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SIMPLIFIED KRIPKE STYLE SEMANTICS
FOR MODAL LOGICS K45, KB4 AND KD45

Abstract

In this paper we show that logics K45, KB4 (= KB5) and KD45 are determined
by some classes of simplified Kripke frames without binary accessibility relations
between possible worlds. These frames are ordered pairs of sets (W, A), where
W is a non-empty set of worlds and A C W (a set of common alternatives to
all worlds in W). From a frame (W, A) we can construct models of the form
(W, A, V), where V is a standard valuation which to formulae and words assigns
truth-values with respect to the set A. For K45 we use the class of all simplified
frames; for KB4 we have the case that A = @) or A = W; and for KD45 we use
frames with A # 0.

Moreover, to each of these logics we also assign a suitable class of finite
euclidean relational frames which satisfy conditions for normal extensions of K5
presented by Nagle in [2].

Keywords: simplified Kripke style semantics, normal modal logics K45, KB4 and
KD45.

1. Introduction. Preliminaries

Modal formulae are formed in the standard way from the set At of proposi-
tional letters: ‘p’, ‘q’, ‘po’, ‘p1’, ‘p2’, ...; the truth-value operators: ‘-’ and
‘D’ (negation and material implication); the modal operator ‘0’ (necessity;
the possibility sign ‘O’ is the abbreviation of ‘-0~’); and brackets. By

For we denote the set of modal formulae.
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We remind that a set A of modal formulae is a normal modal logic iff
A contains all classical tautologies and the following formula

O(p D ¢q) D (Op D Og) (X)

and A is closed under the following rules: modus ponens, necessitation and
uniform substitution, i.e. for any ¢, € For

if ¢ and T D ¢ are members of A, so is 1, (MP)
if o € Athen "Op™ € A, (RN)
if o€ Athensy e A, US)

—~

where s ¢ is the result of uniform substitution of formulae for propositional
letters in . By (US), all these logics include the set PL of all modal
formulae which are instances of classical tautologies.

We remind that K is the smallest normal modal logic. For other modal
logics we will make use of the following formulae

Op > Op (D)
OpDp (T)

p D OOp (B)
Op > OOp (4)
Op > O0Cp (5)

Using the names of the formulae above, to simplify naming normal log-
ics, we write KX ...X,, to denote the smallest normal logic containing the
formulae (X;), ..., (X,,). Thus, for example, K5, K45, KB4, KB5, KD45,
and KT5 are the smallest normal modal logics which contain, respectively,
the following formulae: (5); (4) and (5); (B) and (4); (B) and (5); (D), (4)
and (5); (T) and (5). We have S5 := KT5 = KTB4 = KDB4 = KDB5 and
KB4 = KB5 (cf. e.g. [1], pp. 137 and 139).

For all normal modal logics we may use Kripke relational frames of
the form (W, R), where W is a non-empty set of worlds and R is a binary
accessibility relation in W. For a frame (W, R) a relational model is any
triple (W, R, V) in which V: For x W — {0,1} is a function which, to
formulae and words, assigns truth-values with respect to R. This function

preserves classical conditions for truth-value operators and for any ¢ € For
and z € W
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(V\:R) V(Dcp,x) = 1iff VyER(z) V(QO, y) =1,

where R(z) := {y : = Ry}, that is R(x) is the set of worlds which are
accessible from z.!

We say that a formula ¢ is valid in a model (W, R, V) iff V(p,z) =1
for each x from W. A formula is valid in a frame iff it is valid in every
model on this frame. A formula is valid in a class of models (resp. frames)
iff it is valid in all models (resp. frames) from this class. We say that a
normal logic is determined by a model (resp. frame; class of models; class
of frame) iff all and only formulae in this logic are valid there.

We say that a frame (W, R) (or a model on this frame) is, respectively:
reflexive, serial, symmetric, transitive, Euclidean iff it satisfies, respectively,
the following condition: Vyew  Ra; Voew Iyew ¢ Ry; Vyyew(z Ry <
yRx;Vyy .ew(tRy & yRe = xR2); Ve, .ew(zRy & Rz = yRz).
The logics K, K5, K45, KB4 (= KB5), KD45 and S5 are determined,
respectively, by the classes of (cf. e.g. [1]):

e all relational frames,

e Euclidean frames,

e transitive and Euclidean frames,

e symmetric and transitive (symmetric and Euclidean) frames,

e serial, transitive and Euclidean frames,

¢ reflexive and Euclidean (reflexive, symmetric and transitive; serial,

symmetric and transitive) frames.

