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SEMANTICAL INVESTIGATIONS ON SOME
WEAK MODAL LOGICS. Part I*

Abstract

In this paper we examine weak logics similar to S0.5[J®], where @ C S0.5. We
also examine their versions (one of which is S0.5,¢¢[[J®]) that are closed under re-
placement of tautological equivalents (rte). We have that: S0.5:¢e[(J(K), (T)] C
S0.9, S0.5:¢¢[0(X),(T)] € S1, and in general, if & C E1, then S0.5,46[00P] C
S2.

In the second part we shall give simplified semantics for these logics, formu-
lated by means of some Kripke-style models. We shall also prove that the logics
in question are determined by some classes of these models.

Key words: Very weak modal logics, simplified Kripke-style semantics.

1. Preliminaries

1.1. Basic notions

Modal formulae are formed in the standard way from the set At of proposi-
tional letters: ‘p’, ‘¢’, ‘r’, ‘po’, ‘P1’, ‘D2’, ...; truth-value operators: ‘=, ‘V’,
‘A, D%, and ‘=’ (connectives of negation, disjunction, conjunction, mate-
rial implication, and material equivalence, respectively); the modal oper-
ator ‘00’ (necessity; the possibility sign ‘(’ is the abbreviation of ‘=-’);
and brackets. Let For be the set of all modal formulae.

*The first version of this work were presented during The Third Conference: Non-
Classical Logic. Theory and Applications, NCU, Toru, September 16—-18, 2010.
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In original Lewis’ works (see e.g. [5]) the primitive modal operator is
the possibility sign ‘¢)’. The necessity sign ‘(1" is the abbreviation of ‘= —’.
Moreover, "¢ < 17 (the strict implication) was used as an abbreviation of
SO Ay

In this paper, as in [4], the primitive modal operator is ‘0" and " < 9™
is an abbreviation of "O(¢ D v)7. Moreover, similarly as in [5, 4], the strict
equivalence "¢ =< 1™ is an abbreviation of "(p < ) A (¢ < ).

For any formula ¢ let sub(y) be the set of all instances of ¢. For any
set @ of formulae we put: sub(®) := (J,cgsub(p), 0P := {0y : ¢ € &}
and 0P := {0y : p € &}

Let Taut be the set of all classical tautologies (without the modal oper-
ator). We put T := ‘p D p’. Moreover, let PL be the set of modal formulae
which are instances of classical tautologies. Of course, PL = sub(Taut).

A formula ¢ is propositionally atomic iff ¢ € At or ¢ € OFor. Let PAt
be the set of all propositionally atomic formulae, i.e. PAt := At U OFor.

Let Val® be the set of all valuations V: For — {0,1} which preserve
classical truth conditions for truth-value operators.

LEMMA 1.1. 1. V € Val® iff for some assignment v: PAt — {0,1}, V is
the unique extension of v by classical truth conditions for truth-value
operators.

2. For any ¢ € For: ¢ € PL iff for every assignment v: PAt — {0, 1}
we have that V() = 1, where V is the unique extension of v by
classical truth conditions for truth-value operators.

3. For any ¢ € For: ¢ € PL iff V() =1, for any V € Vale.

For any ¥ C For and ¢ € For we write ¥ |=pr, ¢ iff for any V' from
Val®: if V(@) C {1}, then V(¢) = 1. Of course, ¥ [=py, ¢ iff for some
{t1,...,¥n} C ¥, n >0, we have that "(; A -~ A1),) D ¢ € PL. We
also write ¥ =py, @ iff ¥ =pr, @, for any ¢ € P.

A set X of modal formulae is a modal system iff PL C X and X is
closed under the rule of detachment for ‘>’ (modus ponens), i.e., for any
@, € For:

if o and " D ¥ are members of X, so is . (MP)
A set of modal formulae is a logic iff it is a modal system and it is closed

under the rule of uniform substitution. Of course, PL is the smallest modal
system and it is a logic.



Semantical Investigations on Some Weak Modal Logics. Part T 35

For any modal system X', any ¥ C For and any ¢ € For: ¢ is deducible
from ¥ in X (written: ¥ Fx @) iff for some {¢1,...,¢¥,} C ¥, n >0,
we have that "(¢¥1 A--- Ay,) D ! € X. Of course, Epr, = Fpr, C Fx.
Moreover, X b5 piff p € X iff D Fx .

A system X is consistent iff X # For; equivalently in the light of
propositional logic PL, iff ‘p A =p’ does not belong to X.

