Bulletin of the Section of Logic Volume 41:1/2 (2012), pp. 33–50

Andrzej Pietruszczak

SEMANTICAL INVESTIGATIONS ON SOME WEAK MODAL LOGICS. Part I*

Abstract

In this paper we examine weak logics similar to $\mathbf{S0.5}[\Box\Phi]$, where $\Phi \subseteq \mathbf{S0.5}$. We also examine their versions (one of which is $\mathbf{S0.5_{rte}}[\Box\Phi]$) that are closed under replacement of tautological equivalents (rte). We have that: $\mathbf{S0.5_{rte}}[\Box(K), \Box(T)] \subsetneq \mathbf{S0.9}$, $\mathbf{S0.5_{rte}}[\Box(X), \Box(T)] \subsetneq \mathbf{S1}$, and in general, if $\Phi \subseteq \mathbf{E1}$, then $\mathbf{S0.5_{rte}}[\Box\Phi] \subsetneq \mathbf{S2}$.

In the second part we shall give simplified semantics for these logics, formulated by means of some Kripke-style models. We shall also prove that the logics in question are determined by some classes of these models.

Key words: Very weak modal logics, simplified Kripke-style semantics.

1. Preliminaries

1.1. Basic notions

Modal formulae are formed in the standard way from the set At of propositional letters: 'p', 'q', 'r', 'p_0', 'p_1', 'p_2', ...; truth-value operators: ' \neg ', ' \lor ', ' \land ', ' \supset ', and ' \equiv ' (connectives of negation, disjunction, conjunction, material implication, and material equivalence, respectively); the modal operator ' \Box ' (necessity; the possibility sign ' \diamond ' is the abbreviation of ' $\neg \Box \neg$ '); and brackets. Let For be the set of all modal formulae.

^{*}The first version of this work were presented during The Third Conference: Non-Classical Logic. Theory and Applications, NCU, Toru, September 16–18, 2010.

In original Lewis' works (see e.g. [5]) the primitive modal operator is the possibility sign ' \diamond '. The necessity sign ' \Box ' is the abbreviation of ' $\neg \diamond \neg$ '. Moreover, $\ulcorner \varphi \prec \psi \urcorner$ (the strict implication) was used as an abbreviation of $\ulcorner \neg \diamond (\varphi \land \neg \psi) \urcorner$.

In this paper, as in [4], the primitive modal operator is ' \Box ' and $\ulcorner \varphi \prec \psi \urcorner$ is an abbreviation of $\ulcorner \Box (\varphi \supset \psi) \urcorner$. Moreover, similarly as in [5, 4], the strict equivalence $\ulcorner \varphi \succ \psi \urcorner$ is an abbreviation of $\ulcorner (\varphi \prec \psi) \land (\psi \prec \varphi) \urcorner$.

For any formula φ let $\operatorname{sub}(\varphi)$ be the set of all instances of φ . For any set Φ of formulae we put: $\operatorname{sub}(\Phi) := \bigcup_{\varphi \in \Phi} \operatorname{sub}(\varphi), \ \Box \Phi := \{ \ulcorner \Box \varphi \urcorner : \varphi \in \Phi \}$ and $\Diamond \Phi := \{ \ulcorner \Diamond \varphi \urcorner : \varphi \in \Phi \}$.

Let Taut be the set of all classical tautologies (without the modal operator). We put $\top := {}^{\circ}p \supset p$ '. Moreover, let **PL** be the set of modal formulae which are instances of classical tautologies. Of course, **PL** = sub(Taut).

A formula φ is *propositionally atomic* iff $\varphi \in At$ or $\varphi \in \Box$ For. Let PAt be the set of all propositionally atomic formulae, i.e. PAt := At $\cup \Box$ For.

Let Val^{cl} be the set of all valuations $V \colon For \to \{0, 1\}$ which preserve classical truth conditions for truth-value operators.

- LEMMA 1.1. 1. $V \in \mathsf{Val}^{\mathsf{cl}}$ iff for some assignment $v \colon \mathsf{PAt} \to \{0, 1\}, V$ is the unique extension of v by classical truth conditions for truth-value operators.
 - 2. For any $\varphi \in \text{For: } \varphi \in \mathbf{PL}$ iff for every assignment $v \colon \text{PAt} \to \{0, 1\}$ we have that $V(\varphi) = 1$, where V is the unique extension of v by classical truth conditions for truth-value operators.
 - 3. For any $\varphi \in \text{For: } \varphi \in \mathbf{PL} \text{ iff } V(\varphi) = 1, \text{ for any } V \in \mathsf{Val}^{\mathsf{cl}}.$

For any $\Psi \subseteq$ For and $\varphi \in$ For we write $\Psi \models_{\mathbf{PL}} \varphi$ iff for any V from $\mathsf{Val}^{\mathsf{cl}}$: if $V(\Psi) \subseteq \{1\}$, then $V(\varphi) = 1$. Of course, $\Psi \models_{\mathbf{PL}} \varphi$ iff for some $\{\psi_1, \ldots, \psi_n\} \subseteq \Psi, n \ge 0$, we have that $\ulcorner(\psi_1 \land \cdots \land \psi_n) \supset \varphi \urcorner \in \mathbf{PL}$. We also write $\Psi \models_{\mathbf{PL}} \Phi$ iff $\Psi \models_{\mathbf{PL}} \varphi$, for any $\varphi \in \Phi$.

A set Σ of modal formulae is a *modal system* iff $\mathbf{PL} \subseteq \Sigma$ and Σ is closed under the rule of detachment for ' \supset ' (*modus ponens*), i.e., for any $\varphi, \psi \in$ For:

if
$$\varphi$$
 and $\lceil \varphi \supset \psi \rceil$ are members of Σ , so is ψ . (MP)

A set of modal formulae is a *logic* iff it is a modal system and it is closed under the rule of uniform substitution. Of course, \mathbf{PL} is the smallest modal system and it is a logic. For any modal system Σ , any $\Psi \subseteq$ For and any $\varphi \in$ For: φ is *deducible* from Ψ in Σ (written: $\Psi \vdash_{\Sigma} \varphi$) iff for some $\{\psi_1, \ldots, \psi_n\} \subseteq \Psi$, $n \ge 0$, we have that $\ulcorner(\psi_1 \land \cdots \land \psi_n) \supset \varphi \urcorner \in \Sigma$. Of course, $\models_{\mathbf{PL}} = \vdash_{\mathbf{PL}} \subseteq \vdash_{\Sigma}$. Moreover, $\Sigma \vdash_{\Sigma} \varphi$ iff $\varphi \in \Sigma$ iff $\emptyset \vdash_{\Sigma} \varphi$.

A system Σ is *consistent* iff $\Sigma \neq$ For; equivalently in the light of propositional logic **PL**, iff ' $p \wedge \neg p$ ' does not belong to Σ .

To simplify notation of logics we use the following code. If Λ is a logic and $\Phi \subseteq$ For, then $\Lambda[\Phi]$ denotes the smallest logic which includes the set $\Lambda \cup \Phi$. We write $\Lambda[\varphi_1, \ldots, \varphi_n]$ instead of $\Lambda[\{\varphi_1, \ldots, \varphi_n\}]$, and $\Lambda[\Phi_1, \ldots, \Phi_n]$ instead of $\Lambda[\Phi_1 \cup \cdots \cup \Phi_n]$.

We say that a modal system is *congruential* (or *classical*) iff it is closed under the following rule of congruence, i.e., for any $\varphi, \psi \in$ For:

if
$$\ulcorner \varphi \equiv \psi \urcorner \in \Sigma$$
, then $\ulcorner \Box \varphi \equiv \Box \psi \urcorner \in \Sigma$. (RE)

FACT 1.2. A modal system Σ is congruential iff it is closed under replacement, i.e., for any $\varphi, \psi, \chi \in$ For:

$$if \ulcorner \varphi \equiv \psi \urcorner \in \boldsymbol{\Sigma} \text{ and } \chi \in \boldsymbol{\Sigma}, \text{ then } \chi[\varphi/\psi] \in \boldsymbol{\Sigma},$$
(RRE)

or equivalently:

$$if \ulcorner \varphi \equiv \psi \urcorner \in \boldsymbol{\Sigma}, \ then \ulcorner \chi[^{\varphi}/_{\psi}] \equiv \chi \urcorner \in \boldsymbol{\Sigma},$$
(RRE')

where $\chi[\varphi/\psi]$ is any formula that results from χ by replacing zero, one or more occurrences of φ , in χ , by ψ .

