inter-personal trust will increase within a more closed and embedded social
contexts (Uzzi and Spiro, 2005; Fleming et al., 2007).

With regard to the overall collaboration landscape, intercity co-publications in both
2006 and 2016 were dense in the southeastern but more dispersed in the northwestern
parts of China. This broad division is most clearly represented by the so-called Hu
Line, an imaginary line stretching from Heihe (a northern city located on the Russian
border) to Tengchong (a southwestern city bordering Myanmar) (Chen et al., 2019).
This patten has also been found in China’s intercity transport networks (Wang et al.,
2011a), population networks (Zhang et al., 2020a), corporate networks (Pan et al.,
2017), and to a large extent reflects the uneven development of China’s space-
economy. More specifically, the overall CIKN in 2006 was mainly characterized as a
hub-and-spoke structure centred on Beijing and the Beijing-Shanghai/Nanjing-Hong
Kong/Guangzhou triangles, alongside dense connections among cities in Taiwan. In
2016, Beijing’s knowledge flows radiating outward was strengthened and the knowledge
spillover to cities in the northeast and northwest regions became apparent. Apart from
that, the backbone of the CIKN in 2016 has transferred to a diamond-shaped structure
anchored by four country-level urban agglomerations, i.e. the Beijing–Tianjin–Hebei,
the Yangtze River Delta, the Pearl River Delta, and the Chengdu–Chongqing urban
agglomerations, which is also observed in China’s intercity patent cooperation
network (Duan et al., 2018). Consequently, the degree of knowledge polycentricity has
increased from 0.298 in 2006 to 0.331 in 2016. Alongside this broader pattern, the
influence of the top-down administrative system is obvious in the spatial configuration
of the CIKNs, especially in the Mainland, which is in line with Andersson et al.’s
(2014) findings. As can be seen in Table 1, apart from Taiwanese cities, the top 20
cities in terms of co-publications were all provincial capitals and special administrative
regions in 2006 and were provincial capitals, special administrative regions, and one
sub-provincial city (Shenzhen) in 2016.

Table 1. Top-20 cities of co-publications in China’s intercity knowledge networks.
Rank City Co-publications in 2006 City Co-publications in 2016

1 Beijing 34,122 Beijing 194,096
2 Shanghai 15,293 Shanghai 91,124
3 Taipei 10,773 Nanjing 67,894
4 Nanjing 9583 Guangzhou 62,574
5 Hong Kong 7658 Taipei 51,212
6 Wuhan 7595 Wuhan 48,002
7 Guangzhou 6117 Hangzhou 41,517
8 Hangzhou 6061 Chengdu 38,811
9 Hsinchu 5350 Xi’an 35,277
10 Tianjin 5249 Tianjin 31,973
11 Kaohsiung 5200 Hefei 30,872
12 Hefei 5166 Hong Kong 28,991
13 Chengdu 5131 Ji’nan 28,422
14 Shenyang 5074 Changsha 28,152
15 Taichung 4760 Changchun 24,525
16 Xi’an 4692 Shenzhen 23,929
17 Tainan 4638 Shenyang 22,365
18 Changchun 4157 Chongqing 21,720
19 Changsha 4002 Harbin 21,263
20 Lanzhou 3896 Taichung 21,258
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With regard to the hierarchical tendencies, although Beijing and Shanghai were con-
sistently leading knowledge collaboration centres in China, subsequent ranks changed a
lot (Table 1). The connectivity of cities in mainland China has surged in the CIKN. First,
Hong Kong’s leading role in the Guangdong-Hong Kong-Macao Greater Bay Area
(GBA) was replaced by Guangzhou in 2016. In addition, Shenzhen entered into the
Top-20 in 2016 and emerged as another regional centre in the GBA science system,
which can be attributed to the establishment of cross-city branches of many renowned
universities and research institutes such as Peking University, Harbin Institute of Tech-
nology and Sun Yat-sen University since the early 2000s (Ma et al., 2021). Second, not-
withstanding Taiwanese cities such as Taipei, Hsinchu, and Taichung producing more
co-publications in 2016 than 2006, the growth is much smaller than in mainland
cities, leading to a drop in the ranking. Third, the position of Nanjing, Wuhan, Hang-
zhou, Tianjin was relatively stable whereas cities in the western region like Chengdu,
Xi’an, Chongqing and those in the eastern region like Changchun, Shenyang, Harbin
gained much prominence in 2016. This is greatly associated with the strategies of devel-
opment of west China, revitalization of northeast China, and rise of central China.