The facts mentioned in the first paragraph of the abstract have a con-
nection with the well-known fact concerning the logic S5. This logic is also
determined by the class of universal frames in which all worlds are accessi-
ble from all worlds, i.e. R =W x W (cf. e.g. [1]; R we also call universal).
A model (W, W x W, V) on a universal frame may be identified with the
pair (W, V) in which for any ¢ € For and x € W we have

(A8 V(Op,z) = 1iff Vyew V(p,y) = 1.

So for the logic S5 we can use models of the form (W, V).

Similarly, for logics K45, KB4 (=KB5) and KD45 — instead of relational
frames — we can use simplified frames of the form (W, A), where W is a
non-empty set of worlds and A C W (A is a set of common alternatives

1We say that a relational frame (model) is empty iff R = 0.



166 Andrzej Pietruszczak

to all worlds from W). For a frame (W, A) a simplified model is any triple
(W, A, V) in which V: For x W — {0, 1} is a function which to formulae
and words assigns truth-values with respect to the set A. This function
preserves classical conditions for truth-value operators and, moreover, for
any ¢ € For and z € W

(Vi) V(Op,z) = 1iff Vyea V(p,y) = 1.

Naturally, also for S5 we can use simplified frames (models) — a special
kind in which A = W. Of course, a simplified model (W, W, V) may be
identified with the pair (W, V).

Of course, for simplified models (frames) and classes of simplified mod-
els (frames) we use notions of valid and of determination, defined similarly
as for relational models (frames) and classes of relational models (frames).
For logics K45, KB4 and KD45 in Section 2 we prove the following deter-
mination theorems with respect to some classes of simplified frames.

THEOREM 1.1. (i) K45 is determined by the class of all simplified frames.
(ii) KB4 is determined by the class of «emptyy or universal simplified
frames, i.e. in which A=0 or A=W.
(iii) KD45 is determined by the class of «non-emptys simplified frames,
i.e. in which A # 0.

The facts mentioned in the second paragraph of the abstract have a
connection with the following fact concerning normal extensions of the
logic K5 which is proved by Nagle in [2].

NAGLE’S FACT 1 ([2], p. 325). Every normal logic containing (5) is deter-

mined by a set of relational frames (W, R) which are finite?, Euclidean and

satisfy one and only one of the following conditions:

(a) W is a singleton and R =),

(b) R is total in W, i.e. R=W x W 3

(c) there is a unique “initial” world w € W such that R is total in W\ {w}
and w Rx for some x € W \ {w}.

In Section 3 for each one of the logics K45, KB4 and KD45 we give and
prove some special version of Nagle’s Fact.

2A frame (model) is said to be finite just in case the number of points in W is finite.
3The relation R is total in a set X iff X x X C R.
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2. The proof of Theorem 1.1

We begin with the proofs of some facts which will be helpful for the analysis
of the logics K45, KB4 and KD45.

LEMMA 2.1. For any frame (W,R) and x € W we put W* := {z} U A",
where A* := {y € W : z R"y for somen > 0}, and R* := RN(W*xW?®).4
(i) If R is reflexive then A* = W<,
) If R is serial then A® # ().
(iii) If R is transitive then A* = {y € W : x Ry}.
) If R is symmetric, then either A* = W% or A* = {).
) If R is Euclidean, then (W*\ {z})? C R® and either R* = W* x W<
or R* CW® x (W= \ {z}).5
(vi) If R is symmetric and Euclidean, then either R* = W* x W* or
R® =.
(vii) If R is transitive and Euclidean, then
(a) either R* = W?* x W? or R* = W* x (W% \ {z}),
(b) R* = W* x A?.

Proor: Points (i)—(iii) are obvious.

(iv) Let A% # (). Then for some y € A* we have x Ry. So y R z, since
R is symmetric. So z R? x and z € A®.

(v) Firstly, let y,z € W® and y # x # z. Then by induction we obtain
that y R 2. Thus (W®\ {z})? C R".