A modal system Σ is called *monotonic* iff Σ is closed under the following rule of monotonicity, i.e., i.e., for any $\varphi, \psi \in$ For:

$$\text{if } \ulcorner \varphi \supset \psi \urcorner \in \boldsymbol{\Sigma} \text{ then } \ulcorner \Box \varphi \supset \Box \psi \urcorner \in \boldsymbol{\Sigma}. \tag{RM}$$

FACT 1.3. A modal system is monotonic iff it is congruential and contains all instances of the following formula:

$$\Box(p \land q) \supset (\Box p \land \Box q) \tag{M}$$

A modal system Σ is called *regular* iff Σ is closed under the following regularity rule, i.e., for any $\varphi, \psi, \chi \in$ For:

if
$$\lceil (\varphi \land \psi) \supset \chi \rceil \in \Sigma$$
, then $\lceil (\Box \varphi \land \Box \psi) \supset \Box \chi \urcorner \in \Sigma$. (RR)

FACT 1.4. For any modal system the following conditions are equivalent:

- (a) the system is regular,
- (b) it is monotonic and contains all instances of

$$\Box(p \supset q) \supset (\Box p \supset \Box q) \tag{K}$$

(c) it is monotonic and contains all instances of

$$(\Box p \land \Box q) \supset \Box (p \land q) \tag{C}$$

(d) it is monotonic and contains all instances of

$$\left(\Box(p \supset q) \land \Box(q \supset r)\right) \supset \Box(p \supset r) \tag{X}$$

(e) it is congruential and contains all instances of

$$\Box(p \land q) \equiv (\Box p \land \Box q) \tag{R}$$

To simplify notation of logics we use the following code. If Λ is a regular logic and $\Phi \subseteq$ For, then $\Lambda \oplus \Phi$ denotes the smallest regular logic which includes the set $\Lambda \cup \Phi$. We write $\Lambda \oplus \varphi_1 \dots \varphi_n$ instead of $\Lambda \oplus \{\varphi_1, \dots, \varphi_n\}$.

 ${\bf C2}$ is the smallest regular logic and ${\bf E2}$ is the smallest regular logic which contains (T), i.e. ${\bf E2}={\bf C2}\oplus(T).$

We say that a modal system Σ is *normal* iff it contains all instances of (K) and is closed under the following rule:

if
$$\varphi \in \Sigma$$
, then $\Box \varphi \in \Sigma$. (RN)

FACT 1.5. For any modal system the following conditions are equivalent: (a) it is normal,

- (b) it is regular and contains $\Box \top$,
- (c) it is congruential, contains $\Box \top$ and includes sub(K).

By the above fact, if Λ is a normal logic, then $\Lambda \oplus \Gamma$ is as well. Indeed, Λ is regular and contains $\Box \top$. Hence $\Lambda \oplus \Gamma$ is also regular and contains $\Box \top$. So $\Lambda \oplus \Gamma$ is normal.

In this paper we investigate some weak modal logics. For these logics we are using the following lemmas.

LEMMA 1.6. For any modal system Σ which includes the following set

$$\mathbf{E}_{\mathbf{PL}} := \{ \ulcorner \Box \varphi \equiv \Box \psi \urcorner : \ulcorner \varphi \equiv \psi \urcorner \in \mathbf{PL} \},\$$

- 1. $\Box \top \in \Sigma$ iff $\Box \mathbf{PL} \subseteq \Sigma$.
- 2. If $\operatorname{sub}(X) \subseteq \Sigma$, then $\operatorname{sub}(K) \subseteq \Sigma$.

PROOF: 1. For any $\tau \in \mathbf{PL}$, $\lceil \tau \equiv \top \rceil \in \mathbf{PL}$ and $\lceil \Box \tau \equiv \Box \top \rceil \in \boldsymbol{\Sigma}$, since $\mathbf{E}_{\mathbf{PL}} \subseteq \boldsymbol{\Sigma}$. Hence, by \mathbf{PL} , also $\Box \tau \in \boldsymbol{\Sigma}$, since $\Box \top \in \boldsymbol{\Sigma}$.

2. For any $\varphi, \psi \in$ For, $\lceil \varphi \equiv (\top \supset \varphi) \rceil \in$ **PL** and $\lceil \psi \equiv (\top \supset \psi) \rceil \in$ **PL**. So if $E_{\mathbf{PL}} \subseteq \Sigma$, then $\lceil \Box \varphi \equiv \Box (\top \supset \varphi) \rceil$ and $\lceil \Box \psi \equiv \Box (\top \supset \psi) \rceil$ belong to Σ . Moreover, if $(\mathbf{X}) \in \Sigma$, then $\lceil (\Box (\top \supset \varphi) \land \Box (\varphi \supset \psi)) \supset \Box (\top \supset \psi) \rceil \in \Sigma$. Hence $\lceil \Box (\varphi \supset \psi) \supset (\Box \varphi \supset \Box \psi) \rceil \in \Sigma$, by **PL**.

LEMMA 1.7 ([6]). For any modal system Σ : Σ includes the following set

$$\mathbf{M}_{\mathbf{PL}} := \{ \ulcorner \Box \varphi \supset \Box \psi \urcorner : \ulcorner \varphi \supset \psi \urcorner \in \mathbf{PL} \}$$

iff $E_{\mathbf{PL}} \subseteq \Sigma$ and $\operatorname{sub}(M) \subseteq \Sigma$.

LEMMA 1.8. For any modal system Σ which includes M_{PL} :

 $\Box \mathbf{PL} \subseteq \boldsymbol{\Sigma} \text{ iff } \Box \top \in \boldsymbol{\Sigma} \text{ iff } \boldsymbol{\Sigma} \text{ has some formula of the form } \Box \varphi^{\neg}.$

LEMMA 1.9 ([6]). For any modal system Σ the following conditions are equivalent:

(a) $\boldsymbol{\Sigma}$ includes the following set

$$\mathbf{R}_{\mathbf{PL}} := \left\{ \ulcorner (\Box \varphi \land \Box \psi) \supset \Box \chi \urcorner : ~ \ulcorner (\varphi \land \psi) \supset \chi \urcorner \in \mathbf{PL} \right\},\$$

- (b) $M_{PL} \subseteq \Sigma$ and $sub(K) \subseteq \Sigma$,
- (c) $M_{\mathbf{PL}} \subseteq \Sigma$ and $\operatorname{sub}(X) \subseteq \Sigma$,
- (d) $M_{\mathbf{PL}} \subseteq \boldsymbol{\Sigma}$ and $sub(\mathbf{C}) \subseteq \boldsymbol{\Sigma}$,
- (e) $E_{\mathbf{PL}} \subseteq \boldsymbol{\Sigma}$ and $sub(\mathbf{R}) \subseteq \boldsymbol{\Sigma}$.