To simplify notation of logics we use the following code. If A is a
logic and ¢ C For, then A[®] denotes the smallest logic which includes
the set AU P. We write Afp1,...,p,] instead of A[{¢1,...,¢n}], and
A[Pq,...,P,)] instead of A[@q U---UP,].

We say that a modal system is congruential (or classical) iff it is closed
under the following rule of congruence, i.e., for any ¢,y € For:

if "o =17 € X, then "Dy =y € X. (RE)

Fact 1.2. A modal system X' is congruential iff it is closed under replace-
ment, i.e., for any @, 1, x € For:

iffeo=yT€ X and x € X, then x[¥/y] € X, (RRE)
or equivalently:
ifTo=9T e X, then "x[?/y]=x"€ X, (RRE)

where x[?/y] is any formula that results from x by replacing zero, one or
more occurrences of p, in x, by V.

A modal system X' is called monotonic iff X' is closed under the fol-
lowing rule of monotonicity, i.e., i.e., for any ¢, € For:

if T Dy’ e X then "Op DY e X (RM)

Fact 1.3. A modal system is monotonic iff it is congruential and contains
all instances of the following formula:

O(p Aq) > (Op Alq) (M)

A modal system X' is called regular iff X' is closed under the following
regularity rule, i.e., for any ¢, ¥, x € For:

it (pAY)DxTe X, then "(OpAOy) DOx" € X. (RR)
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FAcT 1.4. For any modal system the following conditions are equivalent:

(a) the system is regular,
(b) it is monotonic and contains all instances of

O(p > ) > (Bp > Ug) (K)
(¢c) it is monotonic and contains all instances of
OpADq) >0(pAq) (©)
(d) it is monotonic and contains all instances of
(B >9) AD(g>r) >0(p>7) (%)
(e) it is congruential and contains all instances of

O(p Agq) = (OpAUg) (R)

To simplify notation of logics we use the following code. If A is a regular
logic and @ C For, then A®® denotes the smallest regular logic which
includes the set AU ®. We write A®p; ..., instead of AB{p1,...,pn}.

C2 is the smallest regular logic and E2 is the smallest regular logic
which contains (T), i.e. E2 = C2®(T).

We say that a modal system X is normal iff it contains all instances
of (K) and is closed under the following rule:

if p € X, then "Op' € 3. (RN)

FacT 1.5. For any modal system the following conditions are equivalent:
(a) 4t is normal,
(b) it is regular and contains T,
(c) it is congruential, contains OT and includes sub(K).

By the above fact, if A is a normal logic, then A®I is as well. Indeed,
A is regular and contains JT. Hence A®I is also regular and contains
OT. So A®I is normal.

In this paper we investigate some weak modal logics. For these logics
we are using the following lemmas.
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LEMMA 1.6. For any modal system X which includes the following set
Epr i ={Op=0¢" : To=4¢ € PL},
1. OT € X ¢ff OPL C X
2. If sub(X) C X, then sub(K) C X.

Proor: 1. Forany 7 € PL, "t = T'€ PL and "Or =0T € X since
Epr C X. Hence, by PL, also U7 € X, since (JT € X.

2. For any p,¢ € For, "o = (T D ¢)" € PLand "¢ = (T D ¢)" € PL.
So if Ep, € X, then "0 = O(T D )" and "Oy = O(T D ¢)™ belong to
X. Moreover, if (X) € X, then "(O(T > ¢) AQ(¢ D)) DO(T D) €
Y. Hence "O(¢ D ¢) D (Op D Oy)" € X, by PL. =

LEMMA 1.7 ([6]). For any modal system X: X includes the following set
Mpp:={0OpD>0y™ : Tp D¢ € PL}
iff Epr C X and sub(M) C X.

LEMMA 1.8. For any modal system X which includes Mpy:

OPL C X 4ff OT € X iff X has some formula of the form "Cp™.

LeMMA 1.9 ([6]). For any modal system X' the following conditions are
equivalent:
(a) X includes the following set

Rer = {"(0OpA0y) D0x" : "(pAy) D x"€PL},

X and sub(k) C X
X and sub(X) C X
X and sub(C) C X
X and sub(R) C X.