Secondly, also by induction, we obtain that if z R z, then y R z for
any y,z € W* ie. R* = W?* x W2, If (z,z) ¢ R, then R* # W?* x W?*.
Thus, if y R* z, then z # x, since R is Euclidean. Hence y € W?* and

(vi) By (iv), either A* = W*® or A* = . If A* = W?, then z R z; so
R* = W*xW?, since R is Euclidean. If A® = (§, then either R* = W*xW?*
or R* =0, by (v).

(viia) Suppose that R* # W?* x W*. Let y,z € W?* and z # x. Then,
by (iii), # R z and either z = y or  Ry. Hence y R z, since R is Euclidean.
Thus, W* x (W? \ {z}) C R*. So R* = W?* x (W?*\ {z}), by (v).

4xRYy iff zRy; and for n > 1: xR"y iff there are y1, ..., yn—1 € W such that zRy1,
y1Ry2, ..., yn—1 Ry. Of course, (W?®, R*) is a frame for generated models.

5For this fact see [3], Lemma 1.
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(viib) For any y,2z € A*, x Ry and = R z, by (iii). Hence y R z, because
R is Euclidean. Thus A* x A* C R.

Moreover, by definition of A%, we have R* = (RN {(z,z)}) U ({z} x
AP)YU (A* x {z}) U (A* x A®). We consider three cases. Firstly, if A% = (),
then R* = RN{(z,z)} and {x,z) € R, so R® = (). Secondly, if A* # § and
(z,z) € R, then there isnoy € A® such that y Rz. So A% x {z} = (. Hence
R* = ({2} x A*) U (A" x A®) = ({2} U A*) x A*. Thirdly, if A® # @ and
(z,x) € R, then x € A®* = W*. Hence R® = {{(z,z)} U ({z} x A%) U (A* x
{z})U(A" x A%) = W xW?*. In all cases we obtain that R* = W?* x A®. -

We say that a relation R in a relational frame (W, R) is semi-universal
iff R=W x A for some A C W, i.e. all worlds from A are accessible from
all worlds from W (in other words, A is a set of common alternatives to all
worlds from W). We also call these frames semi-universal. Notice that:

LEMMA 2.2.

(i) All semi-universal relations are transitive and Euclidean.
(i) R is reflexive and semi-universal iff R=W x W.

(i) R is symmetric and semi-universal iff R=W xW or R=0 =W x .
(iv) R is serial and semi-universal iff R =W x A with A # §.

We prove that logics K45, KB4 and KD45 are determined by some
classes of semi-universal relational frames. For K45 we may use the class
of all semi-universal frames (instead of the class of all transitive-Euclidean
frames). For KB4 it must be the case that either A = W or A = {), so
we may use the class of universal or empty relational frames (instead of
the class of all symmetric-transitive frames). Finally, for KD45 it must be
the case that A # ), so we may use the class of non-empty semi-universal
frames (instead of the class of all serial-transitive-Euclidean frames).5

By Lemma 2.1 we obtain

COROLLARY 2.3. For any relational frame (W, R):
(i) If R is transitive and Fuclidean, then R is semi-universal.
(ii) If R is symmetric and transitive, then R® is universal or empty.
(iii) If R is serial, transitive and Euclidean, then R® is non-empty and
semi-universal.

6Thus for these logics we have the like case as for the logic S5 (=KT5 = KTB4), where
we may use the class of universal frames instead of the class of all reflexive-Euclidean
(i.e. reflexive-transitive-symmetric) frames.
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Given the above facts we notice that classes of semi-universal relational
models for K45, KB4, and KD45 are connected with some classes of gen-
erated models. We make use of models generated from relational models
(cf. [1], p. 97).

Let # = (W,R,V) and z € W. Then the model generated by z from
M is the relational model #Z* = (W?® R*,V*) in which W?* and R* are as
in Lemma 2.1 and for any a € At and y € W* we have V¥ (a,y) = V(a,y).
Of course, V* preserves classical conditions for truth-value operators and
satisfies the condition (V) for R?.

For any class C of relational models we put the following class of gen-

erated models G(C) := {#” : # € C and z is in A }.