LEMMA 1.10. Fix any system Σ :

1. If $E_{PL} \subseteq \Sigma$, then Σ contains all instances of the following formula

$$\Diamond p \equiv \neg \Box \neg p \qquad (df \, \Diamond)$$

2. If $R_{PL} \subseteq \Sigma$, then Σ contains all instances of the following formulae

$$\Diamond (p \lor q) \equiv (\Diamond p \lor \Diamond q) \tag{R}^{\diamond}$$

$$\Diamond(p \supset q) \equiv (\Box p \supset \Diamond q) \tag{R}^{\diamond \Box}$$

LEMMA 1.11. For any modal system Σ :

1. If $E_{PL} \subseteq \Sigma$, then Σ contains all instances of the following formula

$$(p \prec q) \equiv \neg \Diamond (p \land \neg q) \tag{df'} \prec)$$

2. If $R_{PL} \subseteq \Sigma$, then Σ contains all instances of

$$(p \prec q) \equiv \Box(p \equiv q) \tag{df'} \prec)$$

LEMMA 1.12. For any modal system Σ :

1. If Σ contains all instances of the following formula

$$\Box p \supset p \tag{T}$$

then Σ is closed under the following rule

if
$$\Box \varphi \neg \in \Sigma$$
, then $\varphi \in \Sigma$. (RN_{*})

 If ∑ is closed under (RN*), then ∑ is closed under the following rule of detachment for '≺' (strict version of modus ponens)

if
$$\lceil \varphi \prec \psi \rceil \in \Sigma$$
 and $\varphi \in \Sigma$, then $\psi \in \Sigma$. (SMP)

3. If $E_{PL} \subseteq \Sigma$ and Σ is closed under (SMP), then Σ is closed under (RN_{*}).

PROOF: For 3. Let $\[\Box \varphi \urcorner \in \Sigma$. Since $E_{\mathbf{PL}} \subseteq \Sigma$ and $\[\nabla \varphi \equiv (\top \supset \varphi) \urcorner \in \mathbf{PL}$, we have that $\[\Box \varphi \equiv \Box (\top \supset \varphi) \urcorner \in \Sigma$. Hence, by \mathbf{PL} , $\[\Box (\top \supset \varphi) \urcorner \in \Sigma$. So $\varphi \in \Sigma$, by (SMP) and \mathbf{PL} .

1.2. t-regular modal systems

In [6] a modal system is called *t-regular* iff it includes the set R_{PL} . Thus, the set R_{PL} replaces the rule (RR) in the formulation of regular systems.

By definition, any modal system which includes some t-regular system, is also t-regular. So, if Λ is a t-regular logic, then $\Lambda[\Phi]$ is. Moreover, every regular system is t-regular.

FACT 1.13. For any t-regular modal system Σ the following conditions are equivalent:

(a) $\Diamond \top \in \boldsymbol{\Sigma}$,

(b) Σ contains all instances of the following formula

$$\Box p \supset \Diamond p \tag{D}$$

FACT 1.14. For any t-regular modal system Σ , if Σ contains one of the following formula, then Σ contains all the following formulae:¹

$$\Box p \supset (p \lor \Box q)$$

$$\Diamond q \supset (\Box p \supset p)$$

$$\Diamond (q \supset q) \supset (\Box p \supset p)$$

$$\Box (q \land \neg q) \supset (\Box p \supset p)$$

$$(T_q)$$

The logic **C1** from [7] is the smallest t-regular system. **C1** is a logic and **C1** := **PL**[$\mathbf{R}_{\mathbf{PL}}$]. The logics **D1** and **E1** from [4] are respectively the smallest t-regular logics which contain (D) and (T), i.e. **D1** := **PL**[$\mathbf{R}_{\mathbf{PL}}$, D] = **C1**[D] = **C1**[$\Diamond \top$] and **E1** := **PL**[$\mathbf{R}_{\mathbf{PL}}$, T] = **C1**[T]. We have that **C1** \subsetneq **D1** \subsetneq **E1** and **C1** \subsetneq **C1**[\mathbf{T}_q] \subsetneq **E1** (see [6])

Notice that $\mathbf{E1} = \mathbf{C1}[\mathsf{D},\mathsf{T}_q]$. Indeed, from $\mathbf{C1}$ and (D) we obtain ' $\Diamond(q \supset q)$ ', and hence (T), by (T_q) and (MP).

1.3. t-normal modal systems

In [6] a modal system is called *t-normal* iff it contains all instances of (K) and includes the set $\Box \mathbf{PL}$. Thus, the set $\Box \mathbf{PL}$ replaces the rule (RN) in the formulation of normal systems. By definitions, any modal system which includes some t-normal system, is also t-normal. So, if $\boldsymbol{\Lambda}$ is a t-normal logic, then $\boldsymbol{\Lambda}[\boldsymbol{\Phi}]$ is. Moreover, every normal system is t-normal.

 $^{^1\}mathrm{The}$ name ${}^{(T}q{}'$ is an abbreviation for 'quasi-T', because for normal logics with (T) (resp. $(T_q))$ we use reflexive (resp. quasi- reflexive) standard Kripke models.

By lemmas 1.6-1.9 we obtain:

LEMMA 1.15. For any system the following conditions are equivalent:

- (a) *it is t-normal*,
- (b) it is t-regular and contains $\Box \top$,
- (c) it is t-regular and contains some formula of the form $\Box \varphi \neg$.

In [4] the logic **S0.5** is the smallest modal logic which includes \Box Taut, and contains (K) and (T). The logic **S0.5**° is associated with Lemmon's **S0.5**. It is the smallest logic which includes \Box Taut and contains (K). Of course, by uniform substitution, **S0.5** and **S0.5**° include the set \Box **PL**; so **S0.5**° is the smallest t-normal system, and **S0.5** is the smallest t-normal system which includes sub(T). So we have that **S0.5**° := **PL**[\Box Taut, K] = **C1**[\Box T] and **S0.5** := **PL**[\Box Taut, K,T] = **S0.5**°[T] = **E1**[\Box T]. It is the case that **S0.5**° \subsetneq **S0.5**°[D] \subsetneq **S0.5**°[T_q] \subsetneq **S0.5**° and (T) \notin **S0.5**°[D]. Moreover, **S0.5**° \subseteq **S0.5**°[T_q] \subsetneq **S0.5**, since (T_q) \notin **S0.5**° and (T) \notin **S0.5**°[D,T_q].

By Lemma 1.12, the logic **S0.5** is closed under (RN_{*}) and (SMP). However for any $\varphi \in \text{For: } \Box \varphi \neg \in \mathbf{S0.5}^{\circ}$ iff $\varphi \in \mathbf{PL}$ iff $\Box \varphi \neg \in \mathbf{S0.5}$ (see Fact 3.8 in the second part). So $\mathbf{S0.5}^{\circ}$, $\mathbf{S0.5}^{\circ}[D]$ and $\mathbf{S0.5}^{\circ}[T_q]$ are also closed under (RN_{*}) and (SMP).²

1.4. Replacement for tautologous equivalents

We say that a modal system Σ is an *rte-system* iff Σ is closed under replacement for tautological equivalents, i.e.:

$$\forall_{\varphi,\psi,\chi\in\operatorname{For}}$$
: if $\ulcorner\varphi\equiv\psi\urcorner\in\operatorname{PL}$ and $\chi\in\Sigma$, then $\chi[\varphi/\psi]\in\Sigma$. (rte)

We consider the following sets of formulae:

²Notice that the rules (RN_{*}) and (SMP) are not derivable in **S0.5**°, **S0.5**°[D] and **S0.5**°[T_q] in the following sense. We can consider **S0.5**° (resp. **S0.5**°[D]; **S0.5**°[T_q]; **S0.5**° as being axiomatized by axioms **PL**, sub(K) (resp. plus sub(D); sub(T_q); sub(T)) and the sole rule (MP). Of course, in such axiomatic system of **S0.5**° (resp. **S0.5**°[D]; **S0.5**°[T_q]), if $\varphi \notin \mathbf{PL}$, then from $\lceil \Box \varphi \rceil$ we do not obtain φ , since **PL**, sub(K), sub(D), sub(T_q) $\nvDash_{\mathbf{PL}} \Box \varphi \supset \varphi$.