(b)
(c)
(d)
()

WZZZ

L &
L C
L C
Q

LEMMA 1.10. Fiz any system X:
1. If Epy C X, then X' contains all instances of the following formula

<>p = —\D—!p (df <>)
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2. If Rpy C X, then X' contains all instances of the following formulae

OpVg) = (0pVOg) (R°)
Olp 2> ¢)=(0p>Yq) (R°Y)

LEMMA 1.11. For any modal system X:
1. If Epy C X, then X' contains all instances of the following formula

(p=q)=-0(pA—q) (df' <)
2. If Rpy C X, then X' contains all instances of
p=<q9=0p=q) (df’ <)

LEMMA 1.12. For any modal system X:

1. If X contains all instances of the following formula
Op>p (T)
then X is closed under the following rule
if "Qep e X, then ¢ € X. (RN,)

2. If X is closed under (RN.), then X is closed under the following rule
of detachment for ‘<’ (strict version of modus ponens)

if To<yYle X and pe X, theny € X. (SMP)
3. If Epr. C X and X is closed under (SMP), then X is closed under
(RN,).

PRrROOF: For 3. Let "0y € X. Since Ep;, € X and "¢ = (T D ¢)” € PL,
we have that "Oyp = O(T D ¢)" € X. Hence, by PL, "0(T D ¢)7 € X.
So ¢ € X, by (SMP) and PL. -

1.2. t-regular modal systems

In [6] a modal system is called t-regular iff it includes the set Rpy. Thus,
the set Rpyr replaces the rule (RR) in the formulation of regular systems.
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By definition, any modal system which includes some t-regular system, is
also t-regular. So, if A is a t-regular logic, then A[P] is. Moreover, every
regular system is t-regular.

Fact 1.13. For any t-reqular modal system X the following conditions are
equivalent:

(a) 0T € X,

(b) X contains all instances of the following formula

Op>Op (D)

FacT 1.14. For any t-regular modal system X, if X' contains one of the
following formula, then X contains all the following formulae:!
Op > (p v Hg)
0gq>(@p>p)
0(a>q) > (@p>p)
—0(gA—q) > (0p > p)

(Tq)

The logic C1 from [7] is the smallest t-regular system. C1 is a logic
and C1 := PL[Rg.]. The logics D1 and E1 from [4] are respectively the
smallest t-regular logics which contain (D) and (T), i.e. D1 := PL[Rp.,D] =
C1[D] = C1[0T] and E1 := PL[Rp., T| = C1[T]. We have that C1 C
D1 C El1 and C1 C C1[T4] C E1 (see [6])

Notice that E1 = C1[D,T4]. Indeed, from C1 and (D) we obtain ‘0(g D
q)’, and hence (T), by (Tq) and (MP).

1.3. t-normal modal systems

In [6] a modal system is called t-normal iff it contains all instances of (K)
and includes the set OPL. Thus, the set OPL replaces the rule (RN) in the
formulation of normal systems. By definitions, any modal system which
includes some t-normal system, is also t-normal. So, if A is a t-normal
logic, then A[®] is. Moreover, every normal system is t-normal.

IThe name ‘Tq’ is an abbreviation for ‘quasi-T’, because for normal logics with (T)
(resp. (Tq)) we use reflexive (resp. quasi- reflexive) standard Kripke models.
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By lemmas 1.6-1.9 we obtain:

LEMMA 1.15. For any system the following conditions are equivalent:
(a) it is t-normal,
(b) it is t-regular and contains OT,
(c) it is t-regular and contains some formula of the form "Oe™.

In [4] the logic S0.5 is the smallest modal logic which includes OTaut,
and contains (K) and (T). The logic S0.5° is associated with Lemmon’s
S0.5. It is the smallest logic which includes OTaut and contains (K). Of
course, by uniform substitution, S0.5 and S0.5° include the set (OPL; so
S0.5° is the smallest t-normal system, and S0.5 is the smallest t-normal
system which includes sub(T). So we have that S0.5° := PL[OTaut,K] =
C1[OT] and S0.5 := PL|[OTaut,k,T] = S0.5°[T] = E1[dT]. It is the
case that S0.5° C S0.5°[D] € S0.5, because (D) ¢ S0.5° and (T) ¢
S0.5°[D]. Moreover, S0.5° C 80.5°[Tq] C S0.5, since (Tq) ¢ S0.5° and
(T) ¢ S0.5°[Tg] (see e.g. [6] and Corollary 3.5 in the second part). Notice
that S0.5 = S0.5°[D,T].