Community detection divides cities into five coherent subgroups in 2006 and six in
2016. There exists some stability as well as changes in these patterns. Although the
east-strait (Taiwanese) community is relatively stable, an inclusion of Fuzhou, the
capital of Fujian province in 2016 suggests deepening cross-strait interactions as well
as a possible effect of geographical proximity. The formation of Shandong Peninsula
community in 2016 shows a ‘provincial bias’ (Andersson et al., 2014; Li and Phelps,
2017), that is, cities in Shandong Province are more likely to develop scientific collabor-
ations at the intra-provincial level than at the inter-provincial level. Such spatial patterns
are also found at the city-region level. For instance, cities in the northeast part that were
part of the Beijing community in 2006 formed a new community in 2016, which
coincides with the development of Harbin-Changchun and Central South Liaoning
urban agglomerations. Jointly with the spatial political bias, the impact of geographical
and cultural proximities can to some extent be observed in the combination of cities
in central Shanxi, central Plain, and the middle reach of Yangtze River regions into a
central community, and the expansion of the Chengdu-Chongqing community by
including nearby cities in 2016.

4.2 The driving mechanisms behind CIKNs

Table 2 summaries the results of the ERGMs, including all specified variables for CIKNs
in 2006 and 2016 and which are also the best fitting models. The models are stable and
converge. A brief look at significant variables in both periods suggests the three proposed
hypotheses all hold in 2016 even though the knowledge base characterized by the number
of students and the cultural proximity characterized by dialect were insignificant in 2006.

Regarding Hypothesis 1, as expected, cities with better economic performance, larger
R&D investment, more universities, higher administrative level tend to have more
knowledge collaboration: the coefficients for GDP, R&D, universities, and capital are
all positive and significant at the 1% level. Nevertheless, the number of students in a
city does not impact the structure of intercity knowledge exchange in 2006 whereas
the situation has changed in 2016, suggesting that students play an increasingly pivotal
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role in scientific collaboration. The coefficients of GDP show an upward trend, but the
values are still fairly small, which confirmsWang et al.’s (2021) work for the collaborative
innovation network of the Yangtze River Delta region. In contrast, the coefficients for
universities have decreased, albeit that the impact of universities on promoting knowl-
edge collaboration is still bigger than students and GDP. This might be because univer-
sities are more suitable to represent the main and direct producers of co-publications
while most students are not capable to conduct scientific collaboration on the one
hand and, on the other hand, GDP is a more general indicator covering many aspects
beyond scientific research. Provincial capital effects on intercity knowledge networks
are strongest, followed by R&D investment from local government which has risen
sharply from 2006 to 2016. This implies that knowledge collaboration and innovation
activities are, to a large extent, influenced by government policies (Wang et al., 2011).
For example, the scientific fields in which the government invests more, or encourages
in its official documents, will undoubtedly attract more research interest and thereby
might stimulate more collaboration. A slight drop in capital’s coefficients from 2006 to
2016 indicates a decentralization trend in knowledge flows, confirming the previous
descriptions of structural evolution of CIKNs.

Regarding Hypothesis 2, geographical proximity has the least influence on promoting
the intercity scientific collaboration and the impact of distance has weakened from 2006
to 2016. This is consistent with recent studies on geography and proximity in intercity
flows. That is, although still exerting an influence, the distance barriers become less
and less marked due to the development of communication technology and improve-
ment of transport infrastructures in China (Zhang et al., 2020b). The effects of insti-
tutional proximity are most salient. Although collaborative activities can physically
take place across regions, they still tend to follow the territorial configuration of political
space (cf. Ma, 2005) as this instills an identical framework of collaboration policies, fund
allocation, and output management. The coefficients of province are bigger than that of

Table 2. Results of ERGMs for CIKNs in 2006 and 2016.