Semantical Investigations on Some Weak Modal Logics. Part I

$$\begin{aligned} \operatorname{REP}_{\mathbf{PL}} &:= \{ \ulcorner \chi \equiv \chi [\varphi /_{\psi}] \urcorner : \ \chi \in \operatorname{For} \ \& \ulcorner \varphi \equiv \psi \urcorner \in \mathbf{PL} \}, \\ \mathbf{PL}_{\operatorname{rte}} &:= \{ \tau [\varphi^{\varphi} /_{\psi_1}, \dots, \varphi^{\varphi} /_{\psi_k}] \in \operatorname{For} \ : \ \tau \in \mathbf{PL} \ \& \\ \ulcorner \varphi_1 \equiv \psi_1 \urcorner \in \mathbf{PL}, \dots, \ulcorner \varphi_k \equiv \psi_k \urcorner \in \mathbf{PL} \} \end{aligned}$$

where $\tau[\varphi_1/\psi_1, \ldots, \varphi_k/\psi_k]$ is any formula that results from τ by replacing zero, one or more occurrences of φ_i , in τ , by ψ_i . Since $\lceil \chi \equiv \chi \rceil \in \mathbf{PL}$, we have that: $\operatorname{REP}_{\mathbf{PL}} \subseteq \mathbf{PL}_{\mathrm{rte}}$ and $\Box \operatorname{REP}_{\mathbf{PL}} \subseteq \Box \mathbf{PL}_{\mathrm{rte}}$.

We will now focus on general properties of rte-systems.

LEMMA 1.16. For any system Σ the following conditions are equivalent: (a) Σ is an rte-system,

- (b) $\mathbf{PL}_{\mathrm{rte}} \subseteq \boldsymbol{\Sigma}$,
- (c) $\operatorname{REP}_{\mathbf{PL}} \subseteq \boldsymbol{\Sigma}$,
- (c) ILLI $_{PL} \subseteq \mathcal{Z}$,

1. Σ is closed under the following replacement

$$\forall_{\varphi,\psi,\chi\in\mathrm{For}}\colon if\ \ulcorner\varphi\equiv\psi\urcorner\in\mathbf{PL},\ then\ \ulcorner\Box\chi\equiv\Box\chi[^{\varphi}\!/_{\psi}]^{\urcorner}\in\boldsymbol{\varSigma}.$$

PROOF: "(a) \Rightarrow (b)" If $\ulcorner \varphi_i \equiv \psi_i \urcorner \in \mathbf{PL}$, $i = 1, \ldots, k$, and $\tau \in \mathbf{PL} \subseteq \Sigma$ then $\tau[^{\varphi_1}/_{\psi_1}] \in \Sigma, \ldots, \tau[^{\varphi_1}/_{\psi_1}, \ldots, ^{\varphi_k}/_{\psi_k}] \in \Sigma$, by (rte). Thus, $\mathbf{PL}_{\text{rte}} \subseteq \Sigma$. "(b) \Rightarrow (c)" By the fact that $\text{REP}_{\mathbf{PL}} \subseteq \mathbf{PL}_{\text{rte}}$.

"(c) \Rightarrow (a)" If $\ulcorner \varphi \equiv \psi \urcorner \in \mathbf{PL}$, then $\ulcorner \chi \equiv \chi[\varphi/\psi] \urcorner \in \operatorname{REP}_{\mathbf{PL}} \subseteq \Sigma$. Moreover, if $\chi \in \Sigma$, then $\chi[\varphi/\psi] \in \Sigma$, by **PL**.

"(c) \Rightarrow (d)" Obvious.

"(d) \Rightarrow (c)" Suppose that $\lceil \varphi \equiv \psi \rceil \in \mathbf{PL}$. First we consider the possibility that $\chi = \varphi$. Then $\chi[\varphi/\psi] = \varphi$ or $\chi[\varphi/\psi] = \psi$.

Thus we may assume henceforth that $\chi \neq \varphi$. The proof proceeds by induction on the complexity of χ . We give it for the cases in which χ is (*) atomic; (**) $\lceil \neg \chi_1 \rceil$ or $\lceil \chi_1 \circ \chi_2 \rceil$, for $\circ = \lor$, \land , \supset , \equiv ; and (***) a necessitation, $\lceil \Box \chi_1 \rceil$.

For (*): There is no replacement in this case. For (***): by the assumption.

For the inductive case (**) we assume, for induction, that the result holds for all sentences shorter than χ . So $\lceil \chi_1 \equiv \chi_1[\varphi/\psi] \rceil \in \Lambda$ and $\lceil \chi_2 \equiv \chi_2[\varphi/\psi] \rceil \in \Lambda$. It follows (by PL) that $\lceil \neg \chi_1 \equiv \neg \chi_1[\varphi/\psi] \rceil \in \Lambda$ and $\lceil (\chi_1 \circ \chi_2) \equiv (\chi_1 \circ \chi_2) [\varphi/\psi] \rceil \in \Lambda$, for $\circ = \lor, \land, \supset, \equiv$.

By lemmas 1.16, 1.6, 1.9 and 1.15 we obtain:

COROLLARY 1.17. For any rte-system Σ :

- 1. $E_{PL} \subseteq \Sigma$.
- 2. $\Box \top \in \Sigma$ iff $\Box \mathbf{PL} \subseteq \Sigma$.
- 3. If $\Box \top \in \Sigma$ and sub(K) $\subseteq \Sigma$, then Σ is t-normal; consequently $R_{PL} \subseteq \Sigma$, sub(X) $\subseteq \Sigma$ and sub(R) $\subseteq \Sigma$.
- 4. If $\operatorname{sub}(X) \subseteq \Sigma$, then $\operatorname{sub}(K) \subseteq \Sigma$.

Of course, any modal system which includes some rte-system, is also an rte-system. So if Λ is an rte-logic, then $\Lambda[\Phi]$ is.

FACT 1.18. The set \mathbf{PL}_{rte} is the smallest rte-system and rte-logic.

PROOF: Of course, $\mathbf{PL} \subseteq \mathbf{PL}_{\text{rte}}$. Let $\lceil \chi_1 \supset \chi_2 \rceil \in \mathbf{PL}_{\text{rte}}$ and $\chi_1 \in \mathbf{PL}_{\text{rte}}$, i.e., for some $\tau_0 \in \mathbf{PL}$, $\psi_0 \in$ For we have that: $\chi_1 = \tau_0 [\varphi_1/\psi_1, ..., \varphi_k/\psi_k]$, $\lceil \tau_0 \supset \psi_0 \rceil \in \mathbf{PL}$, $\chi_2 = \psi_0 [\varphi_{k+1}/\psi_{k+1}, ..., \varphi_{k+m}/\psi_{k+m}]$ and $\lceil \varphi_1 \equiv \psi_1 \rceil \in \mathbf{PL}$, $\ldots, \lceil \varphi_{k+m} \equiv \psi_{k+m} \rceil \in \mathbf{PL}$. Hence $\psi_0 \in \mathbf{PL}$; so $\chi_2 \in \mathbf{PL}_{\text{rte}}$. Thus, \mathbf{PL}_{rte} is a modal system. From Lemma 1.16, \mathbf{PL}_{rte} is the smallest rte-system.

For any uniform substitution s of formulae for propositional letters, $s(\tau[^{\varphi_1}/_{\psi_1},...,^{\varphi_k}/_{\psi_k}]) = s(\tau)[^{s(\varphi_1)}/_{s(\psi_1)},...,^{s(\varphi_k)}/_{s(\psi_k)}]$ and $s(\tau) \in \mathbf{PL}$.

Notice that $\mathbf{S0.5}^{\circ}$ (and so also $\mathbf{S0.5}^{\circ}$, $\mathbf{S0.5}^{\circ}[D]$ and $\mathbf{S0.5}^{\circ}[T_q]$) is not closed under (rte). For example, the formulae:

$$\begin{array}{ll} \mathbf{a}) & \Box \Box p \supset \Box \Box \neg \neg p \\ \mathbf{b}) & \Box \Box \neg \neg p \supset \Box \Box p \end{array}$$
 (†)

do not belong to these logics (see e.g. Fact 3.6 in the second part).