By Lemma 1.12, the logic S0.5 is closed under (RN,) and (SMP).
However for any ¢ € For: "0y € S0.5° iff ¢ € PL iff "0y € S0.5 (see
Fact 3.8 in the second part). So S0.5°, S0.5°[D] and S0.5°[T4] are also
closed under (RN,) and (SMP).2

1.4. Replacement for tautologous equivalents

We say that a modal system X is an rte-system iff X' is closed under
replacement for tautological equivalents, i.e.:

Vopxeror: if "o =197 € PL and x € ¥, then x[%/y] € ¥. (rte)

We consider the following sets of formulae:

2Notice that the rules (RN,) and (SMP) are not derivable in S0.5°, S0.5°[D] and
S0.5°[Tq] in the following sense. We can consider S0.5° (resp. S0.5°[D]; S0.5°[Tq4]; S0.5)
as being axiomatized by axioms PL, sub(K) (resp. plus sub(D); sub(Tq); sub(T)) and the
sole rule (MP). Of course, in such axiomatic system of S0.5° (resp. S0.5°[D]; S0.5°[Tq]),
if ¢ ¢ PL, then from "O¢" we do not obtain ¢, since PL,sub(K),sub(D), sub(Tq) ¥pL
Op D .
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REPpL :={"x=x[?/y]" : x€For & "o =97 € PL},
PLye := {7["Yyy, ..., "*/y) €For : 1€ PL &
Tor=9Y1" €PL,...."ppy =1 € PL},

where T[?'/y,, ..., %%/, ] is any formula that results from 7 by replacing
zero, one or more occurrences of ¢;, in 7, by ;. Since "y = x' € PL, we
have that: REPs; C PL,t. and ODOREP,; C OPL .

We will now focus on general properties of rte-systems.

LEMMA 1.16. For any system X the following conditions are equiwalent:
(a) X is an rte-system,
(b> PLrte g 27
(¢) REPp. C ¥,
1. X is closed under the following replacement

Vo xeFor: if "o =197 € PL, then "Oy = 0Ox[¥/y]" € 2.

ProoF: “(a) = (b)” If T, =4¢;," € PL,i=1,...,k,and T ¢ PLC ¥
then 7[¥'/y,] € X, ..., T["Yyys s ©¥/y ) € X, by (rte). Thus, PLye C X

“(b) = (c)” By the fact that REPp; C PLyte.

“(c) = (a)” If "o = ¢ € PL, then "y = x[?/y]" € REPp. C X.
Moreover, if x € X, then x[#/;] € ¥, by PL.

“(c) = (d)” Obvious.

“(d) = (c)” Suppose that "o = 7 € PL. First we consider the
possibility that x = ¢. Then x[?/y] = ¢ or x[?/y] = .

Thus we may assume henceforth that x # ¢. The proof proceeds by
induction on the complexity of x. We give it for the cases in which x is
(*) atomic; (xx) "T—x1 7 or Txg o x2, for o = V, A, D, =; and (xxx) a
necessitation, "y .

For (x): There is no replacement in this case. For (x#x): by the as-
sumption.

For the inductive case (x*) we assume, for induction, that the result
holds for all sentences shorter than x. So "x1 = x1[#/y|" € A and "x2 =
x2[?/p]" € A. Tt follows (by PL) that "=x1 = —x1[?/y]" € A and "(x1 ©
x2) = (x10x2)[#/p]T € A, foro=V, A, D, =. =

By lemmas 1.16, 1.6, 1.9 and 1.15 we obtain:
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COROLLARY 1.17. For any rte-system X:
1. Epp C X
2. 07T e ¥ iff OPL C X.
3. If OT € X and sub(K) C X, then X is t-normal; consequently
Rpr € X, sub(X) € ¥ and sub(R) C X.
4. If sub(X) C X, then sub(K) C X.

Of course, any modal system which includes some rte-system, is also
an rte-system. So if A is an rte-logic, then A[P] is.

Fact 1.18. The set PLye is the smallest rte-system and rte-logic.

PRrROOF: Of course, PL C PL.. Let "x1 D x2' € PLye and x1 € PLyye,
i.e., for some 79 € PL, 19 € For we have that: x1 = 70[*/pys -, P*/pi ],
T10 D ’(/)0j € PL, o = w0[¢k+l/¢k+17 ...799’“*"L/wk+m] and r(p]_ = ’(/Jl~| € PL,
cooy TOktm = Ykem | € PL. Hence 19 € PL; so x2 € PLy.. Thus, PL
is a modal system. From Lemma 1.16, PL is the smallest rte-system.
For any uniform substitution s of formulae for propositional letters,

S(T[wl/wu "'awk/wk]) = ‘9(7_)[5(#)1)/(9(1!’1)7 "'78(%)/8(@2’1@)} and S(T) € PL. -

Notice that S0.5° (and so also S0.5°, S0.5°[D] and S0.5°[T4]) is not
closed under (rte). For example, the formulae:

a) O0p > O00-—p )
b)  OO-—p > Op

do not belong to these logics (see e.g. Fact 3.6 in the second part).