Varibles

Model 2006 Model 2016

Estimate Std. error p-value Sign. Estimate Std. error p-value Sign.

Exogenous forces
(1) Node level
GDP 0.0007 0.0001 <1e-04 *** 0.0013 0.0000 <1e-04 ***
R&D 0.1735 0.0246 <1e-04 *** 1.0600 0.4701 <1e-04 ***
Universities 0.0659 0.0061 <1e-04 *** 0.0347 0.0026 <1e-04 ***
Students 0.0023 0.0044 0.6105 0.0185 0.0029 <1e-04 ***
Capital 1.3270 0.0855 <1e-04 *** 1.2200 0.0074 <1e-04 ***
(2) Dyad level
Distance −0.0003 0.0000 <1e-04 *** −0.0002 0.0000 <1e-04 ***
Province 1.6280 0.0440 <1e-04 *** 0.8708 0.0120 <1e-04 ***
Region 0.2394 0.0465 <1e-04 *** 0.4084 0.0101 <1e-04 ***
Dialect 0.0296 0.0647 0.6469 0.0935 0.0042 <1e-04 ***
Endogenous forces
(3) Structural network level
Sum −5.0010 0.0466 <1e-04 *** −4.4660 0.0498 <1e-04 ***
Nodesqrtcovar 0.4421 0.0564 <1e-04 *** 0.3200 0.0144 <1e-04 ***
Transitiveweights 0.1047 0.0541 0.0528 * 0.5570 0.0495 <1e-04 ***
Akaike Inf. Crit. (AIC) −59682 −46718
Bayesian Inf. Crit. (BIC) −59591 −46624
***0.01, **0.05,*0.1.
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region, suggesting that cities are more likely to collaborate with other cities in the same
province than those in the same city-region. However, with the increase of region’s coeffi-
cients and the decrease of province’s coefficients, the effects of two institutional proximi-
ties are converging and the integration of urban agglomerations in China is enhanced.
Cultural proximity is an exception since it does not impact the structure of intercity
knowledge exchange in 2006 but does so in 2016. The instability of the cultural proximity
effect is also found in Yang et al. (2018). The significant and positive effect in 2016 can be
associated with the development of China’s urban agglomerations.

Regarding Hypothesis 3, variables’ coefficients are significant in both models, so the
effects of preferential attachment and transitivity are robust, indicating the need to
include endogenous forces in the network modelling. Well-connected cities are more
prone to have additional collaboration than sparsely connected cities. This endogenous
effect is particularly evident in the reinforced hub-and-spoke structure centred on
Beijing and the rise of regional knowledge centres. Primary cities of each province
prefer developing scientific collaboration with Beijing rather than with cities in their
own province. Following the same logic, other cities have more co-publications with
their provincial capitals than small nearby cities. This mechanism would help cities
to gain more knowledge spillovers at smaller costs. The decrease of coefficients
signals that the preferential attachment process has weakened from 2006 to 2016,
which parallels the aforementioned decline in capital effects and the polycentric devel-
opment of knowledge centres in China. Meanwhile, we find a growing, significant, and
positive impact of triadic closure, which corresponds to the visual inspection of CIKNs
in the Figure 1. For example, with the intensifying collaboration of Beijing-Shanghai
and Beijing-Guangzhou, the open triad has evolved into a closed one from 2006 to
2016 despite not sharing geographical, institutional, and cultural proximity. In this
regard, the structural force played a crucial role in the formation of diamond-
shaped backbone of Beijing-Shanghai-Guangzhou-Chengdu. Broekel and Hartog
(2013) and Qin et al. (2020) also found that triadic closure is an important driving
force in the network formation of German’s R&D collaboration network and
China’s knowledge collaboration network, respectively. The growth of coefficients indi-
cates actors in cities increasingly utilize network resources by forming collaborative
links with partners of their partners. The tendency towards triadic closure yields
dense cliques of strongly interconnected cities and the social cohesion in the strong
cliques in turn fosters the trust and lessens the costs in knowledge exchange (Ter
Wal, 2014). The coefficient of sum is negative and significant, which is a common
feature of networks and means that the observed network tends to be less dense
than exponential random networks.