COROLLARY 1.19. For any rte-system Σ which includes M_{PL} and has some formula of the form $\Box \varphi \neg$ (consequently, $\Box \top \in \Sigma$, by Lemma 1.8):

- 1. $\Box \operatorname{REP}_{\mathbf{PL}} \subseteq \Box \mathbf{PL}_{\operatorname{rte}} \subseteq \boldsymbol{\Sigma},$
- 2. $\boldsymbol{\Sigma}$ is closed under the following replacement

$$\forall_{\varphi,\psi,\chi\in\operatorname{For}}\colon \text{ if } \ulcorner\varphi\equiv\psi\urcorner\in\operatorname{\mathbf{PL}}, \text{ then } \ulcorner\chi\rightarrowtail\chi[^{\varphi}/_{\psi}]\urcorner\in\boldsymbol{\Sigma}. \quad (\operatorname{srte})$$

PROOF: 1. Let $\tau \in \mathbf{PL}$. By Corollary 1.17, $\Box \tau \in \Sigma$. So if $\lceil \varphi \equiv \psi \rceil \in \mathbf{PL}$, then $\Box \tau [\varphi/\psi] \in \Sigma$, by (rte).

2. By 1,
$$\lceil \Box(\chi \supset \chi[^{\varphi}/_{\psi}]) \rceil$$
 and $\lceil \Box(\chi[^{\varphi}/_{\psi}] \supset \chi) \rceil$ belong to Σ . \dashv

Moreover, we obtain:

LEMMA 1.20. For any rte-system Σ :

if $\operatorname{sub}(\Box(X)) \subseteq \Sigma$, then $\operatorname{sub}(\Box(K)) \subseteq \Sigma$.

PROOF: If $\lceil \Box ((\Box(\top \supset \varphi) \land \Box(\varphi \supset \psi)) \supset \Box(\top \supset \psi)) \rceil \in \Sigma$, then $\lceil \Box (\Box(\varphi \supset \psi) \supset (\Box\varphi \supset \Box\psi)) \rceil \in \Sigma$, by **PL** and two applications of (rte), since $\lceil \varphi \equiv (\top \supset \varphi) \rceil \in \mathbf{PL}$ and $\lceil \psi \equiv (\top \supset \psi) \rceil \in \mathbf{PL}$. \dashv

Let $\mathbf{S0.5_{rte}^{\circ}}, \mathbf{S0.5_{rte}^{\circ}}[D], \mathbf{S0.5_{rte}^{\circ}}[T_q]$ and $\mathbf{S0.5_{rte}}$ be, respectively, such versions of the logics $\mathbf{S0.5^{\circ}}, \mathbf{S0.5^{\circ}}[D], \mathbf{S0.5_{rte}^{\circ}}[T_q]$ and $\mathbf{S0.5}$ that are closed under (rte). Thus, $\mathbf{S0.5_{rte}^{\circ}}$ is the smallest t-normal rte-system; so $\mathbf{S0.5_{rte}^{\circ}} = \mathbf{PL}[\operatorname{REP_{PL}}, K, \Box \top]$. The logics $\mathbf{S0.5_{rte}^{\circ}}[D], \mathbf{S0.5_{rte}^{\circ}}[T_q]$ and $\mathbf{S0.5_{rte}}$ are the smallest t-normal rte-logics which contain (D), (T_q) and (T), respectively. Thus, $\mathbf{S0.5_{rte}} = \mathbf{S0.5_{rte}^{\circ}}[T] = \mathbf{PL}[\operatorname{REP_{PL}}, K, T, \Box \top]$ and $\mathbf{S0.5_{rte}^{\circ}}[D] = \mathbf{PL}[\operatorname{REP_{PL}}, K, D, \Box \top]$. We have that $\mathbf{S0.5_{rte}^{\circ}} \subsetneq \mathbf{S0.5_{rte}^{\circ}}[D] \subsetneq \mathbf{S0.5_{rte}^{\circ}}$, because (D) $\notin \mathbf{S0.5_{rte}^{\circ}}$ and (T) $\notin \mathbf{S0.5_{rte}^{\circ}}[D]$. Moreover, we have that $\mathbf{S0.5_{rte}^{\circ}}[T_q]$ (see [6]).

By Lemma 1.12, the logic $\mathbf{S0.5_{rte}}$ is closed under (RN_{*}) and (SMP). However for any $\varphi \in \text{For: } \Box \varphi \supset \in \mathbf{S0.5_{rte}}^\circ$ iff $\varphi \in \mathbf{PL}_{rte}$ iff $\Box \varphi \supset \in \mathbf{S0.5_{rte}}^\circ$ (see Fact 4.5 in the second part). So, by Lemma 1.16, $\mathbf{S0.5_{rte}}^\circ$ is also closed under (RN_{*}) and (SMP).

Let $\mathbf{C1}_{\mathbf{rte}}$, $\mathbf{D1}_{\mathbf{rte}}$, $\mathbf{C1}_{\mathbf{rte}}[\mathsf{T}_q]$ and $\mathbf{E1}_{\mathbf{rte}}$ be, respectively, such versions of the logics $\mathbf{C1}$, $\mathbf{D1}$, $\mathbf{C1}[\mathsf{T}_q]$ and $\mathbf{E1}$ that are closed under (rte). The logic $\mathbf{C1}_{\mathbf{rte}}$ is the smallest t-regular rte-system; so $\mathbf{C1}_{\mathbf{rte}} = \mathbf{PL}[\mathsf{R}_{\mathbf{PL}}, \mathsf{REP}_{\mathbf{PL}}]$. $\mathbf{D1}_{\mathbf{rte}}$, $\mathbf{C1}_{\mathbf{rte}}[\mathsf{T}_q]$ and $\mathbf{E1}_{\mathbf{rte}}$ are smallest t-regular rte-logics which contain (D), (T_q) and (T), respectively. We have that $\mathbf{C1}_{\mathbf{rte}} \subsetneq \mathbf{D1}_{\mathbf{rte}} \subsetneq \mathbf{E1}_{\mathbf{rte}}$ and $\mathbf{C1}_{\mathbf{rte}} \subsetneq \mathbf{C1}_{\mathbf{rte}}[\mathsf{T}_q] \subsetneq \mathbf{E1}_{\mathbf{rte}}$ (see [6]).

Finally notice that for the smallest rte-logic \mathbf{PL}_{rte} we have "valuation semantics". Let $\mathsf{Val}_{\mathsf{rte}}^{\mathsf{cl}}$ be the set of all valuations $V \colon \text{For} \to \{0, 1\}$ from $\mathsf{Val}^{\mathsf{cl}}$ satisfying the following condition:

$$\forall_{\varphi,\psi,\chi\in\text{For}}: \text{ if } \ulcorner\varphi \equiv \psi \urcorner \in \mathbf{PL}, \text{ then } V(\chi) = V(\chi[\varphi/\psi]). \tag{(\star)}$$

For the set $\mathsf{Val}_{\mathsf{rte}}^{\mathsf{cl}}$ we have a fact analogous to Lemma 1.1 for $\mathsf{Val}^{\mathsf{cl}}$.

LEMMA 1.21. 1. $V \in \mathsf{Val}_{\mathsf{rte}}^{\mathsf{cl}}$ iff for some $v \colon \mathsf{PAt} \to \{0, 1\}$ such that

 $\forall_{\varphi,\psi,\chi\in\operatorname{For}}: if \ \ulcorner\varphi \equiv \psi \urcorner \in \mathbf{PL}, \ then \ v(\Box\chi) = v(\Box\chi[\varphi/\psi]), \quad (\star_{\operatorname{PAt}})$

V is the unique extension of v by classical truth conditions for truthvalue operators.

- 2. For any $\varphi \in \text{For: } \varphi \in \mathbf{PL}_{\text{rte}}$ iff for any $v : \text{PAt} \to \{0, 1\}$ satisfying (\star_{PAt}) we have that $V(\varphi) = 1$, where V is the unique extension of v by classical truth conditions for truth-value operators.
- 3. For any $\varphi \in \text{For: } \varphi \in \mathbf{PL}_{\text{rte}} \text{ iff for any } V \in \mathsf{Val}_{\mathsf{rte}}^{\mathsf{cl}}, V(\varphi) = 1.$

PROOF: 1. " \Leftarrow " Let $\chi, \varphi, \psi \in$ For such such $\lceil \varphi \equiv \psi \rceil \in$ **PL**. By Lemma 1.1, $V \in \mathsf{Val}^{\mathsf{cl}}$ and $V(\varphi) = V(\psi)$.