COROLLARY 1.19. For any rte-system X which includes Mpy and has some
formula of the form "0 (consequently, OT € X', by Lemma 1.8):
1. OREPp, C OPL. C X,

2. X is closed under the following replacement
Vo xeFor: if T =197 € PL, then "x =< x[?/p]7 € X.  (srte)
Proor: 1. Let 7 € PL. By Corollary 1.17, 07 € ¥. Soif "p =" € PL,

then O7[%/y] € X, by (rte).
2. By 1, "O(x D x[?/])” and "O(x[?/y] D x)7 belong to X. 4
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Moreover, we obtain:
LEMMA 1.20. For any rte-system X

if sub(0(X)) C X, then sub(OJ(K)) C X.

Proor: If "O((O(T 2 ¢) AO(p D @) D O(T D %)) € X, then
rD(D(ap D) D (Op D DLZJ))j € X, by PL and two applications of
(rte), since "o = (T D)€ PL and "¢ = (T D )" € PL. —|

Let S0.5%e, S0.5%¢6[D], S0.55¢e[Tq] and S0.5.4e be, respectively, such
versions of the logics 80.5°, S0.5°[D], S0.57¢¢[T4] and S0.5 that are closed
under (rte). Thus, S0.57¢c is the smallest t-normal rte-system; so S0.554 =
PL[REP,,,K,O0T]. The logics S0.5%e[D], S0.5%c[T,] and S0.5,4c are
the smallest t-normal rte-logics which contain (D), (Tq) and (T), respec-
tively. Thus, S0.5,4e = S0.5740[T] = PL[REP,,,K,T,0T] and S0.5%¢[D] =
PL[REP,,,K,D,(JT]. We have that S0.5%e C S0.5%e[D] C S0.5:¢e, be-
cause (D) ¢ S0.5%te and (T) ¢ S0.5%4e[D]. Moreover, we have that S0.5%te &
S0.5%¢e[Tq] € S0.5.¢e, because (Tq) ¢ S0.5%¢c and (T) ¢ S0.5%¢e[Tq] (see
6)).

By Lemma 1.12, the logic S0.5.tc is closed under (RN,) and (SMP).
However for any ¢ € For: "0y € S0.53¢¢ iff ¢ € PLyye iff "0 € S0.5540
(see Fact 4.5 in the second part). So, by Lemma 1.16, S0.5%. is also closed
under (RN,) and (SMP).

Let Clyge, Dlyte, Clyte[Tq] and El,e be, respectively, such versions
of the logics C1, D1, C1[Tq| and E1 that are closed under (rte). The logic
C1,te is the smallest t-regular rte-system; so Clye = PL[Rpr, REPp.].
D1,te, Clyte[Tq| and El,e are smallest t-regular rte-logics which contain
(D), (Tq) and (T), respectively. We have that Clye € Dlyte C Elyge and
Clite © Clyge[Tg] € Elyge (see [6]).

Finally notice that for the smallest rte-logic PL;t, we have “valuation
semantics”. Let Val?, be the set of all valuations V: For — {0,1} from

rte
Val© satisfying the following condition:

Ve xeror: if "o =97 € PL, then V(x) = V(x[?/y])- (%)

For the set Valftle we have a fact analogous to Lemma 1.1 for Val.
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LEMMA 1.21. 1. V € ValS, iff for some v: PAt — {0,1} such that
Vo xeror: if "o =97 € PL, then v(Ox) = v(Ox[¥/p]),  (*pat)
V' is the unique extension of v by classical truth conditions for truth-
value operators.

2. For any ¢ € For: ¢ € PLye iff for any v: PAt — {0,1} satisfy-
ing (*pat) we have that V(o) = 1, where V is the unique extension
of v by classical truth conditions for truth-value operators.

3. For any ¢ € For: ¢ € PLy iff for any V € Valftle, Vip)=1.

Proor: 1. “«<” Let x,¢,¢ € For such such "p = ¢ € PL. By
Lemma 1.1, V € Val® and V(p) = V(¥).