Fact 2.4 ([1], Theorems 3.10-3.12). For any ¢ € For
(i) for all x from A andy € W*, V=(p,y) = V(p,y);
(ii) @ is valid in A iff for every x in M, ¢ is valid in M*;
(iii) ¢ s walid in C iff ¢ is valid in G(C). .

From the above facts and facts from p. 165 we obtain

THEOREM 2.5. (i) The logic K45 is determined by the class of all semi-
universal relational frames.

(ii) The logic KB4 is determined by the class of universal or empty rela-
tional frames.

(iii) The logic KD45 is determined by the class of semi-universal relational
frames which are non-empty.

Any semi-universal relational model (W, W x A, V) may be identified
with the triple (W, A, V') in the sense of the following

LEMMA 2.6. Let W be a non-empty set, ACW and v: At x W — {0,1}.
Moreover,
o let (W, W x A, V) be a semi-universal model in which V is the exten-
sion of v (by the condition (V) for R =W x A);
o let (W, A, V'Y be a simplified model in which V' is the extension of v
(by the condition (VA)).
Then V =V, d.e. (W, W x A, V) may be identified with (W, A, V').

Remark. If A = W, then by Lemma 2.6 the models (W, W x A, V) and
(W, A, V) may be identified with the simplified model (W, V) for S5. A
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By Lemma 2.6, any semi-universal model is, essentially, a simplified
model which instead of a relation W x A has a set A of common alternatives
to all worlds in W. From this fact and Theorem 2.5 we obtain Theorem 1.1.

Notice that K45 (resp. KD45) is also determined by the class of simpli-
fied frames which are «non-universal» (resp. both «non-empty» and «non-
universaly ), i.e. A # W (resp. § # A # W). Indeed, any formula falsifiable
in a universal simplified frame (W, W) is also falsifiable in a simplified frame
(WuU{z}, W), where x ¢ W. Thus, all formulae valid in all frames fulfilling
() # A # W are also valid in all universal simplified frames.

3. Some special version of Nagle’s Fact

By the facts from Section 2 and by Nagle’s Fact, to each one of the logics
K45, KB4 and KD45 we assign a suitable class of finite Euclidean frames
which satisfy one and only one of the conditions (a), (b), and a special case
of (c¢) from Nagle’s Fact. We have the following

THEOREM 3.1.

(i) K45 is determined by the class of finite relational frames (W, R) which
satisfy one and only one of the following conditions: (a) and (b) from
Nagle’s Fact, and
(¢") W is not a singleton and there is a world w € W such that

R=W x (W\{w}).”

(ii) KB4 is determined by the class of finite relational frames (W, R) which
satisfy one and only one of the conditions: (a) and (b).

(iii) KD45 is determined by the class of finite relational frames (W, R)
which satisfy one and only one of the conditions: (b) and (c').

In all cases (i)—(iii), either R = (),or R = WxW,or R = W x (W \{w});
so R is semi-universal, and naturally, R is transitive and Euclidean.

Notice that K45 (resp. KD45) is also determined by the class of finite re-
lational frames (W, R) which satisfy one of the conditions (a) and (c’) (resp.
(¢’) alone). Indeed, any formula falsifiable in a universal frame (W, W x W)
is also falsifiable in a frame (WU{z}, (W U{z}) x W), where = ¢ W. Thus,
all formulae valid in all (¢’)-frames are also valid in all universal frames.

"The condition (c’) is a particular case of the condition (c) from Nagle’s Fact. Namely,
the relation W x (W \ {w}) is total in the non-empty set W \ {w} and all worlds from
this set are accessible from w.
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Directly from Theorem 3.1 (since ) = W x () we obtain the following
corollary, which has a connection with Theorem 1.1.

COROLLARY 3.2.

(i) K45 is determined by the class of finite simplified frames (W, A) which
satisfy one and only one of the following conditions:
(a*) W is a singleton and A =0,
(b*) A=W.
(c*) W is not a singleton and A =W \ {w} for some w € W.

(ii) KB4 is determined by the class of finite simplified frames (W, A) which
satisfy one and only one of the conditions (a*) and (b*).

(iii) KD45 is determined by the class of finite simplified frames (W, A)
which satisfy one and only one of the conditions: (b*) and (c*).
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