5 Conclusions

In this research, we examined the topological and spatial structures as well as dynamics of
CIKNs based on co-publications from WoS for the periods 2002–2006 and 2012–2016.
We then explored the driving mechanisms of the CIKN’s formation and evolution
using an exponential random graph modelling approach. Our main conclusions are as
follows:
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First, the intercity scientific collaborations have dramatically increased from 2006 to
2016, resulting in a much denser network with a shorter average path length and a
larger clustering coefficient. The overall geography is relatively stable in that co-publi-
cations are denser in the southeastern and sparser in the northwest part of China.
Beijing remains the dominant knowledge centre, but with the emergence of regional
centres in mainland China, the diamond-shaped structure anchored by four country-
level urban agglomerations comes to the fore in 2016, showing an increasingly poly-
centric development and leading to the formation of more local communities in the
CIKN.

Second, the ERGM results suggest that preferential attachment and transitivity are sig-
nificant endogenous processes driving the formation of the CIKNs. As for exogenous
factors, administrative level and R&D play the strongest and significant role in intercity
scientific collaborations. GDP’s impact is limited and can almost be ignored, and so does
geographical proximity. Institutional proximity is the most important among the
different proximity effects. Provincial preference in intercity scientific collaborations is
still stronger than city-regional preference. The endogenous and exogenous forces can
to some extent substitute for one another.

Third, the comparison of coefficients in 2006 and 2016 indicates that the preferential
attachment effect has weakened whereas the transitivity effect has strengthened. The
evolution of the CIKNs is to some degree a trade-off between these effects. There is a
slight drop of administrative effect but a surge in R&D’s influence. Students and cultural
proximity play an increasing pivotal role in scientific collaboration. With the rise of
region’s coefficients and the decline of province’s coefficients, the effects of two insti-
tutional proximities are converging, suggesting an increasing integration of urban
agglomerations in China.

Our research contributes to the literature by simultaneously considering exogenous
forces and endogenous forces, and extending the application of ERGMs from binary net-
works to valued networks. The exogenous forces underpinning the intercity scientific
collaboration have been shown in the extensive literature on knowledge spillovers and
urban innovation systems. The endogenous forces unveiled in this study are more inno-
vative. At the early stage of scientific collaboration, cities tend to develop relationship
with well-connected cities, which allows obtaining knowledge spillover efficiently. The
preferential attachment process produces many open triads. When the collaboration in
an open triad is strengthened to the extent that it forms a high-trust environment, the
triadic closure works and the interconnected cliques come to the fore.

There are obviously also a number of limitations to our study, which might open per-
spectives for future research. First, given the inclusion of Hong Kong, Macau and
Taiwan, we employed the co-publication data retrieved from the WoS rather than the
Chinese domestic databases. Publishing in WoS indexed journals is on average more
difficult than publishing in ‘domestic’ journals, and authors publishing in English thus
tend to somewhat affiliated to higher-level universities located in larger cities. A
careful examination of scientific collaboration of cities in mainland China calls for an
incorporation and comparison of different datasets in both Chinese and English.
Second, different from previous (spatial) econometric models that can detect multicolli-
nearity and solve endogeneity effectively, ERGMs do not deal with these problems before
simulation. An alternative is to specify many versions of ERGMs by stepwise-adding
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variables and then to check whether the models converge. When a newly added variable
causes model degeneracy, the variable can be removed. However, due to the compu-
tational complexity, it is neither judicious nor possible to include as many candidate
determinants as possible into the model because the simulation for large networks is
quite time-consuming when the triadic closure and preferential attachment variables
are incorporated. Even though the retained variables lead to model convergence, we
cannot be sure if there is multicollinearity among them. In this sense, the absolute
values of estimated parameters for each factor are not that useful, but comparisons of
parameters for different factors and for the same factors in different time periods can
provide insights into the importance of factors that drive the network formation and
evolution.

Note

1. Data source: https://ncses.nsf.gov/pubs/nsb20206/publication-output-by-region-country-
or-economy
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