First we consider the possibility that x = ¢. Then x[?/y] = ¢ (when
there is no replacement) or x[¥/y] = ¢ (when ¢ is replaced by ). So
V(x) = V(x[¥/y]), by the assumption.

Thus we may assume henceforth that x # ¢. The proof proceeds by
induction on the complexity of x. We give it for the cases in which x is
(*) atomic; (xx) "T—x1 7 or Txg 0 x2 ', for o = V, A, D, =; and (xxx) a
necessitation, "y .

For (x): There is no replacement. For (x#x): For any x; € For we have
that V(Ox1) = v(0x1). So we use the assumption (*pat).

For the inductive case (%) we assume that the result holds for all
sentences shorter than x. So V(x1) = V(x1[%?/y]) and V(x2) = V(x2[?/s])-
We have: V(=x1) = V(=x1[¥/y]) and V(x1 0 x2) = V((x1 0 x2)[?/y]), since
V e Vald.

“=” We put v := V|pay . By the part “<”, the unique extension of v
by classical truth conditions for truth-value operators belongs to Valftle and
it is equal to V.

2. “«” Suppose that ¢ is built by means of truth-value operators, dif-
ferent propositional letters aq, ..., a, and different necessitations "[y; ",
coy, "Oxm T (n+m > 0).

If m = 0, i.e. ¢ is a classical formula, then ¢ € Taut. Moreover,
¢ € PL, if m > 0 but there is no 4,7 = 1,...,m such that x; = x;[¥/y]
for some 1,1’ € For such that "¢ = ¢)'" € PL. Indeed, in none of both
cases condition (*pay) is connected with ¢, so this formula is true for an
arbitrary valuation v: PAt — {0, 1}.

Let us the assume that m > 0. We define the following equivalence
relation in {Ox1,...,Oxm }:
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def o )
Ox; ROx; <= xi = x5/l
for some 1), € For such that "y = ¢’ € PL.

If it is the identity relation in {Ox1,...,0xm }, then the second considered
case holds.

Let ||o1l|r, - -, |lok||r be different equivalence classes from {Oxi, ...,
OXm }/g- For different formulae o1, .. ., o we assign different propositional
letters B1, ..., Bk (these letters are to be different as well from «y, ...,

ay,). All formulae from || g;|| g are replaced by g;. We obtain the formula p*.
Now, every p; is being replaced by ;. In this way we obtain the classical
formula ¢?. By the assumption we have that ¢}, € Taut. Replacing o;
for B; in ¢}, we obtain ¢*. Therefore ¢* € PL. The latest formula can be
transformed into ¢ by suitable replacements (reverting to the initial ones)
of formula ;. Thus ¢ € PL 4.

3. “=” Let ¢ € PLy,, i.e., there are 7 € PL and vy ..., ¢k, ¥, ...,
Y. € For such that "¢y = {7 € PL, ..., "¢, = ¢;,7 € PL and ¢ =
T[I/’/M,...,W/w;c]. For any V € Val9, we have that V(7) = 1, because
ValS, C Val®. Thus, by (), V() = V(r) = 1.

rte
“<” Let ¢ ¢ PLy. Then, by the part “<” of 2, for some v: PAt —
{0,1} which satisfies the condition (%pat) we have that V(p) = 0, where
V' is the unique extension of v by classical truth conditions for truth-value
operators. Moreover, by 1, V € Val¢

rte*

2. “=" By the part “=” of 1 and the part “=" of 3. —

1.5. Strict classical logics. The logics S1, S0.9, S1° and S0.9°

After [1], we say that a logic A is stricty classical (“traditionally strict
classical”) iff OPL C A and A is closed under “traditional replacement
rule for strict equivalents”:

if "o =<7 € Aand x € A, then x[¥/y] € A. (RRSET)

Moreover, a logic A is called strict classical iff OPL C A and A is closed
under the following replacement rule:

if "O(p =) € A and x € A, then x[?/y] € A. (RRSE)

We obtain that for modal logics which contain (K) and/or (X), the above
notions are equivalent. Firstly we notice that:
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LEMMA 1.22 ([1]). Every strictt or strict classical logic is an rte-system.
Secondly, by lemmas 1.11 and 1.22; and Corollary 1.17 we have that:

LeMMA 1.23 ([1]). For every logic A which contains (K) or (X): A is strictp
classical iff A is strict classical.