First we consider the possibility that $\chi = \varphi$. Then $\chi[\varphi/\psi] = \psi$ (when there is no replacement) or $\chi[\varphi/\psi] = \varphi$ (when φ is replaced by ψ). So $V(\chi) = V(\chi[\varphi/\psi])$, by the assumption.

Thus we may assume henceforth that $\chi \neq \varphi$. The proof proceeds by induction on the complexity of χ . We give it for the cases in which χ is (*) atomic; (**) $\ulcorner \neg \chi_1 \urcorner$ or $\ulcorner \chi_1 \circ \chi_2 \urcorner$, for $\circ = \lor, \land, \supset, \equiv$; and (***) a necessitation, $\ulcorner \Box \chi_1 \urcorner$.

For (*): There is no replacement. For (***): For any $\chi_1 \in$ For we have that $V(\Box \chi_1) = v(\Box \chi_1)$. So we use the assumption (*_{PAt}).

For the inductive case (**) we assume that the result holds for all sentences shorter than χ . So $V(\chi_1) = V(\chi_1[\varphi/\psi])$ and $V(\chi_2) = V(\chi_2[\varphi/\psi])$. We have: $V(\neg\chi_1) = V(\neg\chi_1[\varphi/\psi])$ and $V(\chi_1 \circ \chi_2) = V((\chi_1 \circ \chi_2)[\varphi/\psi])$, since $V \in \mathsf{Val}^{\mathsf{cl}}$.

" \Rightarrow " We put $v := V|_{PAt}$. By the part " \Leftarrow ", the unique extension of v by classical truth conditions for truth-value operators belongs to Val_{rte}^{cl} and it is equal to V.

2. " \Leftarrow " Suppose that φ is built by means of truth-value operators, different propositional letters $\alpha_1, \ldots, \alpha_n$ and different necessitations $\Box \chi_1 \urcorner$, $\ldots, \Box \chi_m \urcorner (n+m \ge 0)$.

If m = 0, i.e. φ is a classical formula, then $\varphi \in$ Taut. Moreover, $\varphi \in \mathbf{PL}$, if m > 0 but there is no i, j = 1, ..., m such that $\chi_i = \chi_j [\psi/\psi']$, for some $\psi, \psi' \in$ For such that $\ulcorner\psi \equiv \psi' \urcorner \in \mathbf{PL}$. Indeed, in none of both cases condition (\star_{PAt}) is connected with φ , so this formula is true for an arbitrary valuation $v : \text{PAt} \to \{0, 1\}$.

Let us the assume that m > 0. We define the following equivalence relation in $\{\Box \chi_1, \ldots, \Box \chi_m\}$:

Semantical Investigations on Some Weak Modal Logics. Part I

$$\Box \chi_i \ R \ \Box \chi_j \iff \chi_i = \chi_j [\psi/\psi'],$$

for some $\psi, \psi' \in$ For such that $\ulcorner \psi \equiv \psi' \urcorner \in \mathbf{PL}.$

If it is the identity relation in $\{\Box \chi_1, \ldots, \Box \chi_m\}$, then the second considered case holds.

Let $\|\varrho_1\|_R, \ldots, \|\varrho_k\|_R$ be different equivalence classes from $\{\Box\chi_1, \ldots, \Box\chi_m\}/_R$. For different formulae $\varrho_1, \ldots, \varrho_k$ we assign different propositional letters β_1, \ldots, β_k (these letters are to be different as well from $\alpha_1, \ldots, \alpha_n$). All formulae from $\|\varrho_i\|_R$ are replaced by ϱ_i . We obtain the formula φ^* . Now, every ϱ_i is being replaced by β_i . In this way we obtain the classical formula φ^*_{cl} . By the assumption we have that $\varphi^*_{cl} \in \text{Taut}$. Replacing ϱ_i for β_i in φ^*_{cl} we obtain φ^* . Therefore $\varphi^* \in \mathbf{PL}$. The latest formula can be transformed into φ by suitable replacements (reverting to the initial ones) of formula ϱ_i . Thus $\varphi \in \mathbf{PL}_{rte}$.

3. " \Rightarrow " Let $\varphi \in \mathbf{PL}_{\text{rte}}$, i.e., there are $\tau \in \mathbf{PL}$ and $\psi_1 \ldots, \psi_k, \psi'_1, \ldots, \psi'_k \in \mathbf{For}$ such that $\lceil \psi_1 \equiv \psi'_1 \rceil \in \mathbf{PL}, \ldots, \lceil \psi_k \equiv \psi'_k \rceil \in \mathbf{PL}$ and $\varphi = \tau[\psi'_{\psi'_1}, \ldots, \psi_k/\psi'_k]$. For any $V \in \mathsf{Val}^{\mathsf{cl}}_{\mathsf{rte}}$ we have that $V(\tau) = 1$, because $\mathsf{Val}^{\mathsf{cl}}_{\mathsf{rte}} \subseteq \mathsf{Val}^{\mathsf{cl}}$. Thus, by $(\star), V(\varphi) = V(\tau) = 1$.

" \Leftarrow " Let $\varphi \notin \mathbf{PL}_{\text{rte}}$. Then, by the part " \Leftarrow " of 2, for some $v: \text{PAt} \to \{0, 1\}$ which satisfies the condition (\star_{PAt}) we have that $V(\varphi) = 0$, where V is the unique extension of v by classical truth conditions for truth-value operators. Moreover, by 1, $V \in \mathsf{Val}_{\mathsf{rte}}^{\mathsf{cl}}$.

2. " \Rightarrow " By the part " \Rightarrow " of 1 and the part " \Rightarrow " of 3.

1.5. Strict classical logics. The logics S1, S0.9, S1 $^{\circ}$ and S0.9 $^{\circ}$

After [1], we say that a logic Λ is $strict_T$ classical ("traditionally strict classical") iff $\Box \mathbf{PL} \subseteq \Lambda$ and Λ is closed under "traditional replacement rule for strict equivalents":

if
$$\[\varphi \succ \forall \psi \] \in \boldsymbol{\Lambda}$$
 and $\chi \in \boldsymbol{\Lambda}$, then $\chi[\[\varphi]_{\psi}] \in \boldsymbol{\Lambda}$. (RRSE_T)

Moreover, a logic Λ is called *strict classical* iff $\Box \mathbf{PL} \subseteq \Lambda$ and Λ is closed under the following replacement rule:

if
$$\Box(\varphi \equiv \psi) \in \Lambda$$
 and $\chi \in \Lambda$, then $\chi[\varphi/\psi] \in \Lambda$. (RRSE)

We obtain that for modal logics which contain (K) and/or (X), the above notions are equivalent. Firstly we notice that:

LEMMA 1.22 ([1]). Every strict_T or strict classical logic is an rte-system.

Secondly, by lemmas 1.11 and 1.22, and Corollary 1.17 we have that:

LEMMA 1.23 ([1]). For every logic Λ which contains (K) or (X): Λ is strict_T classical iff Λ is strict classical.

The logic **S0.9** (resp. **S1**) is the smallest strict classical logic which contains the formulae (T), \Box (T) and \Box (K) (resp. \Box (X)). For these logics see e.g. [1, 4, 6]. By lemmas 1.20 and 1.22, **S0.9** \subseteq **S1**. In [3] it was proved that **S0.9** \neq **S1**, since \Box (X) \notin **S0.9** (see also e.g. [1, pp. 15–16]).

In [1] the Feys' logic $S1^{\circ}$ from [2] is described as the smallest strict_T classical logic which contains the formulae (X) and $\Box(X)$, and is closed under (SMP). In [8] the logic $S1^{\circ}$ is described as the smallest strict_T classical logic which contains the formulae (X) and $\Box(X)$, and is closed under (RN_{*}). By lemmas 1.12 and 1.22 both characterizations are equivalent.