The logic S0.9 (resp. S1) is the smallest strict classical logic which
contains the formulae (T), O(T) and (K) (resp. J(X)). For these logics see
e.g. [1, 4, 6]. By lemmas 1.20 and 1.22, S0.9 C S1. In [3] it was proved
that S0.9 # S1, since O(X) ¢ S0.9 (see also e.g. [1, pp. 15-16]).

In [1] the Feys’ logic S1° from [2] is described as the smallest strictr
classical logic which contains the formulae (X) and O(X), and is closed under
(SMP). In [8] the logic S1° is described as the smallest stricty classical
logic which contains the formulae (X) and [J(X), and is closed under (RN.,.).
By lemmas 1.12 and 1.22 both characterizations are equivalent.

Again by lemmas 1.20 and 1.22, and Corollary 1.17, (K),J(K) € S1°.
Since (X) € S1 and S1 is closed under (SMP), so S1° C S1. Because
(T),0(T) ¢ S1°, so S1° # S1 (see e.g. [1]).

Moreover, in [1] the logic S0.9° is described as the smallest strictr
classical logic which contains the formulae (K) and O(K), and is closed
under (SMP). We have S0.9° C S1°, because (K),(X) € S1°.

Since (T) ¢ S0.9°, O(X) ¢ S0.9, (X) € S0.9 and S0.9 is closed under
(SMP), so S0.9° C S0.9 and S0.9° C S1°.

Notice that, by lemmas 1.12 and 1.22, the logics S0.9°, S0.9, S1° and
S1 are also closed under (RN,). We can describe the logic S0.9° (resp.
S0.9; S1°; S1) as the smallest logic which includes OTaut, is closed under
(RN,) and (RRSET), and contains O(K) (resp. J(K) and O(T); O(X); O(X)
and O(T)).

In the second part of this paper we shall prove that O(K),O(T) ¢
S0.5,¢c, 50 S0.57¢c C S0.9° and S0.5,4. < S0.9.

In [1] the Lewis version Lew(A) of a logic A is understood as the small-
est logic which includes A and contains the formula OT, i.e. Lew(A) :=
A[OT] = PL[A,OT].

In [1] a logic is called prenormal iff it is congruential and contains
the formula "O0T D (K)7. Of course, every prenormal logic which con-
tains 0T is normal. In [1] were considered the logics PK, PX, PKT and
PXT which are the smallest congruential logics respectively containing:
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(K); (K) and (T); (X); (X) and (T). By Lemma 1.6, these logics contain
(K), so also "O0T D (K)". Hence they are prenormal and we have that
PK C PX C PXT and PK C PKT C PXT. In [1] it was proved
that S0.9° = Lew(PK) := PK|OT], S0.9 = Lew(PKT) := PKT[JT],
S1° = Lew(PX) := PX[OT] and S1 = Lew(PXT) := PXT[OT].

Finally, notice that the logics S1, S0.9, S1° and S0.9° are not congru-
ential and that the formulae (M), (C) and

Op <DO(pVq) (1.1)
OlpAg) < Op (1.2)

are not members of S1, while the formulae (M), (C), ‘Op D O(p V q)’ and
‘O(p Aq) D Op’ belong to C1.

1.6. The logics S2° and S2

We say the a logic A is closed under Becker’s rule iff for any ¢, € For:
if Tp <97 € A, then "Op < Oy € A. (RB)

In [4] the logic S2 is described as the smallest modal logic which in-
cludes OTaut, contains the formulae (T), O(T), and (X), and is closed un-
der (RB). Of course, S2 includes OPL, contains (K) and, by Lemma 1.12,
it is closed under (RN,) and (SMP).

Moreover, the logic S2° is described in [8] as the smallest logic which
includes OTaut, contains [J(K), and is closed under (RB) and (RN,). Of
course, S2° includes OJPL, contains (K) and, by Lemma 1.12, it is closed
under (SMP). So S2° C S2. For example (T),(T) ¢ S2°.

In [4] Lemmon proved that (J(X) € S2 and S2 is closed under (RRSEr).
His proof shows that also O(X) € S2° and S2° is closed under (RRSEr).
So we have that S1° C S2° and S1 C S2. Thus, S2 and S2° are strictr
and strict classical, but they are not congruential.

In [1] it was proved that S2° = Lew(C2) := C2[0T] and S2 =
Lew(E2) := E2[0OT]. Moreover, for every ¢ € For:

O e 82° iff peC2, (1.3)
MMe'e 82 iff ¢eE2. (1.4)

Hence, the formulae O(M), O(C), (1.1) and (1.2) belong to S2°, because
M), (C), ‘Op>O(pVq) and ‘O(pAgq) D Op’ belong to C1.
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2. Some new weak t-normal logics
and t-normal rte-logics

In the present paper we examine some logics which are not strict classical,
but these logics have the form A[0®], where & C S0.5 and A = S0.5°,
S0.5°[D], S0.5°[T,], S0.5, S0.5%¢e, S0.5%¢e[D], SO.5%¢c[Tq], SO.5,¢c.

Remark 2.1. By Lemma 1.15, if a logic A is t-regular (resp. a t-regular rte-
system) and @ # (), then A[OJP] is t-normal (resp. a t-normal rte-system).

For example, C1[0®] = S0.5°[0P], where & # (). Similarly for t-
regular logics D1, C1[Ty], E1, Clyte, D1yte, Clyte[Tq], Elrte and suitable
t-normal logics S0.5°[D], S0.5°[Tq], S0.5, S0.57¢c, S0.556[D], SO.5%¢6[Tq],
S0.5,¢c- B

Remark 2.2. As we remember (see p. 42) the formulae (f) do not belong
to S0.5. The formula (f,) belongs to S0.5[0K,O0(Cp D O--p)], where
‘Op > O-—-p’ € C1. But () and

a)  O00p > O000-—p

b)  OOO0-—p > OO00p *)

do not belong to S0.5[JS0.5]; so this logic is not an rte-system (see the
second part). —

In Section 3 for logics A[O0®], where A = S0.5°, S0.5°[D], S0.5°[T,],
S0.5, we give simplified semantics formulated by means of some Kripke-
style models. In Section 4 we give similar semantics for logics A[(JP], where
A = S0.5%¢¢, S0.5%t6[D], S0.5%¢6[Tq], S0.5,¢e. In Section 5 we prove that
considered logics are determined by some classes of these models.

Firstly notice that by Lemma 1.20 we obtain:

COROLLARY 2.1. For any rte-logic A: A[O®,0X] = A[OP, UK, OX].
By facts from Section 1 and Corollary 2.1 we obtain:

FACT 2.2. 1. S0.5°[[K] C S0.5%[JK] C S0.9°.
2. S0.5[0K, 0T] C S0.5,4 [0k, OT] C S0.9.
3. S0.5°[K, X] C S0.5%[0X] C S1°.
4. S0.5[00T, 0K, OX] C S0.5,40[0X, IT] C S1.
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Moreover, we have:

LEMMA 2.3. For any t-reqular logic A and ®,W C For, if ¥ Epr D, then
A[O®] C A[OW].

PROOF: Suppose that ¥ Epr, @, ie., for every ¢ € & there is a subset
{1,...,¢n} of ¥, n >0, such that "(¥1 A+ - Aey,) D @' € PL. Since A
is t-regular, "(Ouq A -+ ADyy,) D Op™ € A. Hence, Op € A[OY], since
Oy, ..., Oy, € A[DP]. 4

By the above lemma we obtain:

COROLLARY 2.4. For any r-regular logic A: A[O®,00C] C A[OP,OR],
A[0®,0N] C A[D®,CR] and A[D®, 0Oc, ON] = A[OP, OR).

From the facts (1.3) and (1.4) we have:

FACT 2.5. 1. If & C C2, then S0.5%.[00] C S2°.
2. If & C E2, then S0.5.4[00] C S2.

However in the present paper we are only interested in such a set P,
as a set of new axioms, which satisfies condition @ C S0.5. Notice that we
have the following facts:

C1=C2nS0.5°, (2.1
C1 < C2Nn8S0.5 ¢ S0.5°, (2.2)
E1=E2nS05. (2.3)

We have: C1 C C2, C1 € S0.5° € S0.5, E1 C E2 and E1 C S0.5.
The remaining facts we will obtain from the semantics presented in [6] (see
Fact 3.12 in the second part of this paper).

Therefore the following corollary will be of crucial importance:

COROLLARY 2.6. 1. If ® C C2NS0.5, then S0.5:4.[00] C S2°.
2. If ® C E1, then S0.5.4[0P] C S2.

In Section 6 (see Corollary 6.3 in the second part) we prove that in the
subsequents in the above corollary the symbol ‘C’ can be replaced by ‘C’.
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