Again by lemmas 1.20 and 1.22, and Corollary 1.17, $(K), \Box(K) \in S1^{\circ}$. Since $(X) \in S1$ and S1 is closed under (SMP), so $S1^{\circ} \subseteq S1$. Because $(T), \Box(T) \notin S1^{\circ}$, so $S1^{\circ} \neq S1$ (see e.g. [1]).

Moreover, in [1] the logic $\mathbf{S0.9}^{\circ}$ is described as the smallest strict_T classical logic which contains the formulae (K) and $\Box(K)$, and is closed under (SMP). We have $\mathbf{S0.9}^{\circ} \subseteq \mathbf{S1}^{\circ}$, because $(K), \Box(K) \in \mathbf{S1}^{\circ}$.

Since $(T) \notin S0.9^{\circ}$, $\Box(X) \notin S0.9$, $(K) \in S0.9$ and S0.9 is closed under (SMP), so $S0.9^{\circ} \subsetneq S0.9$ and $S0.9^{\circ} \subsetneq S1^{\circ}$.

Notice that, by lemmas 1.12 and 1.22, the logics $\mathbf{S0.9}^\circ$, $\mathbf{S0.9}$, $\mathbf{S1}^\circ$ and $\mathbf{S1}$ are also closed under (RN_{*}). We can describe the logic $\mathbf{S0.9}^\circ$ (resp. $\mathbf{S0.9}$; $\mathbf{S1}^\circ$; $\mathbf{S1}$) as the smallest logic which includes \Box Taut, is closed under (RN_{*}) and (RRSE_T), and contains $\Box(K)$ (resp. $\Box(K)$ and $\Box(T)$; $\Box(X)$; $\Box(X)$ and $\Box(T)$).

In the second part of this paper we shall prove that $\Box(K), \Box(T) \notin \mathbf{S0.5_{rte}}$, so $\mathbf{S0.5_{rte}}^{\circ} \subsetneq \mathbf{S0.9}^{\circ}$ and $\mathbf{S0.5_{rte}} \subsetneq \mathbf{S0.9}$.

In [1] the *Lewis version* $\mathbf{Lew}(\boldsymbol{\Lambda})$ of a logic $\boldsymbol{\Lambda}$ is understood as the smallest logic which includes $\boldsymbol{\Lambda}$ and contains the formula $\Box \top$, i.e. $\mathbf{Lew}(\boldsymbol{\Lambda}) := \boldsymbol{\Lambda}[\Box \top] = \mathbf{PL}[\boldsymbol{\Lambda}, \Box \top].$

In [1] a logic is called *prenormal* iff it is congruential and contains the formula $\Box \Box \Box \supset (K)$. Of course, every prenormal logic which contains $\Box \top$ is normal. In [1] were considered the logics **PK**, **PX**, **PKT** and **PXT** which are the smallest congruential logics respectively containing: (K); (K) and (T); (X); (X) and (T). By Lemma 1.6, these logics contain (K), so also $\Box\Box \top \supset (K)^{\neg}$. Hence they are prenormal and we have that $\mathbf{PK} \subseteq \mathbf{PX} \subseteq \mathbf{PXT}$ and $\mathbf{PK} \subseteq \mathbf{PKT} \subseteq \mathbf{PXT}$. In [1] it was proved that $\mathbf{S0.9^{\circ} = Lew(PK)} := \mathbf{PK}[\Box\top]$, $\mathbf{S0.9 = Lew(PKT)} := \mathbf{PKT}[\Box\top]$, $\mathbf{S1^{\circ} = Lew(PX)} := \mathbf{PX}[\Box\top]$ and $\mathbf{S1 = Lew(PXT)} := \mathbf{PXT}[\Box\top]$.

Finally, notice that the logics S1, S0.9, S1° and S0.9° are not congruential and that the formulae $\Box(M)$, $\Box(C)$ and

$$\Box p \prec \Box (p \lor q) \tag{1.1}$$

$$\Diamond (p \land q) \prec \Diamond p \tag{1.2}$$

are not members of **S1**, while the formulae (M), (C), $\Box p \supset \Box (p \lor q)$ and $(\Diamond (p \land q) \supset \Diamond p)$ belong to **C1**.

1.6. The logics $S2^{\circ}$ and S2

We say the a logic Λ is closed under *Becker's rule* iff for any $\varphi, \psi \in$ For:

if
$$\lceil \varphi \prec \psi \rceil \in \boldsymbol{\Lambda}$$
, then $\lceil \Box \varphi \prec \Box \psi \rceil \in \boldsymbol{\Lambda}$. (RB)

In [4] the logic **S2** is described as the smallest modal logic which includes \Box Taut, contains the formulae (T), \Box (T), and \Box (K), and is closed under (RB). Of course, **S2** includes \Box **PL**, contains (K) and, by Lemma 1.12, it is closed under (RN_{*}) and (SMP).

Moreover, the logic $\mathbf{S2}^{\circ}$ is described in [8] as the smallest logic which includes \Box Taut, contains $\Box(K)$, and is closed under (RB) and (RN_{*}). Of course, $\mathbf{S2}^{\circ}$ includes $\Box \mathbf{PL}$, contains (K) and, by Lemma 1.12, it is closed under (SMP). So $\mathbf{S2}^{\circ} \subsetneq \mathbf{S2}$. For example $(T), \Box(T) \notin \mathbf{S2}^{\circ}$.

In [4] Lemmon proved that $\Box(X) \in S2$ and S2 is closed under (RRSE_T). His proof shows that also $\Box(X) \in S2^{\circ}$ and $S2^{\circ}$ is closed under (RRSE_T). So we have that $S1^{\circ} \subsetneq S2^{\circ}$ and $S1 \subsetneq S2$. Thus, S2 and $S2^{\circ}$ are strict_T and strict classical, but they are not congruential.

In [1] it was proved that $S2^{\circ} = Lew(C2) := C2[\Box\top]$ and $S2 = Lew(E2) := E2[\Box\top]$. Moreover, for every $\varphi \in$ For:

$$\Box \varphi \in \mathbf{S2}^{\circ} \quad \text{iff} \quad \varphi \in \mathbf{C2}, \tag{1.3}$$

$$\Box \varphi \urcorner \in \mathbf{S2} \quad \text{iff} \quad \varphi \in \mathbf{E2}.$$
 (1.4)

Hence, the formulae $\Box(M)$, $\Box(C)$, (1.1) and (1.2) belong to $S2^{\circ}$, because (M), (C), $\Box p \supset \Box (p \lor q)$ and $\Diamond (p \land q) \supset \Diamond p$ belong to C1.

2. Some new weak t-normal logics and t-normal rte-logics

In the present paper we examine some logics which are not strict classical, but these logics have the form $\Lambda[\Box \Phi]$, where $\Phi \subseteq \mathbf{S0.5}$ and $\Lambda = \mathbf{S0.5}^{\circ}$, $\mathbf{S0.5}^{\circ}[D]$, $\mathbf{S0.5}^{\circ}[T_q]$, $\mathbf{S0.5}$, $\mathbf{S0.5}^{\circ}_{rte}$, $\mathbf{S0.5}^{\circ}_{rte}[D]$, $\mathbf{S0.5}^{\circ}_{rte}[T_q]$, $\mathbf{S0.5}_{rte}$.

Remark 2.1. By Lemma 1.15, if a logic Λ is t-regular (resp. a t-regular rtesystem) and $\Phi \neq \emptyset$, then $\Lambda[\Box \Phi]$ is t-normal (resp. a t-normal rte-system).

For example, $\mathbf{C1}[\Box \Phi] = \mathbf{S0.5}^{\circ}[\Box \Phi]$, where $\Phi \neq \emptyset$. Similarly for tregular logics $\mathbf{D1}$, $\mathbf{C1}[\mathsf{T}_q]$, $\mathbf{E1}$, $\mathbf{C1_{rte}}$, $\mathbf{D1_{rte}}$, $\mathbf{C1_{rte}}[\mathsf{T}_q]$, $\mathbf{E1_{rte}}$ and suitable t-normal logics $\mathbf{S0.5}^{\circ}[\mathsf{D}]$, $\mathbf{S0.5}^{\circ}[\mathsf{T}_q]$, $\mathbf{S0.5}$, $\mathbf{S0.5}^{\circ}_{rte}$, $\mathbf{S0.5}^{\circ}_{rte}[\mathsf{D}]$, $\mathbf{S0.5}^{\circ}_{rte}[\mathsf{T}_q]$, $\mathbf{S0.5_{rte}}$.

Remark 2.2. As we remember (see p. 42) the formulae (\dagger) do not belong to **S0.5**. The formula (\dagger_a) belongs to **S0.5** $[\Box K, \Box (\Box p \supset \Box \neg \neg p)]$, where $(\Box p \supset \Box \neg \neg p' \in \mathbf{C1}$. But $\Box(\dagger)$ and

a)
$$\Box\Box\Box p \supset \Box\Box\Box \neg \neg p$$

b)
$$\Box\Box\Box \neg \neg p \supset \Box\Box\Box p$$
 (‡)

do not belong to $S0.5[\Box S0.5]$; so this logic is not an rte-system (see the second part). \dashv

In Section 3 for logics $\Lambda[\Box \Phi]$, where $\Lambda = \mathbf{S0.5}^{\circ}$, $\mathbf{S0.5}^{\circ}[D]$, $\mathbf{S0.5}^{\circ}[\mathbf{T}_q]$, **S0.5**, we give simplified semantics formulated by means of some Kripkestyle models. In Section 4 we give similar semantics for logics $\Lambda[\Box \Phi]$, where $\Lambda = \mathbf{S0.5}^{\circ}_{\mathbf{rte}}$, $\mathbf{S0.5}^{\circ}_{\mathbf{rte}}[D]$, $\mathbf{S0.5}^{\circ}_{\mathbf{rte}}[\mathbf{T}_q]$, $\mathbf{S0.5}_{\mathbf{rte}}$. In Section 5 we prove that considered logics are determined by some classes of these models.

Firstly notice that by Lemma 1.20 we obtain:

COROLLARY 2.1. For any rte-logic Λ : $\Lambda[\Box \Phi, \Box X] = \Lambda[\Box \Phi, \Box K, \Box X]$.

By facts from Section 1 and Corollary 2.1 we obtain:

Fact 2.2. 1. $\mathbf{S0.5}^{\circ}[\Box K] \subseteq \mathbf{S0.5}^{\circ}_{\mathbf{rte}}[\Box K] \subseteq \mathbf{S0.9}^{\circ}$.

2. $\mathbf{S0.5}[\Box K, \Box T] \subseteq \mathbf{S0.5_{rte}}[\Box K, \Box T] \subseteq \mathbf{S0.9}.$

3. $\mathbf{S0.5^{\circ}}[\Box \mathtt{K}, \Box \mathtt{X}] \subseteq \mathbf{S0.5^{\circ}_{rte}}[\Box \mathtt{X}] \subseteq \mathbf{S1^{\circ}}.$

4. $\mathbf{S0.5}[\Box T, \Box K, \Box X] \subseteq \mathbf{S0.5_{rte}}[\Box X, \Box T] \subseteq \mathbf{S1}.$

Semantical Investigations on Some Weak Modal Logics. Part I

Moreover, we have:

LEMMA 2.3. For any t-regular logic Λ and $\Phi, \Psi \subseteq$ For, if $\Psi \models_{\mathbf{PL}} \Phi$, then $\Lambda[\Box \Phi] \subseteq \Lambda[\Box \Psi]$.

PROOF: Suppose that $\Psi \models_{\mathbf{PL}} \Phi$, i.e., for every $\varphi \in \Phi$ there is a subset $\{\psi_1, \ldots, \psi_n\}$ of Ψ , $n \ge 0$, such that $\lceil (\psi_1 \land \cdots \land \psi_n) \supset \varphi \rceil \in \mathbf{PL}$. Since Λ is t-regular, $\lceil (\Box \psi_1 \land \cdots \land \Box \psi_n) \supset \Box \varphi \urcorner \in \Lambda$. Hence, $\Box \varphi \in \Lambda[\Box \Psi]$, since $\Box \psi_1, \ldots, \Box \psi_n \in \Lambda[\Box \Psi]$.

By the above lemma we obtain:

COROLLARY 2.4. For any r-regular logic Λ : $\Lambda[\Box \Phi, \Box C] \subseteq \Lambda[\Box \Phi, \Box R]$, $\Lambda[\Box \Phi, \Box N] \subseteq \Lambda[\Box \Phi, \Box R]$ and $\Lambda[\Box \Phi, \Box C, \Box N] = \Lambda[\Box \Phi, \Box R]$.

From the facts (1.3) and (1.4) we have:

FACT 2.5. 1. If $\Phi \subseteq \mathbf{C2}$, then $\mathbf{S0.5^{\circ}_{rte}}[\Box \Phi] \subseteq \mathbf{S2^{\circ}}$. 2. If $\Phi \subseteq \mathbf{E2}$, then $\mathbf{S0.5_{rte}}[\Box \Phi] \subseteq \mathbf{S2}$.

However in the present paper we are only interested in such a set $\Box \Phi$, as a set of new axioms, which satisfies condition $\Phi \subseteq$ **S0.5**. Notice that we have the following facts:

$$\mathbf{C1} = \mathbf{C2} \cap \mathbf{S0.5}^{\circ}, \tag{2.1}$$

$$\mathbf{C1} \subsetneq \mathbf{C2} \cap \mathbf{S0.5} \nsubseteq \mathbf{S0.5}^{\circ}, \qquad (2.2)$$

$$\mathbf{E1} = \mathbf{E2} \cap \mathbf{S0.5} \,. \tag{2.3}$$

We have: C1 \subseteq C2, C1 \subseteq S0.5° \subseteq S0.5, E1 \subseteq E2 and E1 \subseteq S0.5. The remaining facts we will obtain from the semantics presented in [6] (see Fact 3.12 in the second part of this paper).

Therefore the following corollary will be of crucial importance:

COROLLARY 2.6. 1. If
$$\Phi \subseteq \mathbf{C2} \cap \mathbf{S0.5}$$
, then $\mathbf{S0.5^{\circ}_{rte}}[\Box \Phi] \subseteq \mathbf{S2^{\circ}}$.
2. If $\Phi \subseteq \mathbf{E1}$, then $\mathbf{S0.5_{rte}}[\Box \Phi] \subseteq \mathbf{S2}$.

In Section 6 (see Corollary 6.3 in the second part) we prove that in the subsequents in the above corollary the symbol ' \subseteq ' can be replaced by ' \subsetneq '.

References

- Chellas, B.F., and K. Segerberg, Modal logics in the vicinty of S1, Notre Dame Journal of Formal Logic 37, 1 (1996), pp. 1–24.
- Feys, R., Les systèmes formalisés des modalités aristotéliciennes, Revue Pilosophique de Louvain 48 (1950), pp. 478–509. Also: R. Feys, Modal Logics. Louvain 1965: E. Nauwelaerta.
- [3] Girle, R. A., S1 ≠ S0.9, Notre Dame Journal of Formal Logic 16 (1975), pp. 339–344.
- [4] Lemmon, E. J., New fundations for Lewis modal systems, The Journal of Symbolic Logic 22, 2 (1957), pp. 176–186.
- [5] Lewis, C. I., and C. H. Langford, Symbolic Logic, New York, 1932.
- [6] Pietruszczak, A., Simplified Kripke-style semantics for some very weak modal logics, Logic end Logical Philosophy 18 (2009), pp. 271–296.
- [7] Routley, R., Decision procedure and semantics for C1, E1 and S0.5°, Logique et Analyse 44 (1968), pp. 468–469.
- [8] Zeman, J. J., Lemmon-style bases for the systems S1°-S4°, The Journal of Symbolic Logic 33, 3 (1968), pp. 458-461.

Nicolaus Copernicus University Department of Logic ul. Asnyka 2 87-100 Toruń, Poland e-mail: pietrusz@uni.torun.pl